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Domain Decomposition for Stochastic Optimal Control

Matanya B. Horowitz Ivan Papusha Joel W. Burdick

Abstract— This work proposes a method for solving linear
stochastic optimal control (SOC) problems using sum of squares
and semidefinite programming. Previous work had used polyno-
mial optimization to approximate the value function, requiring
a high polynomial degree to capture local phenomena. To
improve the scalability of the method to problems of interest,
a domain decomposition scheme is presented. By using local
approximations, lower degree polynomials become sufficient,
and both local and global properties of the value function
are captured. The domain of the problem is split into a
non-overlapping partition, with added constraints ensuring C1

continuity. The Alternating Direction Method of Multiplie rs
(ADMM) is used to optimize over each domain in parallel and
ensure convergence on the boundaries of the partitions. This
results in improved conditioning of the problem and allows for
much larger and more complex problems to be addressed with
improved performance.

I. I NTRODUCTION

Motion planning in the presence of noise and dynamics
remains a central issue in robotics and autonomous systems.
As robots transition out of controlled factory and lab en-
vironments, the ability to move precisely in the presence
of unknown environments, exterior agency, and stochastic
actuators and sensors become ever more important. For a
solution to be useful it must be rapid to compute, robust, and
incorporate optimality criteria. The primary avenue for solv-
ing motion planning problems, and likely the most successful
historically, has been that of sampling based planners [1].
Such approaches are attractive as they may be quite rapid in
practice, but typically only have guarantees in the asymptotic
limit, and incorporate dynamics and stochasticity in only a
limited way.

Stochastic optimal control (SOC) provides an alternative,
allowing for the full dynamics and various details of the
problem to be incorporated into the algorithm directly.
Traditionally, this has been handled through discretization,
resulting in the formulation of a Markov Decision Problem
(MDP), which can then be solved through methods such
as value iteration [2]. These methods have met with a
great deal of success in a number of communities. The
caveat is that such problems in robotics may be prohibitively
difficult to solve due to a number of obstacles, chiefly the
curse of dimensionality. These techniques rely on a fine
discretization of the state space when the system occupies
a continuous domain, typical of many robotic and control
problems. Furthermore, robotic state spaces are usually quite
large, both in quantity of dimensions as well as absolute
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size, for all but the most academic of problems, resulting in
discrete state space cardinality that may easily exceed the
capabilities of current computers. Reducing the necessityfor
fine discretization could provide for significant gains in this
area.

Recently it has been discovered that the Hamilton Jacobi
Bellman (HJB) equation, a typically nonlinear partial differ-
ential equation (PDE) that arises in optimal control, may be
transformed to a linear PDE given several mild assumptions.
This is a large computational gain, as solving the nonlinear
PDE is quite difficult [3]. Research into leveraging this
computational advantage is only beginning.

One method to solve such problems lies in recent re-
sults from polynomial optimization and semidefinite pro-
gramming [4]. These methods allow for optimization to
be performed directly over polynomials, and have solved
a number of difficult problems. Here we present a novel
use of such tools to directly construct an approximate value
function that satisfies the linear HJB equation. This allowsfor
optimal control problems, including those typically foundin
robotic motion planning, to be solved relatively quickly and
globally. In contrast to dynamic programming approaches, no
direct state space discretization is required, postponingthe
curse of dimensionality and eliminating a potential sourceof
approximation error.

In particular, we propose an augmentation of the algorithm
first presented in [5], in which the domain is split into distinct
partitions, each of which has its own local approximating
polynomial. The value function may vary significantly over
the domain, and thus may require a high degree polynomial
if approximated over the domain’s entirety. But by using a
sufficiently local approximation, a similar quality of global
approximation may be achieved with smaller degree on
each partition. Furthermore, we demonstrate that an efficient
choice of partitioning may lead to a decoupling in the
optimal control problems on each partition, allowing for a
degree of parallelization. The Alternating Direction Method
of Multipliers (ADMM) [6] is a particularly well suited
approach, providing a principled method for parallelization
of certain convex problems with convergence guarantees.

A. Related Work

Linearly solvable SOC problems have recently been stud-
ied from two avenues. One is Linear MDPs [7], in which
an MDP may be solved as a linear set of equations given
several assumptions. By taking the continuous limit of the
discretization, a linear PDE is obtained. Additionally, fol-
lowing the work begun by Kappen [8], the same linear PDE
has been found through a particular transformation of the
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HJB. The existing research has tended towards developing
sampling based approaches for solving the resulting linear
PDE. This is done through the use of the Feynman–Kac
Lemma, that allows for a linear PDE to be solved by
examining the diffusion of a stochastic process. Feynman–
Kac approaches have been further developed by Theodorou
et al. [9] into a path integral framework in use with dynamic
motion primitives. These results have grown in a number of
compelling directions, either relying on an MDP or sampling
based approach [10], [9], [11].

Sampling based approaches are an alternative to the ap-
proach presented here, with several potential advantages
and disadvantages. Among these, sampling based approaches
such as that of Theodorou et al. may be more amenable in
high dimensional state spaces. Such a comparison in part
motivates the present work.

Effort has also gone towards solving the linear HJB
directly, as well as exploiting its properties for computational
benefit. In [12] it is shown that the property of superposi-
tion may be used to compute optimal control solutions at
essentially zero computational cost, with significant impli-
cations in solving Linear Temporal Logic (LTL) specified
tasks. The work of [13] leverages recent results in sparse
tensor decompositions to formulate a numerical technique
that scaleslinearly with dimension, allowing for the HJB to
be approximately solved for a twelve dimensional system.
Finally, in [14] connections are made to a broader literature,
such asnavigationfunctions (popular in robotics), problems
of moments, and broader classes of linear PDEs.

The sum of squares approach presented here is con-
nected via duality to problems of moments. By examining
the moments of the HJB, an alternative line of work by
Lasserre et al. [15], [16], [17] also reduces optimal control
to a semidefinite optimization problem. In their work, the
solution and the optimality conditions are integrated against
monomial test functions, producing an infinite set of moment
constraints. By truncating to any finite list of monomials, the
optimal control problem is reduced to one of semidefinite
optimization. Their method is more general, applicable to any
system with polynomial nonlinearities. Our method contrasts
in that we propose candidate solutions of the value function,
and thus avoid the need to include the control signal in
our polynomial basis, lessening the computational burden.
We are also able to avoid consideration of initial and final
conditions and measures. Perhaps most importantly, our use
of the linear HJB allows for both upper and lower pointwise
bounds to be constructed to the true solution.

Domain partitioning is an approach that has long been
used in numerical methods for PDEs, from the local analysis
behind the Finite Element Method to multi-scale decom-
position techniques [18]. In control, these techniques have
also arisen to improve local approximation to Lyapunov
functions [19], and is complimentary to approaches that ap-
proximate nonlinear systems as piecewise-affine (PWA) [20].
Our work may be seen as a continuation of this research
theme, seeking to extend these techniques not only to the
study of stability, as is the case for Lyapunov functions, but

to control as well. Furthermore, the ability to obtain general
solutions to HJB has implications in regards to Control
Lyapunov Functions [21], allowing for stabilization to be
shown alongside near-optimality. Our method has the distinct
advantage over PWA approximations in that the system itself
is not approximated, and the full nonlinear dynamics are
incorporated into the solution.

B. Paper Outline

The ability to perform domain decomposition for stochas-
tic optimal control will rely on three main ideas: linear
stochastic optimal control, sum of squares programming, and
finally the ADMM algorithm. We begin in Section II by
reviewing the linear HJB. In Section III, we develop the
technique first presented in [5] to approximately solve the
linear HJB using convex programming via a sum of squares
relaxation. Finally, we build the domain decomposition pro-
cedure in Section IV. The need to enforce constraints on the
boundaries between partitions then gives rise to our use of
ADMM, which is reviewed in Section IV-A and then applied
to the problem at hand, the main contribution of this paper.
We illustrate each step on a simple nonlinear example in
Section VI, before tackling a more sophisticated example in
Section VII. Finally, we discuss some of the merits of the
technique and future directions in Section VIII.

II. T HE L INEAR HAMILTON JACOBI BELLMAN EQUATION

We begin by constructing the value function, which cap-
tures thecost-to-gofrom a given state. If such a quantity is
known, an optimal action is chosen to follow the quantity’s
gradient, bringing the agent into states with lowest cost over
the remaining time horizon. We definext ∈ R

n as the system
state at timet, control inputut ∈ R

m, and dynamics that
evolve according to the equation

dxt = (f (xt) +G (xt)ut) dt+B (xt) dωt (1)

on a compact domainΩ, where the expressionsf(x), G(x),
B(x) are assumed to be smoothly differentiable, but possibly
nonlinear functions, andωt is a zero mean Gaussian noise
process with covarianceΣǫ. The system has costrt accrued
at time t according to

r (xt, ut) = q (xt) +
1

2
uT
t Rut (2)

whereq(x) is a state dependent cost. We requireq(x) ≥ 0
for all x in the problem domain. The goal is to minimize the
expectation of the cost functional

J(x, u) = φT (xT ) +

∫ T

0

r (xt, ut) dt, (3)

where φT represents a state-dependent terminal cost. The
solution to this minimization is obtained from thevalue
function. For an initial pointx0, it is given by

V (x0) = min
u[0,T ]

E [J (x0)] , (4)

where we use the shorthandu[0,T ] to denote the trajectory
of u(t) over the time intervalt ∈ [0, T ].



The associated Hamilton Jacobi Bellman equation, arising
from dynamic programming arguments [3], is

− ∂tV = min
u

(

r+ (∇xV )
T
f +

1

2
Tr

(

(∇xxV )GΣǫG
T
)

)

.

(5)
As the control effort enters quadratically into the cost func-
tion, it is a simple matter to solve for it analytically by
substituting (2) into (5) and taking the gradient, yielding

u∗ = −R−1GT (∇xV ) . (6)

The optimal controlu∗ may then be substituted into (5)
to yield the following nonlinear, second order PDE

− ∂tV = q + (∇xV )T f −
1

2
(∇xV )T GR−1GT (∇xV )

+
1

2
Tr

(

(∇xxV )BΣǫB
T
)

. (7)

The difficulty of solving this PDE has traditionally pre-
vented the value function from being solved for directly.
However, as has recently been found in [22], [7], if there
exists a scalarλ > 0 and a control penalty costR ∈ R

n×n

satisfying the noise assumption

λG(x)R−1G(x)T = B(x)ΣǫB(x)T , Σt, (8)

then the logarithmic transformation

V = −λ logΨ (9)

allows us to obtain, after substitution and simplification,the
following linear PDE from equation (7),

− ∂tΨ = −
1

λ
qΨ+ fT (∇xΨ) +

1

2
Tr ((∇xxΨ)Σt) . (10)

Through the transformationΨ, which we call here thede-
sirability [7], we obtain a computationally appealing method
from which to compute the value functionV .

Remark 1. The noise assumption(8) can roughly be inter-
preted as a controllability-type condition: the system controls
must span (or counterbalance) the effects of input noise on
the system dynamics. A degree of designer input is also
given up, as the constraint restricts the design of the control
penaltyR, requiring that control effort be highly penalized
in subspaces with little noise, and lightly penalized in those
with high noise. Additional discussion may be found in [7].

The boundary conditions of (10) correspond to the exit
conditions of the optimal control problem. This may corre-
spond to colliding with an obstacle or goal region, and in the
finite horizon problem there is the added boundary condition
of the terminal cost att = T . These final costs must then
be transformed according to (9), producing added boundary
conditions to (10).

Linearly solvable optimal control is not limited to the
finite horizon setting. Similar analysis can be performed to
obtain linear HJB PDEs for infinite horizon average cost,
and first-exit settings, with the corresponding cost functionals

TABLE I

L INEAR DESIRABILITY PDEFOR VARIOUS STOCHASTICOPTIMAL

CONTROL SETTINGS, FROM [7].

Cost Functional Desirability PDE

Finite φT (xT ) +
∫

T

0
r(xt, ut)dt

1

λ
qΨ−

∂Ψ

∂t
= L(Ψ)

First-Exit φT∗
(xT∗

) +
∫

T

0
r(xt, ut)dt

1

λ
qΨ = L(Ψ)

Average limT→∞

1

T
E

[

∫

T

0
r(xt, ut)dt

]

1

λ
qΨ− cΨ = L(Ψ)

and PDEs shown in Table I. For convenience, we define the
differential operator

L(Ψ) := fT (∇xΨ) +
1

2
Tr ((∇xxΨ)Σt) . (11)

III. T HE SUM OF SQUARES RELAXATION

Building upon the results of [5], we relax the equality
constraint (10), allowing for an over-approximation of the
value function, and creating a linear differential inequality.
This places the problem within the realm of polynomial opti-
mization problems where tools such as thePositivstellensatz
may be applied. Consider the relaxation

1

λ
qΨ ≥ ∂tΨ+ fT (∇xΨ) +

1

2
Tr ((∇xxΨ)Σt) . (12)

Given that this is an approximation, we wish to obtain the
best such approximation for a given polynomial order forΨ,
minimizing the pointwise error as our objective,

min. γ

s.t. γ −

(

1

λ
qΨ− (∂tΨ + L (Ψ))

)

≥ 0.

Furthermore, due to the nature of the log transformation (9),
we requireΨ to be positive everywhere, and we will examine
this problem only on a compact, semialgebraic domainS.

The complete (centralized) optimization problem is

min. γ (13)

s.t.
1

λ
qΨ ≥ ∂tΨ+ L(Ψ) x ∈ S

γ ≥
1

λ
qΨ− ∂tΨ− L(Ψ) x ∈ S

Ψ ≥ e−
φT (x)

λ x ∈ ∂S

γ ≥ Ψ− e−
φT (x)

λ x ∈ ∂S

The inequalities are interpreted pointwise overx ∈ S. This
set of polynomial inequalities motivates our need for a
method to enforce non-negativity constraints over a poly-
nomial directly.

A. Sum of Squares Review

We provide a brief review of sum of squares (SOS)
programming, with additional technical details available
in [23], [17]. These tools will be key in the development
of approximate solutions to (13).



Formally, a semialgebraic setis a subset ofRn that is
specified by a finite number of polynomial equations and
inequalities. An example is the set

{

(x1, x2) ∈ R
2 | x2

1 + x2
2 ≤ 1, x3

1 − x2 ≤ 0
}

.

Such a set is not necessarily convex, and testing membership
in the set is intractable in general [23]. As we will see,
however, there exists a class of semialgebraic sets that are
in fact semidefinite-representable. Key to this development
is the ability to test for non-negativity of a polynomial.

A multivariate polynomialf(x) is asum of squares(SOS)
if there exist polynomialsf1(x), . . . , fm(x) such that

f(x) =
m
∑

i=1

f2
i (x).

A seemingly unremarkable observation is that a sum of
squares is always positive. Thus, a sufficient condition for
non-negativity of a polynomial is that the polynomial is SOS.
Perhaps less obvious is that membership in the set of SOS
polynomials may be tested as a convex problem. We denote
the functionf(x) being SOS asf(x) ∈ Σ(x).

Theorem 1. ([23]) Given a finite set of polynomials
{fi}

m

i=0 ∈ R[x] the existence of{ai}
m

i=1 ∈ R such that

f0 +

m
∑

i=1

aifi ∈ Σ(x)

is a semidefinite programming feasibility problem.

Here, R[x] denotes the set of polynomials overx for
some fixed degree. Thus, while the problem of testing non-
negativity of a polynomial is intractable in general, by
constraining the feasible set to SOS the problem becomes
tractable. The converse question of whether a non-negative
polynomial is necessarily a sum of squares is unfortunately
false, indicating that this test is conservative [23]. Nonethe-
less, SOS feasibility is sufficiently powerful for our purposes.

B. The Positivstellensatz

At this point it is possible to determine whether a particu-
lar polynomial, possibly parameterized, is a sum of squares.
The next step is to determine how to combine multiple
polynomial inequalities. The answer is given by the theorem
that has come to be known as Stengle’sPositivstellensatz.

Theorem 2 (Stengle’s Positivstellensatz [24]). The set

X =
{

x | fi(x) ≥ 0, hj(x) = 0

for all i = 1, . . . ,m, j = 1, . . . , p
}

is empty if and only if there existsti ∈ R[x], andsi, rij , . . . ∈
Σ[x] such that

−1 = s0 +
∑

i

hiti +
∑

i

sifi +
∑

i6=j

rijfifj + · · ·

This powerful theorem allows for (13) to incorporate the
domain requirementsx ∈ S andx ∈ ∂S.

IV. D OMAIN DECOMPOSITION

We first briefly review ADMM before demonstrating its
use in domain decomposition, following [6].

A. Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM)
will serve as the basis for enforcing continuity and differ-
entiability of Ψ(x) on the boundaries of the decomposed
regions. Other decomposition schemes are possible, see [25],
[26] for a survey. ADMM is a “meta”-optimization scheme,
where each step is carried out by solving a convex optimiza-
tion problem. Consider the optimization

min. f(x) + g(z)
s.t. Ax+Bz = c

(14)

over real vector variablesx andz, with convex functionsf
andg. Define an augmented Lagrangian

Lρ = f(x)+g(z)+yT (Ax+Bz − c)+
ρ

2
‖Ax +Bz − c‖22 ,

whereρ > 0 is an algorithm parameter, andy is the dual vari-
able associated with the equality constraint. The constrained
optimization is solved through alternately minimizing the
augmented Lagrangian over the primal variablesx, z, and
updating the dual variabley,

xk+1 := argminxLρ(x, z
k, yk)

zk+1 := argminzLρ(x
k+1, z, yk)

yk+1 := yk + ρ
(

Axk+1 +Bzk+1 − c
)

.

The sum of squares formalism allows a general polynomial
optimization problem to be converted to a sequence of SDPs,
where the variables are the polynomial coefficients. ADMM
extends readily to SDPs. To that end, consider

min. f(x) + g(z)
s.t. Ax+Bz = c

x ∈ C1, z ∈ C2,

where x, z ∈ R
n are the variables andC1, C2 are SDP-

representable sets. With the same formLρ, the ADMM
iterations are quadratically penalized SDPs,

xk+1 := argminx∈C1
Lρ(x, z

k, yk)

zk+1 := argminz∈C2
Lρ(x

k+1, z, yk)

yk+1 := yk + ρ
(

Axk+1 +Bzk+1 − c
)

.

The only difference is the primal variables are now con-
strained to lie in the spectrahedra (the convex set of semidef-
inite constraints [27])C1 andC2.

The value in this decomposition is the attendant conver-
gence guarantees obtained with ADMM. In particular, we
will make the following two assumptions, which guarantee
convergence:

Assumption 1. The (extended real valued) functionsf :
R

n → R ∪+∞ and g : Rm → R ∪+∞ are closed, proper,
and convex.

Assumption 2. The unaugmented Lagrangian has a saddle
point.



If it can be demonstrated that the optimization problem
obeys these assumptions, then the following general theorem
becomes available:

Theorem 3. (See [6]) Given Assumptions 1, 2 then the
ADMM iterates satisfy the following:

• Residual convergence: rk → 0 as k → ∞, i.e., the
iterates approach feasibility

• Objective convergence: f(xk)+g(zk) → p∗ ask → ∞,
i.e., the objective function of the iterates approaches the
optimal value

• Dual variable convergence: yk → y∗ ask → ∞, where
y∗ is a dual optimal point

B. Decomposition of Stochastic Optimal Control

As the optimal control problem is assumed to take place
over a compact state space, the domain of (10) may decom-
posed into finitely many regionsRj ⊆ R

n, j = 1, . . . , NR.
Assuming the pairwise boundary between the regions may
be described in terms of a semialgebraic set, we have the
following result,

Theorem 4. Given desirability functionΨi(x) valid on
regionRi, Ψj(x) valid on regionRj , and shared boundary
ξ = {x | h(x) = 0} betweenRi andRj , we haveΨi(x) =
Ψj(x) on ξ if there existsc(x) ∈ R[x] such that

Ψi(x)−Ψj(x) + c(x)h(x) = 0

Proof. A straightforward result of the Positivstellensatz,
see [28] for details.

Similarly, continuity of then-th derivative may be easily
incorporated as well by imposing equality of the derivative
along the boundary.

C. Two Region Explicit Example

In the following analysis, we demonstrate how this result
can be used to bind together optimization problems over
a decomposed domain. To obtain a useful policy, we will
require the combined policy to beC1 continuous.

For clarity, we examine a pair of bordering partitionsR1

and R2, with shared boundaryh(x). The polynomials are
assumed to be of bounded degrees, withdeg(Ψi(x)) bounded
by d anddeg(ci(x)) by d− k, for all i, j. In this case,

Ψ1(x) = α0 + α1x+ · · ·+ αdx
d

Ψ2(x) = β0 + β1x+ · · ·+ βdx
d

c1(x) = θ0 + θ1x+ · · ·+ θd−kx
d−k

c2(x) = µ0 + µ1x+ · · ·+ µd−kx
d−k,

whereh(x) = ρ0 + ρ1x + · · · + ρkx
k defines the boundary

region. The continuity constraint

Ψ1(x)−Ψ2(x) + c1(x)h(x) = 0

is equivalent to the coefficient matching constraints

0 = α0 − β0 + (θ0ρ0)

0 = α1 − β1 + (θ0ρ1 + θ1ρ0)

0 = α2 − β2 + (θ0ρ2 + θ1ρ1 + θ2ρ0)

...

0 = αd − βd + (θd−kρk).

Note that the coefficient matching constraints are affine in
the decision variablesαi, βi, i = 1, . . . , d, andθj , µj , j =
1, . . . , d−k. The derivative constraint (21) appends additional
coefficient matching constraints,

0 = α1 − β1 + (µ0ρ0)

0 = 2α2 − 2β2 + (µ0ρ1 + µ1ρ0)

0 = 3α2 − 3β2 + (µ0ρ2 + µ1ρ1 + µ2ρ0)

...

0 = dαd − dβd + (µd−kρk).

Continuity of higher order derivatives are incorporated sim-
ilarly. The continuity and derivative coefficient matching
constraints, together with the approximation error con-
straint (22), can be aggregated into matrix form,

A(1)z1 +A(2)z2 = 0,

wherez1 = (α0, . . . , θd−k, γ1) are the coefficients associated
with R1, andz2 = (β0, . . . , µd−k, γ2) are the coefficients as-
sociated withR2. It is now straightforward to incorporate the
affine matrix constraint into a dual decomposition scheme.
The decomposed variant of optimization (13) is

min. γ1 + γ2 (15)

s.t.
1

λ
qΨ1 ≥ ∂tΨ1 + L(Ψ1), x ∈ R1 (16)

1

λ
qΨ2 ≥ ∂tΨ2 + L(Ψ2), x ∈ R2 (17)

γ1 −

(

1

λ
qΨ1 − rhs

)

≥ 0, x ∈ R1 (18)

γ2 −

(

1

λ
qΨ2 − rhs

)

≥ 0, x ∈ R2 (19)

Ψ1(x) −Ψ2(x) + c1(x)x = 0 (20)
∂Ψ1

∂x
(x)−

∂Ψ2

∂x
(x) + c2(x)x = 0 (21)

γ1 = γ2 (22)

where the Positivstellensatz is used to enforce the domain
restrictions (see [5] for details). The coupling constraints
(20) and (21) prevent decomposition into two parallel op-
timizations. In addition, the objective is coupled throughthe
equality constraint (22), which ensures that the maximum
pointwise approximation error over any region is no more
thanγmax = γ1 = γ2.

To wit, define the quadratically penalized Lagrangian

Lρ(γ1, z1, γ2, z2, λ) = γ1 + γ2 + IC1(z1) + IC2(z2)+

+ λT (A(1)z1 +A(2)z2) +
ρ

2

∥

∥

∥
A(1)z1 +A(2)z2

∥

∥

∥

2

2
,



whereICi
(zi) is the indicator function of the optimization

problem over each individual partition, obtained by reduction
of (13) to semidefinite program form [4]. The alternating
direction iteration may then be performed as

(γk+1
1 , zk+1

1 ) := arg min
γ1,z1

Lρ(γ1, z1, γ
k
2 , z

k
2 , λ

k) (23)

(γk+1
2 , zk+1

2 ) := arg min
γ2,z2

Lρ(γ
k+1
1 , zk+1

1 , γ2, z2, λ
k) (24)

λk+1 := λk + ρ(A(1)zk+1
1 +A(2)zk+1

2 ). (25)

The above procedure may be repeated for all partitionsRi

andRj that share a common boundary. Each minimization,
a semidefinite program, is taken over only those constraints
associated with the specified region. This achieves a degree
of decoupling, limiting the size of the polynomial optimiza-
tion problem, and thus the semidefinite program, for each
individual partition.

D. Parallelization

A further decoupling may be achieved through a judicious
choice of domain partitions. This idea is well known in
the partial differential equation community [18]. Suppose
partitionsRi andRj share no common borderhi,j(x). As
variables from disjoint partitions are only shared throughthe
common boundary constraints (20), it is straightforward to
see thatzk+1

i and zk+1
j are independent of one another.

This allows for these optimizations to be performed in
parallel. One valid partition is to decompose the domain
into a checkerboard pattern, separating the domain into
shaded and unshaded tiles. As shaded tiles share no opti-
mization variables with one another, they may be optimized
in parallel, and similar with the unshaded. By alternating
between shaded and unshaded, the correct descent direction
continues to be taken, guaranteeing convergence. See [29]
for a detailed discussion of parallelization ideas, and Fig. 1
for an illustration of this beneficial decomposition pattern.

V. A NALYSIS

A benefit of the sum of squares relaxation approach is that
the solutions produced are guaranteed to be upper and lower
bounds (depending on the direction of the inequality (12))
when performed over a single partition [5]. These guarantees
are retained in the domain decomposition setting.

Theorem 5. Given a solution set{Ψi, γi} to the converged
optimization problem(23) whereC2 continuity is enforced,
and if Ψ∗ is the solution to(10), thenΨ(x) ≥ Ψ∗(x) for all
x ∈ Ri.

Proof. (Sketch)The derivation follows the proof of Theo-
rem 5 in [5] with little modification. The only modification
arises from the fact that the elliptic and parabolic maximum
principles rely onC2 continuity of the super-solution. As the
solution is polynomial on the interior of each boundary, and
therefore infinitely differentiable, this requirement needs only
be enforced explicitly along the partition boundaries.

A benefit of this approach is that not only may an upper
bound be computed, but in fact reversing the inequalities

R1 R2 R3

R5 R6

R9

R16

· · ·

...
. . .

Ψ1(x) Ψ2(x)

Ψ5(x) Ψ6(x)

Ψ16(x)

h1,2(x)

h1,5(x)

Fig. 1. A particular grid domain decomposition with the partitions
grouped into shaded and unshaded sets. As the sets of the samecolor
require no consensus over their local variables, it is possible to perform the
optimization over each set in parallel while maintaining the convergence
properties of ADMM.

of the optimization results in an additional optimization
problem that can be used to find a pointwise lower bound to
the underlying optimal solution. As both upper and lower
bounds are available, it is possible to see the maximal
possible error of the solution. See [5] for details.

VI. SCALAR EXAMPLE

We construct the optimization for a simple scalar exam-
ple for illustrative purposes. Consider the one dimensional
system

dx = (x2 + u) dt+ dω

on the domainx ∈ [−1, 1]. We have state costq(x) = 1, con-
trol costR = 1, and parameterλ = 1. We split the domain
into regionsR1 = {x | x ∈ [−1, 0]}, R2 = {x | x ∈ [0, 1]},
creatingh1,2(x) = x. For each of these problems we form
the optimization (13) onR1, R2 independently. To enforce
equality of both the solution and its derivative at the shared
point x = 0 we add the coupling constraints

Ψ1(x) −Ψ2(x) + c1(x)x = 0

∂Ψ1

∂x
(x)−

∂Ψ2

∂x
(x) + c2(x)x = 0.

To enforce the continuity constraint (20) for the point bound-
ary at the origin, it suffices to match the constant coefficients
of Ψ1 andΨ2, i.e., we requireΨ1(0) = Ψ2(0). This is an
affine constraint when the polynomial optimization is passed
to an SDP.

Numerical results for the one dimensional example are
shown in Fig. 2 and Fig. 3. For simplicity, the conditioning
parameter was set toρ = 1, and the polynomial degree bound
to 6 for each region. Fig. 2 shows that within about ten
steps of ADMM, continuous differentiability at the boundary
regionx = 0 is achieved. Fig. 3 shows the evolution of the
dual variables, as well as the maximum approximation gap
with iteration number. The SDP optimization on each region
was carried out on SDPT3 using YALMIP with the Sum of
Squares module [30].
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Fig. 4. Results of multidimensional, nonlinear example.
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Fig. 2. Evolution of the alternative value function over 10 ADMM steps.
Arrows show direction of evolution.
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VII. N ONLINEAR CARTESIAN SYSTEM

To demonstrate the versatility of the method, a nonlinear,
multidimensional problem was solved with the following
dynamics,
[

dx

dy

]

=

(

0.1

[

−2x− x3 − 5y − y3

6x+ x3 − 3y − y3

]

+

[

u1

u2

])

dt+

[

dω1

dω2

]

.

The problem is framed as a first exit problem, with the
three sides of a square domainS = [−1, 12] given a unit
penaltyφ(x, y) = 1, while on the remaining edge atx =
1 a reward was given for achieving the center of the edge
with φ(x, y) = 1− (y−1)2. Representative alternative value
function approximations are shown in Fig. 4. In Table II
we also summarize the maximum approximation gapγmax

for a checkerboard decomposition ofS with nr regions per

TABLE II

SLACK VALUE γmax AS A FUNCTION OF POLYNOMIAL DEGREEd, AND

NUMBER OF REGIONSnr PER DIMENSION.

d
nr 4 6 8 10 12 14

1 6.8374 2.5085 0.6344 0.3501 0.0804 0.0978
2 6.7065 2.1561 0.6399 0.3642 0.0859
3 6.4688 2.0579 0.5794 0.3304
4 6.2662 2.0689 0.5591 0.3005
5 6.6289 1.8812 0.5919 0.2917
6 6.3017 1.7638 0.5716
7 6.3178 1.6533 0.5403

dimension, and approximating polynomial degree boundd

in each region.

VIII. C ONCLUSION

A method to perform domain decomposition on stochastic
optimal control problems has been developed, allowing for
local polynomial approximations to the Hamilton Jacobi
Bellman equation to be generated in parallel. Of importance
is the fact that the sum of squares relaxation used does not
fundamentally rely on the particular structure of the HJB
PDE. In fact, [5] demonstrates that the technique may be
readily applied to any linear parabolic or elliptic PDE to
obtain guaranteed upper and lower bounds over the domain.
The domain splitting of this work extends as well, allowing
for local upper and lower bounds to any linear PDE to
be generated via optimization. While more involved than
existing numerical techniques such as the Finite Element
method, these techniques have formal guarantees that do not
require an asymptotic limit in discretization mesh size.

A more direct implication lies in the generation of sta-
bilizing controllers for nonlinear systems. Until now, there
has not existed a method to generate near-optimal Control
Lyapunov Functions for arbitrary nonlinear, stochastic sys-
tems [21]. These domain decomposition techniques improve
the ability for optimal control policies to respond to system
dynamics, enlarging the class of systems that can be handled.
Furthermore, existing results on sum of squares in Lyapunov
functions can be used to verify the stability of any policy
produced by these decomposition methods.



A. Future Directions

It is straightforward to recognize that many domain de-
compositions, such as the checkerboard pattern illustrated,
produce highly structured sparsity patterns in the semidefinite
program’s constraint matrices. Such sparsity structures have
previously been used to significantly improve the computa-
tional cost of large scale semidefinite and sum of squares
programs [31], [32], work that could easily be applied here
as well. It is also an interesting question as to how sparse
basis functions [13] might be incorporated into the domain
decomposition approach.
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[20] P. Biswas, P. Grieder, J. Löfberg, and M. Morari, “A survey on stability
analysis of discrete-time piecewise affine systems,” inProceedings of
the 16th IFAC World Congress, 2005.

[21] E. D. Sontag, “A Lyapunov-like characterization of asymptotic con-
trollability,” SIAM Journal on Control and Optimization, vol. 21, no. 3,
pp. 462–471, May 1983.

[22] H. Kappen, “Linear theory for control of nonlinear stochastic systems,”
Physical Review Letters, vol. 95, no. 20, p. 200201, Nov. 2005.

[23] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,”Mathematical Programming, vol. 96, no. 2, pp. 293–320,
May 2003.

[24] G. Stengle, “A Nullstellensatz and a Positivstellensatz in semialgebraic
geometry,”Mathematische Annalen, vol. 207, no. 2, pp. 87–97, June
1974.

[25] D. P. Bertsekas, “Multiplier methods: a survey,”Automatica, vol. 12,
no. 2, pp. 133–145, Mar. 1976.

[26] ——, Constrained Optimization and Lagrange Multiplier Methods.
Athena Scientific, 1996.

[27] S. P. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

[28] S. Prajna and A. Papachristodoulou, “Analysis of switched and hybrid
systems–beyond piecewise quadratic methods,” vol. 4, pp. 2779–2784,
2003.

[29] N. Parikh and S. P. Boyd, “Proximal algorithms,”Foundations and
Trends in Optimization, vol. 1, no. 3, pp. 123–231, 2014.
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