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Abstract— This paper is concerned with the stability of an
adaptive switched controller for interarea power system oscil-
lation damping using remote signals. These signals introduce
variable latency into the damping control system due to phasor
processing and communication network delays. In previous
work, we designed an adaptive controller that dynamically
switches among different compensators depending on the la-
tency of the incoming measurements. To prevent switching
instability, a long reset time was implemented. We demonstrated
the stability of the adaptive system using simulations. In this
work, we use the concept of average dwell time (ADT) of
switched control systems to develop a sufficient condition that
guarantees the stability of our adaptive switching algorithm.
Using this condition, we formulate a feasibility problem to
compute the minimum average dwell time for the set of designed
compensators. We apply the algorithm to a thyristor-controlled
series compensator on a two-area power system and show that
the adaptive controller is stable for time-varying latency.

I. INTRODUCTION

The advent of synchronized phasor measurement units
(PMUs) at many locations across power grids enables the
use of such remote signals for interarea oscillation damping.
Unlike local signals, remote measurements can provide better
observability of interarea modes and thus more effective
control using power-electronics-based devices such as a
thyristor-controller series compensator (TCSC). However,
communication of data from remote PMUs can introduce
data loss, corruption, and latency. Data loss and corruption
can be partially mitigated using data reconstruction methods
or state estimation techniques [1]. On the other hand, latency
is inherent in remote signals and is increased by such
data processing algorithms. Different levels of congestion
in communication network produces varying amounts of
measurement latency to be compensated.

In previous work [2], we developed an adaptive switched
controller to damp interarea oscillations for a two-area power
system using remote PMU signals. The controller consisted
of several compensators, each designed for a specific amount
of data latency in the PMUs. Thus the adaptive scheme would
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switch among the compensators depending on the measured
latency of the input signal. To prevent instability due to
switching among the different compensators, we designed the
algorithm to have a sufficiently long reset time, much longer
than the typical decay time of the oscillations. Through
simulation, we showed that the switching algorithm exhibited
stability.

In this work, we formally demonstrate the stability of
the adaptive controller design using a theoretical results for
switched systems. We employ the concept of average dwell
time (ADT) switching sequences to construct a stability proof
for our designed adaptive controller. Using these theoretical
results, we compute the minimum average dwell time to
guarantee stability for a selected set of compensators under
our adaptive control scheme. We show that the reset time
chosen in our previous work is sufficient to ensure stable
operation. Other researchers have also considered stability
of networked control systems with time varying delays [3].
However, the main drawback of [3] is that it is more com-
putationally expensive compared to the algorithm introduced
in this paper.

II. PMU DATA LATENCY

Phasor measurement units (PMUs) are distributed across
wide geographical regions and the data is transmitted across
long communication links. Generally the data is first col-
lected by a local utilities at their phasor data concentrators
(PDCs), then streamed to the central PDC of the regional
system operator. An example of this hierarchical arrangement
is shown in Figure 1.

The phasor measurements face a number of delays along
the signal path. First, the frequency estimation and phasor
calculation algorithms typically require multiple cycles of
measured data to compute the phasor quantities. This type
of fixed delay sets a floor for the overall time-varying
measurement latency. After the phasor is computed, the data
is transmitted across communication networks to the local
PDC and finally to the central PDC. In addition to the delays
across the communication network infrastructure, which can
be calculated based on the type of communication link [4],
the data also encounters small delays at each PDC due to
processing. As an example, we list the estimated delays for
the Quebec power system in Table I [5].

We model the measurement latency using the same ap-
proach as in our previous work, namely a minimum delay
with a variable component, taking the approach used in [6]
to calculate total time delay Tld as

Tld = Ts + Tb + Tp + Tr
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TABLE I
PMU DATA LATENCY IN THE QUEBEC POWER SYSTEM

PMU processing time 73 ms
Local data concentration 16 ms
2,000 km in optical fiber 10 ms

Central data concentration 10 ms
Total estimated data latency 109 ms
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where Ts = Ps/Dr is the serial delay, Ps is the packet size
in bits, Dr is the transmission rate of the link in bits/s, and
Tb is the delay between data packets. Moreover, Tp = L/ν
is the propagation delay, where L is the link length in km
and ν is the propagation speed in the link in km/s, and Tr
is the routing delay.

III. CONTROL DESIGN

The adaptive controller follows a similar control design
as in [2] with some minor changes to reflect a more prac-
tical implementation. For damping control with a thyristor-
controller series compensator (TCSC), we typically use a
derivative filter with a small time constant Tδ in addition
to the washout filter and thus no additional phase lead is
required. For our controller design, we adapt the controller
from [7] and add a phase lead compensator to counteract the
phase lag caused by data latency. The overall controller is

Gc(s, Td) = K(Td)
1+Tnum(Td)s
1+Tden(Td)s

s
(1+Tδs)

2
Tws

1+Tws
(1)

and the system is shown in Figure 2. Note that we switch
among several phase lead compensators which are each
designed for a specific level of delay Td.

As the input signal latency d(t) varies, we use the adaptive
algorithm from [2] to select the controller delay Td such that
Td ≥ d(t), but with dwell time considerations to prevent
switching instability. The algorithm can be summarized as
follows:

Adaptive Control Algorithm
Prespecify a set of Td values: 0 < Td1 < Td2 < · · · < Tdn.

At time t = tk, where t is the time at the controller, the
time delay Tdi is used to set the controller.

for t = tk + ∆t, where ∆t is the sampling period of the
PMU data if the next data point is already in the input data
buffer, or the incremental time of arrival of the next data
point if the input data buffer is empty.

if the data delay is larger than the Tdi, switch to a
controller with the lowest latency Tdj which is higher
than the data delay.

elseif the maximum latency of all the data in the last
Tr s is less than Tdj , where Tdj < Tdi, switch in the
controller with a lower latency Tdj .

else continue with the same controller.

end
End algorithm

Note that the reset time Tr is used to limit rapid switching
and prevent instability. In the next section, we will derive a
sufficient condition to guarantee stability of the closed-loop
switched system.

IV. STABILITY OF THE SWITCHED SYSTEM

It is well-known [8] that a switched system might be stable
under sufficiently slow switching sequences, such that the
transient effects dissipate after each switch. The simplest
way to specify slow switching sequences is to restrict the
class of admissible switching signals to satisfy a dwell time
constraint. That is to introduce a number τd > 0 such that



the switching times satisfy the inequality tk+1 − tk ≥ τd.
Specifying a dwell time constraint may be too restrictive in
the context of controlled switching. Thus, one can consider
an enlarged family of switching signals that occasionally
have consecutive discontinuities separated by less than τd,
but for which the average interval between discontinuities is
no less than τd. This concept was first formalized in [9] as
average dwell time.

Let Nσ(t, T ) denote the number of discontinuities of a
switching signal σ on the time interval (t, T ). We say that
σ has average dwell time τd if there exist positive numbers
N0 and τd such that

Nσ(t, T ) ≤ N0 + T−t
τd

∀T ≥ t ≥ 0.

Our goal is to establish a stability criteria for a class of
switched delay system under an average dwell time con-
straint. We consider a class of switched delay system of the
form

ẋ(t) = Aσ(t)x(t) +Bσ(t)x(t− dt), (2)

where x ∈ Rn denotes the state of the system,
σ(t) : [0,∞)→ S = {1, 2, ..., N} is the piecewise constant
switching signal.

We propose a sufficient condition that guarantees the
stability of the adaptive switching mechanism in [2]. We
formulate the problem for arbitrary number of modes.

Let us denote the latency of the arriving data by dt ∈
[0, dmax]. Assume that controller i has been designed to work
in the range of dt ∈ [0, di] for i ∈ S with di+1 > di
and dN = dmax. We consider the following switching
mechanism. In mode i,
• If the data latency is larger than di, switch to the

controller with the smallest delay dj which is greater
than the data latency.

• If the data latency is smaller than dj where dj < di,
switch to the controller with a lower delay, considering
that the average time between switches is at least τd.

Our goal is to find a minimum value of τd for which
the switched system remains stable. The following theorem
provides a lower bound for τd.

We define Fi :=
[
Ai 0

]
and Hi :=

[
0 Bi

]
.

Theorem 1: Consider the delayed switched system (2)
with dt ∈ [0, dmax). Assume that controller i has been
designed to work in the range of dt ∈ [0, di] for i ∈ S with
di+1 > di and dN = dmax. If there exist positive definite
symmetric matrices Pi, Zi ∈ Rn×n, matrices Ni ∈ R2n×n

and a constant µ ≥ 1 such that

Pi ≤ µPj Zi ≤ µZj ∀i, j ∈ S (3)

Φi :=

[
φi Ni
N ′i −d−1i Zi

]
< 0 (4)

with

φi = F ′i
[
Pi 0

]
+
[
Pi 0

]′
Fi

+ H ′i
[
Pi 0

]
+
[
Pi 0

]′
Hi

+ dmax(Fi +Hi)
′Zi(Fi +Hi)

− Ni
[
I −I

]
−
[
I −I

]′
N ′i

then the system is stable for any average dwell time switch-
ing sequences with τd > log µ

α where α is given by

α =
min
i
λmin(−(φi + diNiZ

−1
i N ′i))

max
i
λmax(Pi) +

d2max

2
max
i
λmax(Zi)

. (5)

It is worth noting that for a fixed value of µ ≥ 1, (3)-(4)
are linear matrix inequality conditions. By performing a line
search on µ, one should look for the smallest µ for which
(3)-(4) are feasible.

Proof: Assume that the system is in the ith mode for
t ∈ [tk, tk+1]. We have

ẋ(t) = Aix(t) +Bix(t− dt) +Bix(t)−Bix(t)

= (Ai +Bi)x(t)−Bi
∫ t

t−dt
ẋ(s) ds.

We choose the Lyapunov function

V (t) = V1(t) + V2(t),

V1(t) = x(t)′Pσ(t)x(t),

V2(t) =

∫ 0

−dmax

∫ t

t+θ

ẋ(s)′Zσ(s)ẋ(s) ds dθ.

Let us compute V̇ (t) for t ∈ [tk, tk+1). We assume that in
this time interval σ(t) = i

V̇1(t) = x(t)′ ((Ai +Bi)
′Pi + Pi(Ai +Bi))x(t)

− 2x(t)′PiBi

∫ t

t−dt
ẋ(s) ds

V̇2(t) = dmaxẋ(t)′Ziẋ(t)−
∫ t

t−dmax

ẋ(s)′Ziẋ(s) ds

Therefore,

V̇ (t) ≤ x(t)′ ((Ai +Bi)
′Pi + Pi(Ai +Bi))x(t)

− 2x(t)′PiBi

∫ t

t−dt
ẋ(s) ds

+ dmaxẋ(t)′Ziẋ(t)−
∫ t

t−dt
ẋ(s)′Ziẋ(s) ds

= x(t)′ ((Ai +Bi)
′Pi + Pi(Ai +Bi))x(t)

− 2x(t)′PiBi

∫ t

t−dt
ẋ(s) ds

+ dmax (Aix(t) +Bix(t− dt))′ Zi
(
Aix(t) +

+ Bix(t− dt)
)
−
∫ t

t−dt
ẋ(s)′Ziẋ(s) ds

= x(t)′ ((Ai +Bi)
′Pi + Pi(Ai +Bi))x(t)

− 2x(t)′PiBi(x(t)− x(t− dt))
+ dmaxx(t)′A′iZiAix(t)

+ 2dmaxx(t)′A′iZiBix(t− dt)
+ dmaxx(t− dt)′B′iZiBix(t− dt)

−
∫ t

t−dt
ẋ(s)′Ziẋ(s) ds (6)



TABLE II
PHASE LEAD COMPENSATORS Gc(s)

Controller # Delay (Td) Lag (Delay) Lead Damp. K TN TD

1 10 ms 2.4◦ 2.4◦ 5% 0.25 0.0622 0.237
2 50 ms 11.8◦ 11.8◦ 4.8% 0.2 0.0597 0.197
3 100 ms 23.6◦ 23.6◦ 4.5% 0.15 0.0556 0.159
4 150 ms 35.4◦ 30.0◦ 3.9% 0.12 0.0505 0.140
5 200 ms 47.2◦ 37.2◦ 3.2% 0.09 0.0440 0.121

Defining ξ(t) :=
[
x(t) x(t− dt)

]
, For any set of matrices

Ni, we have

2ξ′Ni
[
I −I

]
ξ = 2ξ′Ni

∫ t

t−dt
ẋ(s) ds

≤ d(t)ξ′NiZ
−1
i N ′iξ

+

∫ t

t−dt
ẋ(s)′Ziẋ(s) ds. (7)

Combining (6) and (7), we have

V̇ (t) ≤ x(t)′ ((Ai +Bi)
′Pi + Pi(Ai +Bi))x(t)

− 2x(t)′PiBi(x(t)− x(t− dt))
+ dmaxx(t)A′iZiAix(t)

+ 2dmaxx(t)′A′iZiBix(t− dt)
+ dmaxx(t− dt)′B′iZiBix(t− dt)
− 2ξ′Ni

[
I −I

]
ξ + diξ

′NiZ
−1
i N ′iξ

= ξ′(F ′i
[
Pi 0

]
+
[
Pi 0

]′
Fi

+ H ′i
[
Pi 0

]
+
[
Pi 0

]′
Hi

+ dmax(Fi +Hi)
′Zi(Fi +Hi)

− Ni
[
I −I

]
−
[
I −I

]′
N ′i

+ diNiZ
−1
i N ′i)ξ

Thus, we have V̇ (t) ≤ ξ′(φi + diNiZ
−1
i N ′i)ξ. With α given

in (5), one can show that

V̇ (t) ≤ −αV (t).

Therefore, the Lyapunov function decreases between switch-
ings. Following (3), at a switching instant tk, we have
Vσ(tk)(tk) ≤ µVσ(t−k )(t

−
k ). Using the result of [8, Theorem

3.2], we conclude that the system is stable for any average
dwell time switching with τd > log µ

α . �

It is worth noting that the number of decision variables in
(4) is a linear function of the number of modes. However the
number of decision variables in [3] grows quadratically with
the number of modes. In particular, if N denotes the number
of modes and n is the dimension of the closed-loop systems,
the number of decision variable in (4) is N(3n2 + n) while
[3] requires N(5N + 1)n(n+ 1)/2 decision variable.

V. SIMULATION RESULTS

A. Two-Area Power System

To illustrate the capability of our design, we consider
a two-area, four-generator system adapted from [10] and
shown in Figure 3. We use the same parameters from [2],

such that the system has significant interarea power transfer
and is prone to unstable oscillations following a short circuit
fault. In this system, Generators 1 and 2 in Area 1 are
coherent and Generators 11 and 12 in Area 2 are coherent
and all generators are represented using detailed machine
models with excitation systems.
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The TCSC is located in series with one of the interarea
lines, and a short circuit fault is applied near Bus 999 to
excite the system. We choose the difference between the
averaged angles θa in each area as our input signal

θa = 0.5(θ1 + θ2)− 0.5(θ11 + θ12)

where θi is the phase angle of the voltage at Bus i. This input
signal exhibits good observability of the interarea mode, and
is often present in PMU deployments. Further discussion on
the choice of input signal can be found in [2].

B. Multiple Compensators for Time-Varying Data Latency

In designing an adaptive controller for time-varying la-
tency, we select delay levels starting at 50 ms, at increments
of 50 ms, up to 250 ms. We also include a delay level of 10
ms to show the nearly-ideal case.

We implement the overall controller from (1), where the
time constant of the high-pass washout filter is Tw = 10 s
and the time constant of the derivative filter is Tδ = 0.04 s,
the same as in [7]. The adaptive parameters K(Td), T1(Td),
and T2(Td) are given in Table II.

C. Average Dwell Time

Based on Theorem 1, we formulate a linear matrix in-
equality (LMI) feasibility problem and calculate the ADT
for the designed controllers in Table II. The LMI feasibil-
ity problem becomes prohibitively large as the number of
switched controllers and system states increases. To improve
the optimization convergence and obtain a solution in a
reasonable amount of time, we reduce the state-space model



of the power system before applying the TCSC controller.
There are two parts to the process.

First, we remove the system modes, which are located at
the origin of the root-locus. These poles correspond to the
fact that the machine angles have multiple stable solutions
with periodicity 2π. We perform a simple transformation on
the angles to eliminate these poles, which has the effect of
slightly shifting the frequency of the interarea mode.

The second step is to reduce the order of the power system
dynamic model. After removing the 2 system modes, we have
a plant with 35 states. We then perform a balanced reduction
to reduce the system to 3rd order. Because the interarea
mode is unstable and the TCSC does not significantly affect
the other states, the interarea mode is kept in the 3rd
order system and its behavior closely resembles the original
system. Figure 4 compares the root-locus plots of the reduced
model and original system.
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Let (Ap, Bp, Cp, 0) and (Aic, B
i
c, C

i
c, D

i
c) be the state

space realizations for the reduced plant and the controller
in mode i, respectively. Assume that Ap ∈ Rnpl×npl and
Aic ∈ Rncn×ncn . The matrices in (2) which correspond to
the closed-loop matrices are given by

Ai =

[
Ap BpC

i
c

0ncn×npl Aic

]
Bi =

[
−BpDi

cCp 0npl×ncn
−BicCp 0ncn×ncn

]
.

Using Theorem 1, we can show that for the groups of
controllers in Table III, the described switching mechanism
stabilizes the closed-loop system. Note that as additional
controllers are combined, the minimum average dwell time
increases to guarantee stability.

D. Adaptive Controller Performance

This adaptive algorithm is applied to the 2-area system
for the same short-circuit disturbance. The adaptive con-
trol performance is shown in Figure 5. In this 15-second
simulation, a data buffer function is created in PST. We

TABLE III
AVERAGE DWELL TIME RESULTS

Controller # Delays (ms) Min. ADT (s)
(4,5) (150,200) 0.083
(3,4,5) (100,150,200) 0.162
(2,3,4,5) (50,100,150,200) 0.253
(1,2,3,4,5) (10,50,100,150,200) 1.182

simulate data latency with variable arrival time based on a
Poisson stochastic process, with a minimum latency of 90
ms. The parameters of the probability distribution function
are chosen such that the data latency is in the range d(t) ∈
[90, 110] ms in 99% of cases. For a 1-s interval during the
disturbance, latency variability is increased to represent a
brief congestion. We set the minimum reset time to Tr = 10
s, such that it is significantly larger than the minimum
average dwell time.
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Figure 5 shows the angle difference signal θa measured
instantaneously at the buses, the time that the signal θa
actually arrives at the controller, and the θa waveform that
is used as the damping controller input. A close-up is shown
in Figure 6. Note the initial delay for the phasor data θa to
be picked up by the data buffer.

In Figure 7, we show the phase compensation selection
by the adaptive algorithm. The algorithm starts with Td =
100 ms compensator and switches to the Td = 200 ms
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Fig. 8. Close-Up of Input Signal during Compensator Switching

compensator before the fault and it does not affect the
performance. At t = 1.588 s, a data point arrives with
greater than 150 ms latency, so the algorithm switches to
the Td = 200 ms compensator. We see that 150 ms later
(at t = 1.738 s), the controller holds the last data point in
input queue for 50 ms while it switches to the Td = 200 ms
compensator (Figure 8).

After switching in the 200 ms latency compensators,
the controller performance is still excellent. To damp the
oscillations, the controller saturates as it drives the effective
reactance of the TCSC branch connection Buses 3 and 13 to
a minimum, as shown in Figure 9.
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VI. CONCLUSION

In this paper, we analyzed the stability of an adaptive
control scheme for a power system interarea damping con-
troller using remote PMU data with time-varying latency.
The adaptive control consists of a controller switching al-
gorithm based on the latency of PMU data, and a phase
compensation design of the controller for a given set of
latency. Latency requires adding phase lead compensation,
and we use a bank of phase-lead controllers governed by
a latency-monitoring, adaptive algorithm to switch among
them. We developed a sufficient condition to guarantee that
this switched control system is stable as long as an average
dwell time constant is met. Finally, we illustrated the control
design and demonstrated the performance using a 2-area
power system.

Future work includes the development and analysis of
adaptive control algorithms for multiple actuators consider-
ing packet loss, late data arrivals, and cooperative control.
Another topic for future research is to design a set of
controllers that are robust both to the input signal delays and
to the variation in the operating conditions of the system.
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