
A Martingale Approach and Time-Consistent Sampling-based Algorithms
for Risk Management in Stochastic Optimal Control

Vu Anh Huynh Leonid Kogan Emilio Frazzoli

Abstract— In this paper, we consider a class of stochas-
tic optimal control problems with risk constraints that are
expressed as bounded probabilities of failure for particular
initial states. We present here a martingale approach that
diffuses a risk constraint into a martingale to construct time-
consistent control policies. The martingale stands for the level
of risk tolerance that is contingent on available information
over time. By augmenting the system dynamics with the
controlled martingale, the original risk-constrained problem
is transformed into a stochastic target problem. We extend
the incremental Markov Decision Process (iMDP) algorithm to
approximate arbitrarily well an optimal feedback policy of the
original problem by sampling in the augmented state space and
computing proper boundary conditions for the reformulated
problem. We show that the algorithm is both probabilistically
sound and asymptotically optimal. The performance of the
proposed algorithm is demonstrated on motion planning and
control problems subject to bounded probability of collision in
uncertain cluttered environments.

I. INTRODUCTION

Controlling dynamical systems in uncertain environments
is a fundamental and essential problem in several fields,
ranging from robotics [1], [2], healthcare [3], [4] to man-
agement science, economics and finance [5], [6]. Given a
system with dynamics described by a controlled diffusion
process, a stochastic optimal control problem is to find an
optimal feedback policy to optimize an objective function.
Risk management has always been an important part of
stochastic optimal control problems to guarantee safety dur-
ing the execution of control policies. For instance, in critical
applications such as self-driving cars and robotic surgery,
regulatory authorities can impose a threshold of failure
probability during operation of these systems. Thus, finding
control policies that fully respect this type of constraint is
important in practice.

There has been intensive literature on stochastic optimal
control without risk constraints. Even in this setting, it is
well-known that closed-form or exact algorithmic solutions
for general continuous-time, continuous-space stochastic op-
timal control problems are computationally challenging [7].
Thus, many approaches have been proposed to investigate
approximate solutions of such problems. Deterministic ap-
proaches such as discrete Markov Decision Process approx-
imation [8], [9] and solving associated Hamilton-Jacobi-
Bellman (HJB) PDEs [10]–[12] have been proposed, but
the complexities of these approaches scale poorly with

Huynh and Frazzoli are affiliated with or members of the Laboratory for
Information and Decision Systems, Kogan is with the Sloan School of Man-
agement, Massachusetts Institute of Technology, 77 Massachusetts Ave.,
Cambridge, MA 02139. huyn0002@gmail.com,{lkogan2,
frazzoli}@mit.edu

the dimension of the state space. In [7], [13], [14], the
authors show that randomized algorithms (or sampling-based
algorithms) provide a possibility to alleviate the curse of
dimensionality by sampling the state space while assum-
ing discrete control inputs. Recently, in [15], [16], a new
computationally-efficient sampling-based algorithm called
the incremental Markov Decision Process (iMDP) algorithm
has been proposed to provide asymptotically-optimal solu-
tions to problems with continuous control spaces.

Built upon the approximating Markov chain method [17],
[18], the iMDP algorithm constructs a sequence of finite-
state Markov Decision Processes (MDPs) that consistently
approximate the original continuous-time stochastic dynam-
ics. Using the rapidly-exploring sampling technique [19] to
sample in the state space, iMDP forms the structures of
finite-state MDPs randomly over iterations. Control sets for
states in these MDPs are constructed or sampled properly in
the control space. The finite models serve as incrementally
refined models of the original problem. Consequently, distri-
butions of approximating trajectories and control processes
returned from these finite models approximate arbitrarily
well distributions of optimal trajectories and optimal control
processes of the original problem. The iMDP algorithm
also maintains low time complexity per iteration by asyn-
chronously computing Bellman updates in each iteration.
There are two main advantages when using the iMDP
algorithm to solve stochastic optimal control problems. First,
the iMDP algorithm provides a method to compute optimal
control policies without the need to derive and characterize
viscosity solutions of associated HJB equations. Second, the
algorithm is suitable for various online robotics applications
without a priori discretization of the state space.

Risk management in stochastic optimal control has also
been received extensive attention by researchers in several
fields. In robotics, a common risk management problem
is chance-constrained optimization [20]–[22]. Chance con-
straints specify that starting from a given initial state,
the time-0 probability of success must be above a given
threshold where success means reaching goal areas safely.
Alternatively, we call these constraints risk constraints if we
concern more about failure probabilities. Despite intensive
work done to solve this problem in last 20 years, designing
computationally-efficient algorithms that respect chance con-
straints for systems with continuous-time dynamics is still an
open question. The Lagrangian approach [23]–[25] is a pos-
sible method for solving the mentioned constrained optimiza-
tion. However, this approach requires numerical procedures
to compute Lagrange multipliers before obtaining a policy,
which is computationally demanding for high dimensional

ar
X

iv
:1

31
2.

76
02

v2
 [

cs
.S

Y
]

 8
 J

ul
 2

01
5

systems and unsuitable for online robotics applications.
In another approach (see, e.g., [26]–[30]), most previous

works use discrete-time multi-stage formulations to model
this problem. In these modified formulations, failure is
defined as collision with convex obstacles which can be
represented as a set of linear inequalities. Probabilities of
safety for states at different time instants as well as for
the entire path are pre-specified by users. The proposed
algorithms to solve these formulations often involve two
main steps. In the first step, these algorithms often use
heuristic [26] or iterative [27] risk allocation procedures to
identify the tightness of different constraints. In the second
step, the formulations with identified active constraints can
be solved using mixed integer-linear programming with
possible assistance of particle sampling [20] and linear pro-
gramming relaxation [21]. Computing risk allocation fully is
computationally intensive. Thus, in more recent works [28]–
[30], the authors make use of the Rapidly-Exploring Ran-
dom Tree (RRT) and RRT∗ algorithms to build tree data
structures that also store incremental approximate allocated
risks at tree nodes. Based on the RRT∗ algorithm, the
authors have proposed the Chance-Constrained-RRT∗ (CC-
RRT∗) algorithm that would provide asymptotically-optimal
and probabilistically-feasible trajectories for linear Gaussian
systems subject to process noise, localization error, and
uncertain environmental constraints. In addition, the authors
have also proposed a new objective function that allows
users to trade-off between minimizing path duration and risk-
averse behavior by adjusting the weights of these additive
components in the objective function.

We note that the modified formulations in the above
approach do not preserve well the intended guarantees of the
original chance constraint formulation. In addition, the ap-
proach requires the direct representation of convex obstacles
into the formulations. Therefore, solving the resulting mixed
integer-linear programming in the presence of a large number
of obstacles is computationally demanding. The proposed
algorithms are also over-conservative due to loose union
bounds when performing the risk allocation procedures.
To counter these conservative bounds, CC-RRT∗ constructs
more aggressive trajectories by adjusting the weights of the
path duration and risk-averse components in the objective
function. As a result, it is hard to automate the selection of
trajectory patterns.

Moreover, specifying in advance probabilities of safety for
states at different time instants and for the entire path can
lead to policies that have irrational behaviors due inconsistent
risk preference over time. This phenomenon is known as
time-inconsistency of control policies. For example, when
we execute a control policy returned by one of the proposed
algorithms, due to noise, the system can be in an area
surrounded by obstacles at some later time t, it would be
safer if the controller takes into account this situation and
increases the required probability of safety at time t to
encourage careful maneuvers. Similarly, if the system enters
an obstacle-free area, the controller can reduce the required
probability of safety at time t to encourage more aggressive
maneuvers. Therefore, to maintain time-consistency of con-

trol policies, the controller should adjust safety probabilities
so that they are contingent on available information along
the controlled trajectory.

In other related works [31]–[33], several authors have
proposed new formulations in which the objective functions
and constraints are evaluated using (different) single-period
risk metrics. However, these formulations again lead to
potential inconsistent behaviors as risk preferences change
in an irrational manner between periods [34]. Recently,
in [22], the authors used Markov dynamic time-consistent
risk measures [35]–[37] to assess the risk of future cost
stream in a consistent manner and established a dynamic
programming equation for this modified formulation. The
resulting dynamic programming equation has functionals
over the state space as control variables. When the state space
is continuous, the control space has infinite dimensionality,
and therefore, solving the dynamic programming equation in
this case is computationally challenging.

In mathematical finance, closely-related problems have
been studied in the context of hedging with portfolio con-
straints where constraints on terminal states are enforced
almost surely (a.s.), yielding so-called stochastic target prob-
lems [38]–[42]. Research in this field focuses on deriving
HJB equations for this class of problems. Recent analytical
tools such as weak dynamic programming [38] and geometric
dynamic programming [43], [44] have been developed to
achieve this goal. These tools allow us to derive HJB
equations and find viscosity solutions for a larger class of
problems while avoiding measurability issues.

In this paper, we consider the above risk-constrained
problems. That is, we investigate stochastic optimal control
problems with risk constraints that are expressed in terms of
bounded failure probabilities for particular initial states. We
present here a martingale approach to solve these problems
such that obtained control policies are time-consistent with
the initial threshold of failure probability. The martingale rep-
resents the level of risk tolerance that is contingent on avail-
able information over time. Thus, the martingale approach
transforms a risk-constrained problem into a stochastic target
problem. By sampling in the augmented state space and
computing proper boundary conditions of the reformulated
problem, we extend the iMDP algorithm to compute anytime
solutions after a small number of iterations. When more
computing time is allowed, the proposed algorithm refines
the solution quality in an efficient manner.

The main contribution of this paper is twofold. First,
we present a novel martingale approach that fully respects
the considered risk constraints for systems with continuous-
time dynamics in a time-consistent manner. The approach
enable us to manage risk in several practical robotics ap-
plications without directly deriving HJB equations, which
are hard to obtain in many situations. Second, we pro-
pose a computationally-efficient algorithm that guarantees
probabilistically-sound and asymptotically-optimal solutions
to the stochastic optimal control problem in the presence
of risk constraints. That is, all constraints are satisfied in a
suitable sense, and the objective function is minimized as the
number of iterations approaches infinity. We demonstrate the

effectiveness of the proposed algorithm on motion planning
and control problems subject to bounded collision probability
in uncertain cluttered environments.

This paper is organized as follows. A formal problem
definition is given in Section II. In Section III, we discuss
the martingale approach and the key transformation. The
extended iMDP algorithm is described in Section IV. The
analysis of the proposed algorithm is presented in Section V.
We present simulation examples and experimental results in
Section VI and conclude the paper in Section VII.

II. PROBLEM DEFINITION

In this section, we present a generic stochastic optimal
control formulation with definitions and technical assump-
tions as discussed in [15], [16], [45]. We also explain how
to formulate risk constraints.

Stochastic Dynamics: Let dx, du, and dw be positive
integers. Let S be a compact subset of Rdx , which is the
closure of its interior So and has a smooth boundary ∂S.
Let a compact subset U of Rdu be a control set. The state of
the system at time t is x(t) ∈ S, which is fully observable
at all times.

Suppose that a stochastic process {w(t); t ≥ 0} is a dw-
dimensional Brownian motion on some probability space. We
define {Ft; t ≥ 0} as the augmented filtration generated by
the Brownian motion w(·). Let a control process {u(t); t ≥
0} be a U -valued, measurable random process also defined
on the same probability space such that the pair (u(·), w(·))
is admissible [15]. Let the set of all such control processes
be U . Let Rdx×dw denote the set of all dx by dw real
matrices. We consider systems with dynamics described by
the controlled diffusion process:

dx(t) = f(x(t), u(t)) dt+ F (x(t), u(t)) dw(t),∀t ≥ 0 (1)

where f : S × U → Rdx and F : S × U → Rdx×dw
are bounded measurable and continuous functions as long
as x(t) ∈ So. The initial state x(0) is a random vector
in S. We assume that the matrix F (·, ·) has full rank. The
continuity requirement of f and F can be relaxed with mild
assumptions [15], [17] such that we still have a weak solution
to Eq. (1) that is unique in the weak sense [46].

Cost-to-go Function and Risk Constraints: We define
the first exit time T zu : U × S → [0,+∞] under a control
process u(·) ∈ U starting from x(0) = z ∈ S as

T zu = inf
{
t : x(0) = z, x(t) /∈ So, and Eq.(1)

}
.

In other words, T zu is the first time that the trajectory of the
dynamical system given by Eq. (1) starting from x(0) = z
hits the boundary ∂S of S. The random variable T zu can take
value ∞ if the trajectory x(·) never exits So.

The expected cost-to-go function under a control process
u(·) is a mapping from S to R defined as

Ju(z) = Ez0
[∫ T zu

0
αt g

(
x(t), u(t)

)
dt+ αT

z
uh(x(T zu))

]
, (2)

where Ezt denotes the conditional expectation given x(t) = z,
and g : S × U → R, h : S → R are bounded measurable
and continuous functions, called the cost rate function and

the terminal cost function, respectively, and α ∈ [0, 1) is the
discount rate. We further assume that g(x, u) is uniformly
Hölder continuous in x with exponent 2ρ ∈ (0, 1] for all
u ∈ U . We note that the discontinuity of g, h can be treated
as in [15], [17].

Let Γ ⊂ ∂S be a set of failure states, and η ∈ [0, 1] be a
threshold for risk tolerance given as a parameter. We consider
a risk constraint that is specified for an initial state x(0) = z
under a control process u(·) as follows:

P z0 (x(T zu) ∈ Γ) ≤ η,

where P zt denotes the conditional probability at time t given
x(t) = z. That is, controls that drive the system from time 0
until the first exit time must be consistent with the choice of η
and initial state z at time 0. Intuitively, the constraint enforces
that starting from a given state z at time t = 0, if we execute
a control process u(·) for N times, when N is very large,
there are at most Nη executions resulting in failure. Control
processes u(·) that satisfy this constraint are called time-
consistent. To have time-consistent control processes, the risk
tolerance along controlled trajectories must vary consistently
with the initial choice of risk tolerance η based on available
information over time.

Let R be the extended real number set. The optimal cost-
to-go function J∗ : S → R is defined as follows 1 2:

OPT 1 : J∗(z; η) = inf
u(·)∈U

Ju(z) (3)

s/t P z0 (x(T zu) ∈ Γ) ≤ η and Eq. (1). (4)

A control process u∗(·) is called optimal if Ju∗(z) =
J∗(z; η). For any ε > 0, a control process u(·) is called
an ε-optimal policy if |Ju(z)− J∗(z; η)| ≤ ε.

We call a sampling-based algorithm probabilistically-
sound if the probability that a solution returned by the
algorithm is feasible approaches one as the number of
samples increases. We also call a sampling-based algorithm
asymptotically-optimal if the sequence of solutions returned
from the algorithm converges to an optimal solution in
probability as the number of samples approaches infinity.
Solutions returned from algorithms with such properties are
called probabilistically-sound and asymptotically-optimal.

In this paper, we consider the problem of computing
the optimal cost-to-go function J∗ and an optimal control
process u∗ if obtainable. Our approach, outlined in Sec-
tion IV, approximates the optimal cost-to-go function and an
optimal policy in an anytime fashion using an incremental
sampling-based algorithm that is both probabilistically-sound
and asymptotically-optimal.

III. MARTINGALE APPROACH

We now present the martingale approach that transforms
the considered risk-constrained problem into an equivalent
stochastic target problem. The following lemma to diffuse
risk constraints is a key tool for our transformation.

1The semicolon in J∗(z; η) signifies that η is a parameter.
2Compared to [45], we consider a larger set of control processes than

the set of Markov control processes here. We will restrict again to Markov
control processes in the reformulated problem.

A. Diffusing Risk Constraints
Lemma 1 (see [41], [42]) From x(0) = z, a control pro-
cess u(·) is feasible for OPT 1 if and only if there exists
a square-integrable (but possibly unbounded) process c(·) ∈
Rdw and a martingale q(·) satisfying:

1) q(0) = η, and dq(t) = cT (t)dw(t),
2) For all t, q(t) ∈ [0, 1] a.s.,
3) 1Γ(x(T zu)) ≤ q(T zu) a.s,

where 1Γ(x) = 1 if and only if x ∈ Γ and 0 otherwise. The
martingale q(t) stands for the level of risk tolerance at time
t. We call c(·) a martingale control process.

Proof: Assuming that there exists c(·) and q(·) as
above, due to the martingale property of q(·), we have:

P z0 (x(T zu) ∈ Γ) = E [1Γ(x(T zu))|F0]

≤ E [q(T zu)|F0] = q(0) = η.

Thus, u(·) is feasible.
Now, let u(·) be a feasible control policy. Set η0 =

P z0 (x(T zu) ∈ Γ). We note that η0 ≤ η. We define the
martingale

q(t) = E[1Γ(x(T zu))|Ft].

Since q(T zu) ∈ [0, 1], we infer that q(t) ∈ [0, 1] almost surely.
We now set

q̂(t) = q(t) + (η − η0),

then q̂(t) is a martingale with q̂(0) = q(0) + (η − η0) =
η0 + (η − η0) = η and q̂(t) ≥ 0 almost surely.

Now, we define τ = inf{t ∈ [0, T zu] | q̂(t) ≥ 1}, which is
a stopping time. Thus,

q(t) = q̂(t)1t≤τ + 1t>τ ,

as a stopped process of the martingale q̂(t) at τ , is a
martingale with values in [0,1] a.s.

If τ < T zu , we have

1Γ(x(T zu)) ≤ 1 = q(T zu),

and if τ = T zu , we have

q(T zu) = E[1Γ(x(T zu))|FT zu] + (η − η0)

= 1Γ(x(T zu)) + (η − η0) ≥ 1Γ(x(T zu)).

Hence, q(·) also satisfies that 1Γ(x(T zu)) ≤ q(T zu).
The control process c(·) exists due to the martingale rep-

resentation theorem [47], which yields dq(t) = cT (t)dw(t).
We however note that c(t) is possibly unbounded. We also
emphasize that the risk tolerance η becomes the initial value
of the martingale q(·).

B. Stochastic Target Problem
Using the above lemma, we augment the original system

dynamics with the martingale q(t) into the following form:

d

[
x(t)
q(t)

]
=

[
f(x(t), u(t))

0

]
dt+

[
F (x(t), u(t))

cT (t)

]
dw(t), (5)

where (u(·), c(·)) is the control process of the above dynam-
ics. The initial value of the new state is (x(0), q(0)) = (z, η).
We will refer to the augmented state space S×[0, 1] as S and

the augmented control space U × Rdw as U . We also refer
to the nominal dynamics and diffusion matrix of Eq. (5) as
f(x, q, u, c) and F (x, q, u, c) respectively.

It is well-known that in the following reformulated prob-
lem, optimal control processes are Markov controls [41],
[42], [48]. Thus, let us now focus on the set of Markov con-
trols that depend only on the current state, i.e., (u(t), c(t))
is a function only of (x(t), q(t)), for all t ≥ 0. A function
ϕ : S → U represents a Markov or feedback control policy,
which is known to be admissible with respect to the process
noise w(·). Let Ψ be the set of all such policies ϕ. Let
µ : S → U and κ : S → Rdw so that ϕ = (µ, κ). We
rename T zu to T zϕ for the sake of notation clarity. Using
these notations, µ(·, 1) is thus a Markov control policy for
the unconstrained problem, i.e. the problem without the risk
constraint, that maps from S to U . Henceforth, we will use
µ(·) to refer to µ(·, 1) when it is clear from the context. Let
Π be the set of all such Markov control policies µ(·) on S.

Now, let us rewrite cost-to-go function Ju(z) in Eq. (2)
for the threshold η at time 0 in a new form:

Jϕ(z, η) = E

[∫ T zϕ

0

αt g
(
x(t), µ(x(t), q(t))

)
dt

+ αT
z
ϕh(x(T zϕ))

∣∣∣(x, q)(0) = (z, η)

]
. (6)

We therefore transform the risk-constrained problem OPT 1
into a stochastic target problem as follows3:

OPT 2 : J∗(z, η) = inf
ϕ∈Ψ

Jϕ(z, η) (7)

s/t 1Γ(x(T zϕ)) ≤ q(T zϕ) a.s. and Eq. (5). (8)

The constraint in the above formulation specifies the rela-
tionship of random variables at the terminal time as target,
and hence the name of this formulation [41], [42]. In this
formulation, we solve for feedback control policies ϕ for all
(z, η) ∈ S instead of a particular choice of η for x(0) = z
at time t = 0. We note that in this formulation, boundary
conditions are not fully specified a priori. In the following
subsection, we discuss how to remove the constraint in
Eq. (8) by constructing its boundary and computing the
boundary conditions.

C. Characterization and Boundary Conditions
The domain of the stochastic target problem in OPT 2 is:

D = {(z, η) ∈ S | ∃ϕ ∈ Ψ s/t 1Γ(x(T zϕ)) ≤ q(T zϕ) a.s.}.

By the definition of the risk-constrained problem OPT 1,
we can see that if (z, η) ∈ D then (z, η′) ∈ D for any
η < η′ ≤ 1. Thus, for each z ∈ S, we define

γ(z) = inf {η ∈ [0, 1] | (z, η) ∈ D}, (9)

as the infimum of risk tolerance at z. Therefore, we also
have:

γ(z) = inf
u∈U

P z0
(
x(T zu) ∈ Γ) = inf

u∈U
Ez0
[
1Γ(x(T zu))

]
. (10)

3The comma in J∗(z, η) signifies that η is a state component rather than
a parameter, and J∗(z, η) is equal to J∗(z; η) in the previous formulation.

Thus, the boundary of D is

∂D =S × {1} ∪ {(z, γ(z)) | z ∈ S}
∪ {(z, η) | z ∈ ∂S, η ∈ [γ(z), 1]}. (11)

For states in {(z, η) | z ∈ ∂S, η ∈ [γ(z), 1]}, the system
stops on ∂S and takes terminal values according to h(·).

The domain D is illustrated in Fig. 1(a). In this example,
the state space S is a bounded two-dimensional area with
boundary ∂S containing a goal region G and an obstacle
region Γ = Obs. The augmented state space S augments
S with an extra dimension for the martingale state q. The
infimum probability of reaching into Γ from states in S is
depicted as γ. As we can see, γ takes value 1 in Γ. The
volume between γ and the hyper-plane q = 1 is the domain
D of OPT 2.

Now, let η = 1, we notice that J∗(z, 1) is the optimal cost-
to-go from z for the stochastic optimal problem without the
risk constraint:

J∗(z, 1) = inf
u∈U

Ju(z).

An optimal control process that solves this optimization
problem is given by a Markov policy µ∗(·, 1) ∈ Π. We now
define the failure probability function Υ : S → [0, 1] under
such an optimal policy µ∗(·, 1) as follows:

Υ(z) = E
[
1Γ(x(T zµ∗))

]
, ∀z ∈ S, (12)

where T zµ∗ is the first exit time when the system follows
the control policy µ∗(·, 1) from the initial state z. By the
definitions of γ and Υ, we can recognize that Υ(z) ≥ γ(z)
for all z ∈ S. Figure 1(b) shows an illustration of Υ for the
same example in Fig. 1(a).

Since following the policy µ∗(·, 1) from an initial state z
yields a failure probability Υ(z), we infer that:

J∗(z, 1) = J∗(z,Υ(z)). (13)

From the definition of the problem OPT 1, we also have:

0 ≤ η < η′ ≤ 1⇒ J∗(z, η) ≥ J∗(z, η′). (14)

Thus, for any Υ(z) < η < 1, we have:

J∗(z, 1) ≤ J∗(z, η) ≤ J∗(z,Υ(z)). (15)

Combining Eq. (13) and Eq. (15), we have:

∀ η ∈ [Υ(z), 1]⇒ J∗(z, η) = J∗(z, 1). (16)

As a consequence, when we start from an initial state z with
a risk threshold η that is at least Υ(z), it is optimal to execute
an optimal control policy of the corresponding unconstrained
problem from the initial state z.

It also follows from Eq. (14) that reducing the risk toler-
ance from 1.0 along the controlled process can not reduce the
optimal cost-to-go function evaluated at (x(t), q(t) = 1.0).
Thus, we infer that for augmented states (x(t), q(t)) where
q(t) = 1.0, the optimal martingale control c∗(t) is 0.

Now, under all admissible policies ϕ, we can not obtain
a failure probability for an initial state z that are lower than
γ(z). Thus, it is clear that J∗(z, η) = +∞ for all 0 ≤

η < γ(z). The following lemma characterizes the optimal
martingale control c∗(t) for augmented states (x(t), q(t) =
γ(x(t))).

Lemma 2 Given the problem definition as in Eqs. (3)-(4),
we assume that γ(x) is a smooth function4. When q(t) =
γ(x(t)) and u(t) is chosen, we must have:

c(t)T =
∂γ

∂x(t)

T

F (x(t), u(t)). (17)

Proof: Using the geometric dynamic programming
principle [43], [44], we have the following result: for all
stopping time τ ≥ t, when q(t) = γ(x(t)), a feasible control
policy ϕ ∈ Ψ satisfies q(τ) ≥ γ(x(τ)) almost surely.

Take τ = t+, under a feasible control policy ϕ, we have
q(t+) ≥ γ(x(t+)) a.s. for all t, and hence dq(t) ≥ dγ(x(t))
a.s. By Itô lemma, we derive the following relationship:

cT (t)dw(t) ≥ ∂γ

∂x

T(
f(x(t), u(t))dt+ F (x(t), u(t))dw(t)

)
+

1

2
Tr
(
F (x(t), u(t))F (x(t), u(t))T

∂2γ

(∂x)2

)
dt a.s.

For the above inequality to hold almost surely, the coefficient
of dw(t) must be 0. This leads to Eq. (17).

In addition, if a control process that solves Eq. (10) is
obtainable, say uγ , the cost-to-go due to that control process
is Juγ (z). We will conveniently refer to Juγ (z) as Jγ(z).
Under the mild assumption that uγ is unique, it follows that
Jγ(z) = J∗(z, γ(z)).

We also emphasize that when (x(t), q(t)) is inside the
interior Do of D, the usual dynamic programming principle
holds. The extension of iMDP outlined below is designed to
compute the sequence of approximate cost-to-go values on
the boundary ∂D and in the interior Do.

IV. ALGORITHM

In this section, we briefly overview how the Markov chain
approximation technique is used in both the original and
augmented state spaces. We then present the extended iMDP
algorithm that incrementally constructs the boundary values
and computes solutions to our problem. In particular, we
sample in the original state space S to compute J∗(·, 1) and
its induced collision probability Υ(·) as in Eq. (12), the min-
failure probability γ(·) as in Eq. (10) and its induced cost-
to-go Jγ(·). Concurrently, we also sample in the augmented
state space S with appropriate values for samples on the
boundary of D and approximate the optimal cost-to-go
function J∗(·, ·) in the interior Do. As a result, we construct
a sequence of anytime control policies to approximate an
optimal control policy ϕ∗ = (µ∗, κ∗) in an efficient iterative
procedure.

4When γ(x) is not smooth, we need the concept of viscosity solutions
and weak dynamic programming principle. See [41], [42] for details.

G
Obs

q

0

1
D

(a) A domain of OPT 1.

G
Obs

q

0

1

(b) Failure probabilities due to optimal policies of the unconstrained problem.

Fig. 1. In Fig. 1(a), we show an example of the domain of OPT 2. The state space S is a bounded two-dimensional area with boundary ∂S containing
a goal region G and an obstacle region Γ = Obs. The augmented state space S augments S with an extra dimension for the martingale state q. The
infimum probability of reaching into Γ from states in S is depicted as γ, which takes value 1 in Γ. The volume between γ and the hyper-plane q = 1
is the domain D of OPT 2. In Fig. 1(b), we show an illustration of the failure probability function Υ due to an optimal control policy µ∗(·, 1) of the
unconstrained problem. We plot Υ for the same two-dimensional example. By the definitions of γ and Υ, we have Υ ≥ γ.

A. Markov Chain Approximation

A discrete-state Markov decision process (MDP) is a tuple
M = (X,A,P,G,H) where X is a finite set of states, A is
a set of actions that is possibly a continuous space, P (· | ·, ·) :
X × X × A → R≥0 is the transition probability function,
G(·, ·) : X × A → R is an immediate cost function, and
H : X → R is a terminal cost function. From an initial state
ξ0, under a sequence of controls {vi; i ∈ N}, the induced
trajectory {ξi; i ∈ N} is generated by following the transition
probability function P .

On the state space S, we want to approximate J∗(z, 1),
Υ(z), γ(z) and Jγ(z) for any state z ∈ S, and it is
suffice to consider optimal Markov controls as shown in [15],
[16]. The Markov chain approximation method approximates
the continuous dynamics in Eq. (1) using a sequence of
MDPs {Mn = (Sn, U, Pn, Gn, Hn)}∞n=0 and a sequence
of holding times {∆tn}∞n=0 that are locally consistent. In
particular, we construct Gn(z, v) = g(z, v)∆tn(z), Hn(z) =
h(z) for each z ∈ Sn and v ∈ U . We also require that
limn→∞ supi∈N,ω∈Ωn ||∆ξ

n
i ||2 = 0 where Ωn is the sample

space of Mn, ∆ξni = ξni+1 − ξni , and

• For all z ∈ S, limn→∞∆tn(z) = 0,
• For all z ∈ S and all v ∈ U :

lim
n→∞

EPn [∆ξni | ξni = z, uni = v]

∆tn(z)
= f(z, v),

lim
n→∞

CovPn [∆ξni | ξni = z, uni = v]

∆tn(z)
= F (z, v)F (z, v)T .

The main idea of the Markov chain approximation ap-
proach for solving the original continuous problem is to solve
a sequence of control problems defined on {Mn}∞n=0 as
follows. A Markov or feedback policy µn is a function that
maps each state z ∈ Sn to a control µn(z) ∈ U . The set
of all such policies is Πn. We define tni =

∑i−1
0 ∆tn(ξni)

for i ≥ 1 and tn0 = 0. Given a policy µn that approximates
a Markov control process u(·) in Eq. (2), the corresponding
cost-to-go due to µn on Mn is:

Jn,µn(z) = EzPn

[
In−1∑
i=0

αt
n
i Gn(ξni , µn(ξni)) + αt

n
InHn(ξnIn)

]
,

where EzPn denotes the conditional expectation given ξn0 =
z under Pn, and {ξni ; i ∈ N} is the sequence of states of
the controlled Markov chain under the policy µn, and In is
termination time defined as In = min{i : ξni ∈ ∂Sn} where
∂Sn = ∂S ∩ Sn.

The optimal cost-to-go function J∗n : S → R that
approximates J∗(z, 1) is denoted as

J∗n(z, 1) = inf
µn∈Πn

Jn,µn(z) ∀z ∈ Sn. (18)

An optimal policy, denoted by µ∗n, satisfies Jn,µ∗
n
(z) =

J∗n(z) for all z ∈ Sn. For any ε > 0, µn is an ε-optimal
policy if ||Jn,µn − J∗n||∞ ≤ ε.

We also define the failure probability function Υn : Sn →
[0, 1] due to an optimal policy µ∗n as follows:

Υn(z) = EPn
[
1Γ(ξnIn)

∣∣ x(0) = z ; µ∗n
]
∀z ∈ Sn, (19)

where we denote µ∗n after the semicolon (as a parameter)
to emphasize the dependence of the Markov chain on this
control policy.

In addition, the min-failure probability γn on Mn that
approximates γ(z) is defined as:

γn(z) = inf
µn∈Πn

EzPn
[
1Γ(ξnIn)

]
∀z ∈ Sn. (20)

We note that the optimization programs in Eq. (18) and
Eq. (20) may have two different optimal feedback control
policies. Let νn ∈ Πn be a control policy on Mn that
achieves γn, then the cost-to-go function due to νn is Jn,νn
which approximates Jγ . For this reason, we conveniently
refer to Jn,νn as Jγn .

Similarly, in the augmented state space S, we use a
sequence of MDPs {Mn = (Sn, U, Pn, Gn, Hn)}∞n=0 and
a sequence of holding times {∆tn}∞n=0 that are locally
consistent with the augmented dynamics in Eq. (5). In
particular, Sn is a random subset of D ⊂ S, Gn is identical
to Gn, and Hn(z, η) is equal to Hn(z) if η ∈ [γn(z), 1]
and +∞ otherwise. Similar to the construction of Pn and
∆tn, we also construct the transition probabilities Pn on
Mn and holding time ∆tn that satisfy the local consistency
conditions for nominal dynamics f(x, q, u, c) and diffusion
matrix F (x, q, u, c).

A trajectory onMn is denoted as {ξni ; i ∈ N} where ξ
n

i ∈
Sn. A Markov policy ϕn is a function that maps each state
(z, η) ∈ Sn to a control (µn(z, η), κn(z, η)) ∈ U . Moreover,
admissible κn at (z, 1) ∈ Sn is 0 and at (z, γn(z)) ∈ Sn is a
function of µ(z, γn(z)) as shown in Eq. (17). Admissible κn
for other states in Sn is such that the martingale-component
process of {ξni ; i ∈ N} belongs to [0,1] almost surely. We can
show that equivalently, each control component of κn(z, η)

belongs to [−min(η,1−η)

∆tndw
, min(η,1−η)

∆tndw
]. The set of all such

policies ϕn is Ψn.
Under a control policy ϕn, the cost-to-go on Mn that

approximates Eq. (6) is defined as:

Jn,ϕn(z, η) = Ez,η
Pn

[∑In−1
i=0 αt

n
i Gn(ξ

n

i , µn(ξ
n

i)) + αt
n
InHn(ξ

n

In)
]
,

where tni =
∑i−1

0 ∆tn(ξ
n

i) for i ≥ 1 with tn0 = 0, and In is
index when the x-component of ξ

n

i first arrives at ∂S. The
approximating optimal cost J∗n : Sn → R for J∗ in Eq. (7)
is:

J∗n(z, η) = inf
ϕn∈Ψn

Jn,ϕn(z, η) ∀(z, η) ∈ Sn. (21)

To solve the above optimization, we compute approximate
boundary values for states on the boundary of D using the
sequence of MDP {Mn}∞n=0 on S as discussed above. For
states (z, η) ∈ Sn ∩Do, the normal dynamic programming
principle holds.

The extension of iMDP outlined below is designed
to compute the sequence of optimal cost-to-go functions
{J∗n}∞n=0, associated failure probability functions {Υn}∞n=0,
min-failure probability functions {γn}∞n=0, min-failure cost
functions {Jγn}∞n=0, and the sequence of anytime control
policies {µn}∞n=0 and {κn}∞n=0 in an incremental procedure.

B. Extension of iMDP

Before presenting the details of the algorithm, we discuss
a number of primitive procedures. More details about these
procedures can be found in [15], [16].

1) Sampling: The Sample(X) procedure sample states
independently and uniformly in X .

2) Nearest Neighbors: Given ζ ∈ X ⊂ RdX and a set
Y ⊆ X , for any k ∈ N, the procedure Nearest(ζ, Y, k)
returns the k nearest states ζ ′ ∈ Y that are closest to ζ in
terms of the dX -dimensional Euclidean norm.

3) Time Intervals: Given a state ζ ∈ X and a number
k ∈ N, the procedure ComputeHoldingTime(ζ, k, d)
returns a holding time computed as follows:

ComputeHoldingTime(ζ, k, d) = χt

(
log k
k

)θςρ/d
, where

χt > 0 is a constant, and ς, θ are constants in (0, 1) and
(0, 1] respectively. The parameter ρ ∈ (0, 0.5] defines the
Hölder continuity of the cost rate function g(·, ·) as in
Section II.

4) Transition Probabilities: We are given a state ζ ∈ X ,
a subset Y ∈ X , a control v in some control set V ,
a positive number τ describing a holding time, k is a
nominal dynamics, K is a diffusion matrix. The procedure
ComputeTranProb(ζ, v, τ, Y, k,K) returns (i) a finite set
Znear ⊂ X of states such that the state ζ + k(ζ, v)τ belongs
to the convex hull of Znear and ||z′ − z||2 = O(τ) for all
ζ ′ 6= ζ ∈ Znear, and (ii) a function P that maps Znear to
a non-negative real numbers such that P (·) is a probability
distribution over the support Znear. It is crucial to ensure that
these transition probabilities result in a sequence of locally
consistent chains that approximate k and K as presented in
[15]–[17].

5) Backward Extension: Given T > 0 and two states
z, z′ ∈ S, the procedure ExtBackwardsS(z, z′, T) returns
a triple (x, v, τ) such that (i) ẋ(t) = f(x(t), u(t))dt and
u(t) = v ∈ U for all t ∈ [0, τ], (ii) τ ≤ T , (iii) x(t) ∈ S for
all t ∈ [0, τ], (iv) x(τ) = z, and (v) x(0) is close to z′. If no
such trajectory exists, the procedure returns failure. We can
solve for the triple (x, v, τ) by sampling several controls v
and choose the control resulting in x(0) that is closest to z′.

When (z, η), (z′, η′) are in S, the procedure
ExtBackwardsSM((z, η), (z′, η′), T) returns (x, q, v, τ)
in which (x, v, τ) is output of ExtBackwardsS(z, z′, T)
and q is sampled according to a Gaussian distribution
N(η′, σq) where σq is a parameter.

6) Sampling and Discovering Controls: For z ∈ S and
Y ⊆ S, the procedure ConstructControlsS(k, z, Y, T)
returns a set of k controls in U . We can uniformly sam-
ple k controls in U . Alternatively, for each state z′ ∈
Nearest(z, Y, k), we solve for a control v ∈ U such that (i)
ẋ(t) = f(x(t), u(t))dt and u(t) = v ∈ U for all t ∈ [0, T],
(ii) x(t) ∈ S for all t ∈ [0, T], (iii) x(0) = z and x(T) = z′.

For (z, η) ∈ S and Y ⊆ S, the procedure
ConstructControlsSM(k, (z, η), Y, T) returns a set of k
controls in U such that the U -component of these controls are
computed as in ConstructControlsS, and the martingale-
control-components of these controls are sampled in admis-
sible sets.

Algorithm 1: Risk Constrained iMDP()

1 (S0, S0, J0, γ0,Υ0, J
γ
0 , µ0, κ0,∆t0,∆t0)← ∅;

2 for n = 1→ N do
3 UpdateDataStorage(n− 1, n) ;
4 SampleOnBoundary(n) ;

// K1,n ≥ 1 rounds for boundary conditions
5 for i = 1→ K1,n do
6 ConstructBoundary(Sn, Sn, Jn, γn,Υn, J

γ
n , µn,∆tn) ;

// K2,n ≥ 0 rounds for the interior region
7 for i = 1→ K2,n do
8 ProcessInterior(Sn, Sn, Jn, γn,Υn, J

γ
n , µn, κn,∆tn);

Algorithm 2: ConstructBoundary(Sn, Sn, Jn, γn,Υn, J
γ
n , µn,∆tn)

1 zs ← Sample(S) ;
2 znear ← Nearest(zs, Sn, 1) ;
3 if (xe, ue, τ)← ExtBackwardsS(znear, zs, T0) then
4 ze ← xe(0);
5 ic = τg(ze, ue) + ατJn(znear, 1);
6 icγ = τg(ze, ue) + ατJγn(znear);
7 (Sn, Sn)← (Sn ∪ {ze}, Sn ∪ {(ze, 1)}) ;
8 (Jn(ze, 1), γn(ze),Υn(ze), J

γ
n(ze), µn(ze, 1),∆tn(ze))←

(ic, γn(znear),Υn(znear), icγ , ue, τ) ;

// Perform Ln ≥ 1 updates
9 for i = 1→ Ln do

// Choose Kn = Θ
(
|Sn|θ

)
< |Sn| states

10 Zupdate ← Nearest(ze, Sn\∂Sn,Kn) ∪ {ze};
11 for z ∈ Zupdate do
12 UpdateS(z, Sn, Jn, γn,Υn, J

γ
n , µn,∆tn) ;

The extended iMDP algorithm is presented in Algo-
rithms 1-5. The algorithm incrementally refines two MDP
sequences, namely {Mn}∞n=0 and {Mn}∞n=0, and two hold-
ing time sequences, namely {∆tn}∞n=0 and {∆tn}∞n=0, that
consistently approximate the original system in Eq. (1) and
the augmented system in Eq. (5) respectively. We associate
with z ∈ Sn a cost value Jn(z, 1), a control µn(z, 1),
a failure probability Υn(z) due to µn(·, 1), a min-failure
probability γn(z), a cost-to-go value Jγn(z) induced by the
obtained min-failure policy. Similarly, we associate with
z ∈ Sn a cost value Jn(z), a control (µn(z), κn(z)).

As shown in Algorithm 1, initially, empty MDP models
M0 and M0 are created. The algorithm then executes N
iterations in which it samples states on the pre-specified
part of the boundary ∂D, constructs the un-specified part
of ∂D and processes the interior of D. More specifically, at
Line 3, UpdateDataStorage(n−1, n) indicates that refined
models in the nth iteration are constructed from models in
the (n−1)th iteration, which can be implemented by simply
sharing memory among iterations. Using rejection sampling,
the procedure SampleOnBoundary at Line 4 sample states
in ∂S and ∂S × [0, 1] to add to Sn and Sn respectively.
We also initialize appropriate cost values for these sampled
states.

We conduct K1,n rounds to refine the MDP sequence
{Mn}∞n=0 as done in the original iMDP algorithm using
the procedure ConstructBoundary (Line 6). Thus, we can
compute the cost function Jn and the associated failure

Algorithm 3: ProcessInterior(Sn, Sn, Jn, γn,Υn, J
γ
n , µn, κn,∆tn)

1 zs = (zs, qs)← Sample(S);
2 znear = (znear, qnear)← Nearest(zs, Sn, 1);
3 if (xe, qe, ue, τ)← ExtBackwardsSM(znear, zs, T0) then
4 ze ← (xe(0), qe);
5 if qe < γn(znear) then

// C takes a large value
6 (Sn, Jn(ze), µn(ze), κn(ze),∆tn(ze))←

(Sn ∪ {ze}, C, ue, 0, τ) ;
7 else
8 ic = τg(ze, ue) + ατJn(znear);
9 (Sn, Jn(ze), µn(ze), κn(ze),∆tn(ze))←

(Sn ∪ {ze}, ic, ue, 0, τ) ;

// Perform Ln ≥ 1 updates
10 for i = 1→ Ln do

// Choose Kn = Θ
(
|Sn|θ

)
< |Sn| states

11 Zupdate ← Nearest(ze, Sn\∂Sn,Kn) ∪ {ze};
12 for z = (z, q) ∈ Zupdate do
13 UpdateSM(z, Sn, Jn, γn,Υn, J

γ
n , µn, κn,∆tn);

probability function Υn on Sn×{1}. In the same procedure,
we compute the min-failure probability function γn as well
as the min-failure cost function Jγn on Sn. In other words,
the algorithm effectively constructs approximate boundaries
for D and approximate cost-to-go functions Jn on these
approximate boundaries over iterations. To compute cost
values for the interior Do of D, we conduct K2,n rounds
of the procedure ProcessInterior (Line 8) that similarly
refines the MDP sequence {Mn}∞n=0 in the augmented state
space. We can choose the values of K1,n and K2,n so that
we perform a large number of iterations to obtain stable
boundary values before processing the interior domain when
n is small. In the following discussion, we will present in
detail the implementations of these procedures.

In Algorithm 2, we show the implementation of the
procedure ConstructBoundary. We construct a finer MDP
model Mn based on the previous model as follows. A state
zs, is sampled from the interior of the state space S (Line 1).
The nearest state znear to zs (Line 2) in the previous model is
used to construct an extended state ze by using the procedure
ExtendBackwardsS at Line 3. The extended states ze and
(ze, 1) are added into Sn and Sn respectively. The associated
cost value Jn(ze, 1), failure probability Υn(ze), min-failure
probability γn(ze), min-failure cost value Jγn(ze) and control
µn(ze) are initialized at Line 8.

We then perform Ln ≥ 1 updating rounds in each
iteration (Lines 9-12). In particular, we construct the update-
set Zupdate consisting of Kn = Θ(|Sn|θ) states and ze where
|Kn| < |Sn|. For each state z in Zupdate, the procedure
UpdateS as shown in Algorithm 4 implements the following
Bellman update:

Jn(z, 1) = min
v∈Un(z)

{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, v]}.

The details of the implementation are as follows. A
set of Un controls is constructed using the procedure
ConstructControlsS where |Un| = Θ(log(|Sn|)) at
Line 2. For each v ∈ Un, we construct the support Znear and

Algorithm 4: UpdateS(z, Sn, Jn, γn,Υn, J
γ
n , µn,∆tn)

1 τ ← ComputeHoldingTime(z, |Sn|, dx);
// Sample or discover Mn = Θ(log(|Sn|)) controls

2 Un ← ConstructControlsS(Mn, z, Sn, τ);
3 for v ∈ Un do
4 (Znear, Pn)← ComputeTranProb(z, v, τ, Sn, f, F);

// Update cost
5 J ← τg(z, v) + ατ

∑
y∈Znear

Pn(y)Jn(y, 1);
6 if J < Jn(z, 1) then
7 p←

∑
y∈Znear

Pn(y)Υn(y);
8 (Jn(z, 1),Υn(z), µn(z, 1),∆tn(z))← (J, p, v, τ);

// Update min-failure probability
9 b←

∑
y∈Znear

Pn(y)γn(y);
10 if b < γn(z) then
11 J ← τg(z, v) + ατ

∑
y∈Znear

Pn(y)Jγn(y);
12 (γn(z), Jγn(z))← (b, J);

Algorithm 5: UpdateSM(z, Sn, Jn, γn,Υn, J
γ
n , µn, κn,∆tn)

1 τ ← ComputeHoldingTime(z, |Sn|, dx + 1);

// Sample or discover Mn = Θ(log(|Sn|)) controls
2 Un ← ConstructControlsSM(Mn, z, Sn, τ);
3 for v = (v, c) ∈ Un do
4 (Znear, Pn)← ComputeTranProb(z, v, τ , Sn, f , F);
5 J ← τg(z, v)+ατ

∑
y=(y,s)∈Znear

Pn(y)
[
1s=γn(y)J

γ
n(y)+

1γn(y)<s<Υn(y)Jn(y)+1s≥Υn(y)Jn(y, 1)
]
;

// Improved cost
6 if J < Jn(z) then
7 (Jn(z), µn(z), κn(z),∆tn(z))← (J, v, c, τ);

compute the transition probability Pn(· | z, v) consistently
over Znear from the procedure ComputeTranProb (Line
4). The cost values for the state z and controls in Un are
computed at Lines 5. We finally choose the best control
in Un that yields the smallest updated cost value (Line 7).
Correspondingly, we improve the min-failure probability γn
and its induced min-failure cost value Jγn in Lines 9-12.

Similarly, in Algorithm 3, we carry out the sampling
and extending process in the augmented state space S to
refine the MDP sequenceMn (Lines 1-3). In this procedure,
if an extended node has a martingale state that is below
the corresponding min-failure probability, we initialize the
cost value for extended node with a very large constant C
representing +∞ (see Lines 5-6). Otherwise, we initialize
the extended node as seen in Lines 8-9. We then execute Ln
rounds (Lines 10-13) to update the cost-to-go Jn for states
in the interior Do of D using the procedure UpdateSM as
shown in Algorithm 5. When a state z ∈ Sn is updated in
UpdateSM, we perform the following Bellman update:

Jn(z) = min
(v,c)∈Un(z)

{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, (v, c)]},

where the control set Un is constructed by the proce-
dure ConstructControlsSM, and the transition probability
Pn(·|z, (v, c)) consistently approximates the augmented dy-
namics in Eq. (5). To implement the above Bellman update
at Line 5 in Algorithm 5, we make use of the characteristics
presented in Section III-C where the notation 1A is 1 if the
event A occurs and 0 otherwise. That is, when the martingale

Algorithm 6: Risk Constrained Policy(z = (z, q) ∈ S, n)

1 znearest ← Nearest(z, Sn, 1);
2 if q ≥ γn(znearest) then

// Switch to a deterministic control policy
3 return

(
ϕ(z) = (µn(znearest), 0),∆tn(znearest)

)
;

4 else
// Perform a Bellman update

5 (Jmin, vmin, cmin)← (+∞, ∅, ∅) ;
6 τ ← ComputeHoldingTime(z, |Sn|, dx + 1);

// Construct Mn = Θ(log(|Sn|)) controls
7 Un ← ConstructControlsSM(Mn, z, Sn, τ);
8 for v = (v, c) ∈ Un do
9 (Znear, Pn)← ComputeTranProb(z, v, τ , Sn, f , F);

10 J ←
τg(z, v) + ατ

∑
y=(y,s)∈Znear

Pn(y)
[
1s=γn(y)J

γ
n(y) +

1γn(y)<s<Υn(y)Jn(y) + 1s≥Υn(y)Jn(y, 1)
]
;

// Improved cost
11 if J < Jmin then
12 (Jmin, vmin, cmin)← (J, v, c) ;

13 return
(
ϕ(z) = (vmin, cmin), τ

)
;

state s of a state y = (y, s) in the support Znear is at least
Υn(y), we substitute Jn(y) with Jn(y, 1). Similarly, when
the martingale state s is equal to γn(y), we substitute Jn(y)
with Jγn(y).

C. Feedback Control

At the nth iteration, given a state x ∈ S and a martingale
component q, to find a policy control (v, c), we perform a
Bellman update based on the approximated cost-to-go Jn for
the augmented state (x, q). During the holding time ∆tn,
the original system takes the control v and evolves in the
original state space S while we simulate the dynamics of
the martingale component under the martingale control c.
After this holding time period, the augmented system has a
new state (x′, q′), and we repeat the above process.

Figure 2(a) visualizes how feedback policies look in the
original and augmented state spaces. In the augmented state
space S, a feedback control policy is a deterministic Markov
policy as a function of an augmented state (x, q). As the
system actually evolves in the original state space S, and
the martingale state q can be seen as a random parameter
at each state x, the feedback control policy is a randomized
policy.

Using the characteristics presented in Section III-C, we
infer that when a certain condition meets, the system can
start following a deterministic control policy. More precisely,
we recall that for all η ∈ [Υ(z), 1], we have J∗(z, η) =
J∗(z, 1). Thus, starting from any augmented state (z, η)
where η > Υ(z), we can solve the problem as if the failure
probability were 1.0 and use optimal control policies of
the unconstrained problem from the state z. We illustrate
this idea in Fig. 2(b). As we can see, when the martingale
state along the trajectory is at least the corresponding value
provided by Υ, the system starts following a deterministic
control policy µn(·, 1) of the unconstrained problem.

Algorithm 6 implements the above feedback policy. As
shown in this algorithm, Line 3 returns a deterministic policy

G
Obs

q

0

1
D

G
Obs

q

0

1

Fig. 2. In Fig. 2(a), we show a feedback-controlled trajectory of OPT 1 and OPT 2. In the augmented state space S, a feedback control policy is a
deterministic Markov policy as a function of an augmented state (x, q). As the system actually evolves in the original state space S, and the martingale
state q can be seen as a random parameter at each state x, the feedback control policy is a randomized policy. In Fig. 2(b), we show a modified feedback-
controlled trajectory. We continue the illustration in Fig. 2(a). When the martingale state along the trajectory is at least the corresponding value provided
by Υ, the system starts following a deterministic control policy µn(·, 1) of the unconstrained problem.

of the unconstrained problem if the martingale state is large
enough, and Lines 5-13 perform a Bellman update to find the
best augmented control if otherwise. When the system starts
using deterministic policies of the unconstrained problem,
we can set the martingale state to 1.0 and set the optimal
martingale control to 0 in the following control period.

D. Complexity

The time complexity per iteration of Algorithms 1-5 is
O
(
|Sn|θ(log |Sn|)2

)
. The space complexity of the iMDP

algorithm is O(|Sn|) where |Sn| = Θ(n) due to our
sampling strategy.

V. ANALYSIS

In this section, we present main results on the performance
of the extended iMDP algorithm with brief explanation. More
detailed proofs can be found in [16].

We first review the following key results of the ap-
proximating Markov chain method when no additional risk
constraints are considered [17]. Local consistency implies
the convergence of continuous-time interpolations of the
trajectories of the controlled Markov chain to the trajectories
of the stochastic dynamical system described by Eq. (1).
In particular, previous results in [15] show that Jn(·, 1)
returned from the iMDP algorithm converges uniformly to
J∗(·, 1) in probability. That is, we are able to compute
J∗(·, 1) in an incremental manner without directly computing
J∗n(·, 1). As a consequence, it follows that Υn converges
to Υ uniformly in probability. Using the same proof, we
conclude that γn(·) and Jγn(·) converges uniformly to γ(·)

and J∗(·, γ) in probability respectively. Therefore, we have
incrementally constructed the boundary values on ∂D of the
equivalent stochastic target problem presented in Eqs. (7)-(8).
These results are established based on the approximation of
the dynamics in Eq. (1) using the MDP sequence {Mn}∞n=0.

Similarly, the uniform convergence of Jn(·, ·) to J∗(·, ·)
in probability on the interior of D is followed from the
approximation of the dynamics in Eq. (5) using the MDP
sequence {Mn}∞n=0. In the following theorem, we formally
summarize the key convergence results of the extended iMDP
algorithm.

Theorem 3 Let Mn and Mn be two MDPs with discrete
states constructed in S and S respectively, and let Jn :
Sn → R be the cost-to-go function returned by the extended
iMDP algorithm at the nth iteration. Let us define ||b||X =
supz∈X b(z) as the sup-norm over a set X of a function b
with a domain containing X . We have the following random
variables converge in probability:

1) plimn→∞||Jn(·, 1)− J∗(·, 1)||Sn = 0,
2) plimn→∞||Υn −Υ||Sn = 0,
3) plimn→∞||γn − γ||Sn = 0,
4) plimn→∞||Jγn − Jγ ||Sn = 0,
5) plimn→∞||Jn − J∗||Sn = 0.

The first four events construct the boundary values on ∂D in
probability, which leads to the probabilistically sound prop-
erty of the extended iMDP algorithm. The last event asserts
the asymptotically optimal property through the convergence
of the approximating cost-to-go function Jn to the optimal
cost-to-go function J∗ on the augmented state space S.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) Policy on M500.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) Policy on M1000.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(c) Policy on M3000.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d) Markov chain implied by M200.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(e) Markov chain implied by M500. (f) Markov chain implied by M1000.

Fig. 3. A system with stochastic single integrator dynamics in a cluttered environment. The standard deviation of noise in x and y directions is 0.5. The
cost function is the sum of total energy spent to reach the goal, which is measured as the integral of square of control magnitude, and a terminal cost,
which is −1000 for the goal region (G) and 10 for the obstacle region (Γ), with a discount factor α = 0.9. Figures 3(a)-3(c) depict anytime policies on
the boundary S × 1.0 over iterations. Figures 3(d)-3(f) show the Markov chains created by anytime policies on Mn over iterations.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) Policy on M4000.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

(b) Value function J4000,1.0.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(c) Collision probability Υ4000.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d) Policy map induced by γ4000.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

(e) Value function Jγ4000.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(f) Min-collision prob. γ4000.

Fig. 4. Figures 4(a)-4(c) shows a policy map, cost value function and the associated collision probability function for the unconstrained problem after
4000 iterations. Similar, Figures 4(d)-4(f) show a policy map, the associated value function, and the min-collision probability function after 4000 iterations.
These values provide the boundary values for the stochastic target problem. For the unconstrained problem, the policy map encourages the system to go
through the narrow corridors with low cost-to-go values and high probabilities of collision. In contrast, the policy map from the min-collision probability
problem encourages the system to detour around the obstacles with high cost-to-go values and low probabilities of collision.

VI. EXPERIMENTS

In the following experiments, we used a computer with
a 2.0-GHz Intel Core 2 Duo T6400 processor and 4 GB

−10

−5

0

5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

(a) Policy on M200

−10

−5

0

5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

(b) Policy on M3000

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(c) Policy on M3000\M3000: Top-down
view

(d) Markov chain implied by M200. (e) Markov chain implied by M500. (f) Markov chain implied by M1000.

Fig. 5. Figures 5(a)-5(c) and Figures 5(d)-5(f) show the corresponding anytime policies and the associated Markov chains on Mn respectively. In
Fig. 5(c), we show the top-down view of a policy for states in M3000\M3000. We observe that the system will try to avoid the narrow corridors when
the risk tolerance is low. We can also observe that the structures of the Markov chains quickly cover the state spaces S and S with connected random
graphs.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

(a) Value function J200,1.0.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

(b) Value function J2000,1.0.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

(c) Value function J4000,1.0.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(d) Value function J4000,0.1

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(e) Value function J4000,0.5

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(f) Value function J4000,0.9

Fig. 6. Examples of incremental value functions over iterations. Figure 6(a)-6(c) show the approximate cost-to-go functions Jn when the probability
threshold η0 is 1.0 for n = 200, 2000 and 4000. Figures 6(d)-6(f) present the approximate cost-to-go function J4000 in M4000 for augmented states
where their martingale components are 0.1, 0.5 and 0.9 respectively. The plot shows that the lower the martingale state is, the higher the cost value is –
which is consistent with the characteristics in Section III-C.

of RAM. We controlled a system with stochastic single integrator dynamics to a goal region with free ending time in

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) Unconstrained problem trajectories: simulated collision
probability 49.27%, average cost −125.20.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

(b) Min-collision trajectories: simulated collision probability
0%, average cost −17.85.

Fig. 7. Examples of trajectories from policies of the unconstrained problem (Fig. 7(a)) and the min-collision probability problem (Fig. 7(b)). In the
unconstrained problem, the system takes risk to go through one of the narrow corridors to reach the goal. In contrast, in the min-collision probability
problem, the system detours around the obstacles to reach the goal. While there are about 49.27% of 2000 trajectories (plotted in red) that collide with
the obstacles for the former, we observe no collision out of 2000 trajectories for the latter.

(a) An example of controlled trajectories using boundary values.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
00.01

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η=1.0

η=0.4

η=0.3

η=0.2

η=0.1

η=0.05
η=0.01

Number of trajectories (N)

F
ai

lu
re

 R
at

io

(b) Failure ratios for the first N trajectories (N ≤ 5000) with different η.

Fig. 8. In Fig. 8(a), we show an example of controlled trajectories using boundary values. The system starts from (6.5,−3) with the failure-probability
threshold η = 0.4. The martingale state varies along controlled trajectories as a random parameter in a randomized control policy. When the martingale
state is above Υ, the system follows a deterministic control policy obtained from the unconstrained problem. In Fig. 8(b),we show failure ratios for the
first N trajectories (1 ≤ N ≤ 5000) starting from (6.5,−3) with different values of η. As seen in Fig. 8(b), the algorithm is able to keep the failure ratio
in 5000 executions around 0.40 as dictated by the choice of η = 0.40 at time 0. Other failure ratios follow very closely the values of η, which indicates
that the iMDP algorithm is able to provide solutions that are probabilistically sound.

a cluttered environment. The dynamics is given by dx(t) =
u(t)dt + Fdw(t) where x(t) ∈ R2, u(t) ∈ R2, and

F =

[
0.5 0
0 0.5

]
. The system stops when it collides with

obstacles or reach the goal region. The cost function is the
weighted sum of total energy spent to reach the goal G at
(8, 8), which is measured as the integral of square of control
magnitude, and a terminal cost, which is −1000 for the goal
region G and 10 for the obstacle region Γ, with a discount
factor α = 0.9. The maximum velocity of the system in
the x and y directions is one. At the beginning, the system
starts from (6.5,−3). Failure is defined as collisions with

obstacles, and thus we use failure probability and collision
probability interchangeably.

We first show how the extended iMDP algorithm con-
structs the sequence of approximating MDPs on S over
iterations in Fig. 3. In particular, Figs. 3(a)-3(c) depict
anytime policies on the boundary S×1.0 after 500, 1000, and
3000 iterations. Figures 3(d)-3(f) show the Markov chains
created by anytime policies found by the algorithm on Mn

after 200, 500 and 1000 iterations. We observe that the
structures of these Markov chains are indeed random graphs
that are (asymptotically almost-surely) connected to cover
the state space S. As in the original version of iMDP, it

(a) Threshold η = 0.01. (b) Threshold η = 0.05. (c) Threshold η = 0.10.

(d) η = 0.01: 0.8%, −19.42. (e) η = 0.05: 4.2%, −42.53. (f) η = 0.10: 10%, −58.00

(g) Threshold η = 0.2. (h) Threshold η = 0.3. (i) Threshold η = 0.4.

(j) η = 0.2: 15.6%, −65.81. (k) η = 0.3: 28.19%, −76.80. (l) η = 0.4: 40%, −115.59.

Fig. 9. Trajectories after 5000 iterations starting from (6.5,−3). In Figs. 9(a)-9(c) and Figs. 9(g)-9(i), we show 50 trajectories resulting from a policy
induced by J4000 with different collision-probability thresholds (η = 0.01, 0.05, 0.10, 0.20, 0.30, 0.40). In Figs. 9(d)-9(f) and Figs. 9(j)-9(l), we show
5000 corresponding trajectories in the original state space S with simulated collision probabilities and average costs in their captions. Trajectories that
reach the goal region are plotted in blue, and trajectories that hit obstacles are plotted in red.

is worth noting that the structures of these Markov chains
can be constructed on-demand during the execution of the
algorithm.

The sequence of approximating MDPs on S provides
boundary values for the stochastic target problem as shown
in Fig. 4. In particular, Figs. 4(a)-4(c) shows a policy map,
cost value function J4000,1.0 and the associated collision

probability function Υ4000 for the unconstrained problem
after 4000 iterations. Similarly, Figs. 4(d)-4(f) show a policy
map, the associated value function Jγ4000, and the min-
collision probability function γ4000 after 4000 iterations. As
we can see, for the unconstrained problem, the policy map
encourages the system to go through the narrow corridors
with low cost-to-go values and high probabilities of collision.

In contrast, the policy map from the min-collision proba-
bility problem encourages the system to detour around the
obstacles with high cost-to-go values and low probabilities
of collision.

We now show how the extended iMDP algorithm con-
structs the sequence of approximating MDPs on the aug-
mented state space S. Figures 5(a)-5(c) show the corre-
sponding anytime policies in S over iterations. In Fig. 5(c),
we show the top-down view of a policy for states in
M3000\M3000. Compared to Fig 3(c), we observe that the
system will try to avoid the narrow corridors when the risk
tolerance is low. In Figs. 5(d)-5(f), we show the Markov
chains that are created by anytime policies in the augmented
state space. As we can see again, the structures of these
Markov chains quickly cover S with (asymptotically almost-
surely) connected random graphs.

We then examine how the algorithm computes the value
functions for the interior Do of the reformulated stochastic
target problem in comparison with the value function of
the unconstrained problem in Fig. 6. Figure 6(a)-6(c) show
approximate cost-to-go Jn when the probability threshold
η0 is 1.0 for n = 200, 2000 and 4000. We recall that the
value functions in these figures form the boundary conditions
on S × 1, which is a subset of ∂D. In the interior Do,
Figs. 6(d)-6(f) present the approximate cost-to-go J4000 for
augmented states where their martingale components are 0.1,
0.5 and 0.9. As we can see, the lower the martingale state
is, the higher the cost value is – which is consistent with the
characteristics in Section III-C.

Lastly, we tested the performance of obtained anytime
policies after 4000 iterations with different initial collision
probability thresholds η. To do this, we first show how the
policies of the unconstrained problem and the min-collision
probability problem perform in Fig. 7. As we can see, in the
unconstrained problem, the system takes risk to go through
one of the narrow corridors to reach the goal. In contrast,
in the min-collision probability problem, the system detour
around the obstacles to reach the goal. While there are about
49.27% of 2000 trajectories (plotted in red) that collide with
the obstacles for the former, we observe no collision out of
2000 trajectories for the latter. From the characteristics pre-
sented in Section III-C and illustrated in Fig. 2(b), from the
starting state (6.5,−3), for any initial collision probability
threshold η above 0.4927, we can execute the deterministic
policy of the unconstrained problem.

In Fig. 8(a), we provide an example of controlled tra-
jectories that are illustrated in Fig. 2(b) when the system
starts from (6.5,−3) with the failure probability threshold
η = 0.4. In this figure, the min-collision probability function
γ4000 is plotted in blue, and the collision probability function
Υ4000 is plotted in green. Starting from the augmented state
(6.5,−3, 0.40), the martingale state varies along controlled
trajectories as a random parameter in a randomized control
policy. When the martingale state is above Υ4000, the system
follows a deterministic control policy obtained from the
unconstrained problem.

Similarly, in Fig. 9, we show controlled trajectories for
different values of η (0.01, 0.05, 0.10, 0.20, 0.30, 0.40). In

TABLE I
FAILURE RATIOS AND AVERAGE COSTS FOR FIG. 8(B).

η Failure Ratio Average Cost
1.00 0.4927 -125.20
0.40 0.4014 -115.49
0.30 0.2819 -76.80
0.20 0.1560 -65.81
0.10 0.1024 -58.00
0.05 0.0420 -42.53
0.01 0.0084 -19.42

0.001 0.0000 -18.86

Figs. 9(a)-9(c) and Figs. 9(g)-9(i), we show 50 trajectories
resulting from a policy induced by J4000 with different
initial collision probability thresholds. In Figs. 9(d)-9(f) and
Figs. 9(j)-9(l), we show 5000 corresponding trajectories in
the original state space S with reported simulated collision
probabilities and average costs in their captions. Trajectories
that reach the goal region are plotted in blue, and trajectories
that hit obstacles are plotted in red. These simulated collision
probabilities and average costs are shown in Table I. As we
can see, the lower the threshold is, the higher the average
cost is as we expect. When η = 0.01, the average cost is
−19.42 and when η = 1.0, the average cost is −125.20.

More importantly, the simulated collision probabilities
follow very closely the values of η chosen at time 0. In
Fig. 8(b), we plot these simulated probabilities for the first N
trajectories where N ∈ [1, 5000] to show that the algorithm
fully respects the bounded failure probability. Thus, this
observation indicates that the extended iMDP algorithm
is able to manage the risk tolerance along trajectories in
different executions to minimize the expected costs using
feasible and time-consistent anytime policies.

VII. CONCLUSIONS

We have introduced and analyzed the extension of the
incremental Markov Decision Process (iMDP) algorithm
for stochastic optimal control subject to bounded failure
probabilities for initial states. We present here the martingale
approach that diffuses the probability constraint into a mar-
tingale. The martingale stands for the level of risk tolerance
that is contingent on available information over time. The
approach transforms the probability-constrained problem into
an equivalent stochastic target problem with the augmented
state and control spaces. The boundary conditions for the
transformed problem is, however, unspecified. The extended
iMDP algorithm incrementally computes the boundary val-
ues and any-time feedback control policies for the trans-
formed problem using asynchronous value iterations. The
returned policies can be considered as randomized policies in
the original state space. Effectively, the extended iMDP al-
gorithm provides probabilistically-sound and asymptotically-
optimal control policies for the class of stochastic control
problems with bounded failure-probability constraints.

The future extension of the work is broad. We intend incor-
porate logical rules expressed as temporal logic constraints
to achieve high degree of autonomy for systems to operate
safely in uncertain and highly dynamic environments with
complex mission specifications. We also plan to implement

the algorithm outlined in this paper on robotic platforms for
practical demonstration.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation grant CNS-1016213 and the Army Research
Office MURI grant W911NF-11-1-0046.

REFERENCES

[1] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Trans. on Control Systems Technologies, vol. 17, no. 5,
pp. 1105–1118, 2009.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press, 2005.

[3] E. Todorov, “Stochastic optimal control and estimation methods
adapted to the noise characteristics of the sensorimotor system,”
Neural Computation, vol. 17, pp. 1084–1108, 2005.

[4] R. Alterovitz, T. Siméon, and K. Goldberg, “The stochastic motion
roadmap: A sampling framework for planning with markov motion
uncertainty,” in in Robotics: Science and Systems III (Proc. RSS 2007.
MIT Press, 2008, pp. 246–253.

[5] W. H. Fleming and J. L. Stein, “Stochastic optimal control, interna-
tional finance and debt,” Journal of Banking and Finance, vol. 28, pp.
979–996, 2004.

[6] S. P. Sethi and G. L. Thompson, Optimal Control Theory: Applications
to Management Science and Economics, 2nd ed. Springer, 2006.

[7] V. D. Blondel and J. N. Tsitsiklis, “A survey of computational
complexity results in systems and control,” Automatica, vol. 36, no. 9,
pp. 1249–1274, 2000.

[8] C. Chow and J. Tsitsiklis, “An optimal one-way multigrid algorithm
for discrete-time stochastic control,” IEEE Transactions on Automatic
Control, vol. AC-36, pp. 898–914, 1991.

[9] R. Munos, A. Moore, and S. Singh, “Variable resolution discretization
in optimal control,” in Machine Learning, 2001, pp. 291–323.

[10] L. Grüne, “An adaptive grid scheme for the discrete hamilton-jacobi-
bellman equation,” Numerische Mathematik, vol. 75, pp. 319–337,
1997.

[11] S. Wang, L. S. Jennings, and K. L. Teo, “Numerical solution
of hamilton-jacobi-bellman equations by an upwind finite volume
method,” J. of Global Optimization, vol. 27, pp. 177–192, November
2003.

[12] M. Boulbrachene and B. Chentouf, “The finite element approximation
of hamilton-jacobi-bellman equations: the noncoercive case,” Applied
Mathematics and Computation, vol. 158, no. 2, pp. 585–592, 2004.

[13] J. Rust, “Using Randomization to Break the Curse of Dimensionality,,”
Econometrica, vol. 56, no. 3, May 1997.

[14] ——, “A comparison of policy iteration methods for solving
continuous-state, infinite-horizon markovian decision problems using
random, quasi-random, and deterministic discretizations,” EconWPA,”
Computational Economics, 1997.

[15] V. A. Huynh, S. Karaman, and E. Frazzoli, “An incremental sampling-
based algorithm for stochastic optimal control,” in ICRA, 2012, pp.
2865–2872.

[16] ——, “An incremental sampling-based algorithm for stochastic opti-
mal control,” arXiv:1202.5544v1 [cs.RO], 2012.

[17] H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic
Control Problems in Continuous Time (Stochastic Modelling and
Applied Probability). Springer, Dec. 2000.

[18] H. J. Kushner and H. Joseph, Probability methods for approximations
in stochastic control and for elliptic equations. Academic Press New
York, 1977, vol. 129.

[19] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Iowa State University, Ames, IA, Tech. Rep. 98-11, Oct.
1998.

[20] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, “A proba-
bilistic particle-control approximation of chance-constrained stochastic
predictive control,” IEEE Transactions on Robotics, vol. 26, no. 3,
2010.

[21] A. G. Banerjee, M. Ono, N. Roy, and B. C. Williams, “Regression-
based LP solver for chance-constrained finite horizon optimal control
with nonconvex constraints,” in Proceedings of the American Control
Conference, San Francisco, CA, 2011.

[22] Y. L. Chow and M. Pavone, “Stochastic optimal control with dynamic,
time-consistent risk constraints,” in American Control Conference
(ACC), 2012. IEEE, 2012. Submitted.

[23] D. E. Kirk, Optimal Control Theory: An Introduction. Dover
Publications, Apr. 2004.

[24] P. Kosmol and M. Pavon, “Lagrange approach to the optimal control
of diffusions,” Acta Applicandae Mathematicae, vol. 32, pp. 101–122,
1993, 10.1007/BF00998149.

[25] ——, “Solving optimal control problems by means of general lagrange
functionals,” Automatica, vol. 37, no. 6, pp. 907 – 913, 2001.

[26] L. Blackmore, H. Li, and B. Williams, “A probabilistic approach to
optimal robust path planning with obstacles,” in in Proceedings of the
American Control Conference, 2006.

[27] M. Ono and B. C. Williams, “Iterative risk allocation: A new approach
to robust model predictive control with a joint chance constraint,” in
CDC, 2008, pp. 3427–3432.

[28] B. Luders, M. Kothari, and J. P. How, “Chance constrained RRT for
probabilistic robustness to environmental uncertainty,” in AIAA Guid-
ance, Navigation, and Control Conference (GNC), Toronto, Canada,
August 2010, (AIAA-2010-8160).

[29] B. D. Luders, S. Karaman, and J. P. How, “Robust sampling-based
motion planning with asymptotic optimality guarantees,” in AIAA
Guidance, Navigation, and Control Conference (GNC), Boston, MA,
August 2013.

[30] B. D. Luders, S. Karaman, E. Frazzoli, and J. P. How, “Bounds on
tracking error using closed-loop rapidly-exploring random trees,” in
American Control Conference (ACC), 2010. IEEE, 2010, pp. 5406–
5412.

[31] R. C. Chen and G. L. Blankenship, “Dynamic programming equations
for discounted constrained stochastic control,” Automatic Control,
IEEE Transactions on, vol. 49, no. 5, pp. 699–709, 2004.

[32] A. Piunovskiy, “Dynamic programming in constrained markov deci-
sion processes,” Control and Cybernetics, vol. 35, no. 3, p. 645, 2006.

[33] S. Mannor and J. Tsitsiklis, “Mean-variance optimization in markov
decision processes,” arXiv preprint arXiv:1104.5601, 2011.

[34] P. Huang, D. A. Iancu, M. Petrik, and D. Subramanian, “The price
of dynamic inconsistency for distortion risk measures,” arXiv preprint
arXiv:1106.6102, 2011.

[35] A. Ruszczyński and A. Shapiro, “Optimization of risk measures,” in
Probabilistic and randomized methods for design under uncertainty.
Springer, 2006, pp. 119–157.

[36] ——, “Conditional risk mappings,” Mathematics of Operations Re-
search, vol. 31, no. 3, pp. 544–561, 2006.

[37] B. Rudloff, A. Street, and D. Valladao, “Time consistency and risk
averse dynamic decision models: Interpretation and practical conse-
quences,” Internal Research Reports, vol. 17, 2011.

[38] B. Bouchard and N. Touzi, “Weak dynamic programming principle
for viscosity solutions,” SIAM Journal on Control and Optimization,
vol. 49, no. 3, pp. 948–962, 2011.

[39] B. Bouchard, R. Elie, and C. Imbert, “Optimal control under stochas-
tic target constraints,” SIAM Journal on Control and Optimization,
vol. 48, no. 5, pp. 3501–3531, 2010.

[40] B. Bouchard, R. Elie, and N. Touzi, “Stochastic target problems with
controlled loss,” SIAM Journal on Control and Optimization, vol. 48,
no. 5, pp. 3123–3150, 2009.

[41] N. Touzi and A. Tourin, Optimal stochastic control, stochastic target
problems, and backward SDE. Springer, 2013, vol. 29.

[42] B. Bouchard and M. Nutz, “Weak dynamic programming for gener-
alized state constraints,” SIAM Journal on Control and Optimization,
vol. 50, no. 6, pp. 3344–3373, 2012.

[43] H. M. Soner and N. Touzi, “Dynamic programming for stochastic
target problems and geometric flows,” Journal of the European Math-
ematical Society, vol. 4, no. 3, pp. 201–236–236, Sept. 2002.

[44] B. Bouchard and T. N. Vu, “The obstacle version of the geometric dy-
namic programming principle: Application to the pricing of american
options under constraints,” Applied Mathematics and Optimization,
vol. 61, no. 2, pp. 235–265, 2010.

[45] V. A. Huynh and E. Frazzoli, “Probabilistically-sound and
asymptotically-optimal algorithm for stochastic control with trajectory
constraints,” in Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on. IEEE, 2012, pp. 1486–1493.

[46] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus
(Graduate Texts in Mathematics), 2nd ed. Springer, Aug. 1991.

[47] D. Lamberton and B. Lapeyre, Introduction to stochastic calculus
applied to finance. Chapman & Hall, 2008.

[48] B. Oksendal, Stochastic differential equations (3rd ed.): an introduc-
tion with applications. New York, NY, USA: Springer-Verlag New
York, Inc., 1992.

	I Introduction
	II Problem Definition
	III Martingale Approach
	III-A Diffusing Risk Constraints
	III-B Stochastic Target Problem
	III-C Characterization and Boundary Conditions

	IV Algorithm
	IV-A Markov Chain Approximation
	IV-B Extension of iMDP
	IV-B.1 Sampling
	IV-B.2 Nearest Neighbors
	IV-B.3 Time Intervals
	IV-B.4 Transition Probabilities
	IV-B.5 Backward Extension
	IV-B.6 Sampling and Discovering Controls

	IV-C Feedback Control
	IV-D Complexity

	V Analysis
	VI Experiments
	VII Conclusions
	References

