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Output Feedback Control of the Linear Korteweg-de Vries Equation*

Swann Marx1 and Eduardo Cerpa2

Abstract— This paper presents the design of an output
feedback control for a linear Korteweg-de Vries equation. This
design is based on the backstepping method which uses a
Volterra transformation. An appropriate observer is intro duced
and the exponential stability of the closed-loop system is proven.

I. I NTRODUCTION

The Korteweg-de Vries equation, introduced in 1895 by
the Dutch mathematicians Diederik J. Korteweg and his stu-
dent Gustav de Vries, describes approximatively the behavior
of long waves in a water channel of relatively shallow depth.
This nonlinear partial differential equation, described by

ut(t, x) + ux(t, x) + uxxx(t, x) + u(t, x)ux(t, x) = 0, (1)

has been deeply studied in the controllability sense (see [9],
[4], [1] and the references therein). By considering diffe-
rent boundary conditions on an interval[0, L] and different
boundary actuators, we get control results of different nature.
Roughly speaking, the system is exactly controllable when
the control acts from the right endpointx = L, and null-
controllable when the control acts from the left endpointx =
0.

In this article we focus, as a first step opening further re-
search, on the stabilizability problem for the linear Korteweg-
de Vries equation with a control acting on the left Dirichlet
boundary condition. The studied system can be written as
follows:











ut + ux + uxxx = 0,

u(t, 0) = κ(t), u(t, L) = 0, ux(t, L) = 0,

u(0, x) = u0(x),

(2)

where κ denotes the control input andu0 is the initial
condition.

Some full state feedback controls have already been de-
signed in the literature. Let us mention [3] where a Gramian-
based method is applied in the case where the control acts on
the right endpoint and [11] where the backstepping method
is applied with different boundary conditions. With the same
approach than the last paper, we have [2] where system (2)
is considered.

However, in most cases, we have no access to the full
state of the system, and it is more realistic to design an
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output feedback control, i.e., a feedback law depending only
on some partial measurements of the state.

For linear and autonomous finite-dimension systems, a
stabilizability and an observability assumptions are sufficient
to ensure that the separation principle holds. In other words,
if there exists a controller, which asymptotically stabilizes
the origin of the system and an observer which converges
asymptotically to the state system, the output feedback built
from this observer and this state feedback asymptotically
stabilizes the origin of the system. In a PDE framework this
principle is no longer true and the stability of the closed-loop
system is not guaranteed.

The basic question to state the problem is which kind
of measurements are we going to consider. The case of a
boundary measurement is the most challenging one and the
natural choice for the KdV equation (2) should bey(t) =
ux(t, 0). Unfortunately, the system is not observable with
this choice. In fact, ifL = 2π, then the stationary solution
u(t, x) = 1 − cos(x), satisfies (2) withκ(t) = 0 and in
additionux(t, 2π) = 0 for any timet. The length2π is not
the only one for which observability does not hold (see e.g.
[8], [1]).

In this paper we consider the output given by

y(t) = uxx(t, L). (3)

By using this measurement, we build an observer and apply
the backstepping method to design an output feedback con-
trol which exponentially stabilizes the closed-loop system.
The traceuxx(t, L) can be considered itself as a boundary
condition or even a control ([5], [4]) and therefore the choice
of this output is not an artificial one.

This paper is organized as follows. In Section II, we
state our main result. Section III is devoted to recall the
state feedback control designed in [2]. In IV, we state some
regularity results needed to consider the measurement (3)
as a continuous function. The observer is built in Section
V. In Section VI, the stability of the closed loop controller-
observer system is proven. Finally, Section VII states some
conclusions.

II. M AIN RESULT

Based on [7] and [10], we construct the following ob-
server:











ût + ûx + ûxxx + p1(x)[y(t) − ûxx(t, L)] = 0,

û(t, 0) = κ(t), û(t, L) = ûx(t, L) = 0,

û(0, x) = 0.

(4)

Theorem 1. For any λ > 0, there exist a feedback law
κ(t) := κ(û(t, x)), a function p1 = p1(x), and a constant
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C > 0 such that the coupled system (2)-(3)-(4) is globally
exponentially stable with a decay rate equals to λ, i.e., for
any u0 ∈ H3(0, L) we have

‖u(t, ·)‖H3(0,L)+‖û(t, ·)‖L2(0,L) ≤ Ce−λt‖u0‖H3(0,L)

(5)

III. F ULL STATE FEEDBACK DESIGN

In [2] the following Volterra transformation is introduced

w(x) = Π(u(x)) := u(x)−

∫ L

x

k(x, y)u(y)dy. (6)

The functionk is chosen such that the trajectoryu = u(t, x),
solution of (2), with control

κ(t) =

∫ L

0

k(0, y)u(t, y)dy, (7)

is mapped into the trajectoryw = w(t, x), solution of the
linear system

{

wt + wx + wxxx + λw = 0,

w(t, 0) = w(t, L) = wx(t, L) = 0,
(8)

which is exponentially stable ifλ > 0. In fact, from a
Lyapunov approach, we get

d

dt

∫ L

0

|w(t, x)|2dx = −|wx(t, 0)|
2 − 2λ

∫ L

0

|w(t, x)|2dx

≤ −2λ

∫ L

0

|w(t, x)|2dx,

(9)

which gives an exponential decay rate equals toλ for the
L2−norm of the statew.

The kernel functionk = k(x, y) is characterized by:


























kxxx + kyyy + kx + ky = −λk, in T ,

k(x, L) = 0, in [0, L],

k(x, x) = 0, in [0, L],

kx(x, x) =
λ

3
(L− x), in [0, L],

(10)

whereT := {(x, y)/x ∈ [0, L], y ∈ [x, L]}. The solution of
(10) exist. This is proved by using the method of successive
approximations. Unlikely the case of heat or wave equations,
we do not have an explicit solution.

In [2] it is proved that the transformation (6) linking
(2) and (8) is invertible, continuous and its inverse is also
continuous. Therefore, the exponential decay forw, solution
of (8), implies the exponential decay for the solutionu
controlled by (7). Thus, with this method, the following
theorem is proven.

Theorem 2. (State feedback stabilization for KdV ([2])
For any λ > 0, there exist a feedback control law κ =

κ(u(t, .)) and C > 0 such that

‖u(t, .)‖L2(0,L) ≤ Ce−λt‖u0‖L2(0,L) (11)

for any solution of (2)-(7).

IV. REGULARITY RESULT

As we said in the introduction, we consider

y(t) = uxx(t, L) (12)

as a partial measurement of the solution. However, since we
have the trace of the second derivative with respect tox of
u, we need a regularity stronger than in [2]. Indeed, we ask
the outputy(t) to be a continuous function. Thus we have
the following lemma.

Lemma 1. Let us consider system










ut + ux + uxxx = 0,

u(t, 0) = κ(t), u(t, L) = 0, ux(t, L) = 0,

u(0, x) = u0(x),

(13)

where u0 ∈ H3(0, L) and κ(t) ∈ H1(0, T ). Then u ∈
C([0, T ], H3(0, L)) ∩ L2(0, T ;H4(0, L)) and uxx(·, L) ∈
C([0, T ]).

Proof. This proof is based on [6]. Let us consider the
following coordinates transformation

v = ut. (14)

The dynamics ofv can be written as follows:










vt + vxxx + vx = 0,

v(t, 0) = κ̇(t) ∈ L2(0, T ), v(t, L) = vx(t, L) = 0,

v(0, x) = (−u′′′

0 − u′

0) ∈ L2(0, L).
(15)

By already known well-posedness results for KdV ([6]),
we get

v ∈ C([0, T ], L2(0, L)) ∩ L2(0, T ;H1(0, L))

⇒ut ∈ C([0, T ], L2(0, L)) ∩ L2(0, T ;H1(0, L))

⇒u ∈ C([0, T ], H3(0, L)) ∩ L2(0, T ;H4(0, L))

⇒uxx ∈ C([0, T ], H1(0, L)) ∩ L2(0, T ;H2(0, L))

⇒uxx ∈ C([0, T ]× [0, L])

⇒uxx(·, L) ∈ C([0, T ])

(16)

Thus it concludes the proof of Lemma 1.

V. OBSERVER DESIGN

Based on [7], and more precisely on [10], we can write,
for system











ut + ux + uxxx = 0,

u(t, 0) = κ(t), u(t, L) = ux(t, L) = 0,

y(t) = uxx(t, L),

(17)

the corresponding observer
{

ût + ûx + ûxxx + p1(x)[uxx(t, L)− ûxx(t, L)] = 0,

û(t, 0) = κ(t), û(t, L) = ûx(t, L) = 0.
(18)

The construction of the observer is based on the finite-
dimensional design foṙx = Ax + Bu, y = Cx, which
proposes the observer̂̇x = Ax̂ + Bu + L(y − Cx̂). If
we consider the errore = x − x̂, then ė = (A − LC)e,



and we have to look for a matrixL insuring a good
performance. Because of the infinite-dimensional framework
we are working in, a matrixL is not enough. Thus we need
a functionp1(x).

In our case, we consider the errorũ := u − û, which
satisfies

{

ũt + ũx + ũxxx − p1(x)ũxx(t, L) = 0,

ũ(t, 0) = ũ(t, L) = ũx(t, L) = 0.
(19)

Given a positive parameterλ, we look for a transformation
Πo defined by

ũ(x) = Πo(w̃(x)) = w̃(x) −

∫ L

x

p(x, y)w̃(y)dy (20)

such that the trajectorỹu, solution of (19) is mapped into
the trajectoryw̃ = w̃(t, x), solution of the linear system

{

w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃(t, 0) = 0, w̃(t, L) = 0, w̃x(t, L) = 0,
(21)

which is exponentially stable with a decay rate depending
on the value ofλ as shown in (9).

Now, the key step is to find the kernelp = p(x, y) such
thatũ(t, x) = Πo(w̃(t, x)) satisfies (19). By focusing on (20)
and using the Leibniz rules, we get:
• Differentiation along (21)

ũt = w̃t(x) −

∫ L

x

p(x, y)[−w̃y(y, t)− w̃yyy(y, t)− λw̃(y, t)]dy

= w̃t(x) −

∫ L

x

(−λp(x, y) + py(x, y) + pyyy(x, y))w̃(y, t)dy

+ p(x, L)w̃(L, t)− p(x, x)w̃(x, t) + p(x, L)w̃xx(L, t)

− p(x, x)w̃xx(x, t) + py(x, x)w̃x(x)− py(x, L)w̃x(L, t)

+ pyy(x, L)w̃(L, t)− pyy(x, x)w̃(x, t)
(22)

• Three differentations with respect to the variablex

ũx(x, t) = w̃x(x, t) + p(x, x)w̃(x, t) −

∫ L

x

px(x, y)w̃(t, y)dy

(23)

ũxx(t, x) = w̃xx(t, x) +
d

dx
p(x, x)w̃(t, x) + p(x, x)w̃x(t, x)

+ px(x, x)w̃(t, x)−

∫ L

x

pxx(x, y)w̃(t, y)dy

(24)

ũxxx(t, x) = w̃xxx(t, x) +
d2

dx2
p(x, x)w̃(t, x)

+ 2
d

dx
p(x, x)w̃x(t, x)

+ p(x, x)w̃xx(t, x) +
d

dx
px(x, x)w̃(t, x)

+ px(x, x)w̃x(t, x) + pxx(x, x)w̃(t, x)

−

∫ L

x

pxxx(x, y)w̃(t, x)dy

(25)

By adding (22), (23) and (25), we get

ũt + ũx + ũxxx − p1(x)ũxx(L) =

w̃t(t, x) + w̃x(t, x) + w̃xxx(t, x) + λw̃(t, x)

−

∫ L

x

(−λp(x, y) + py(x, y) + pyyy(x, y)

+ pxxx(x, y) + px(x, y))w̃(y, t)dy

+ w̃x(t, x)

(

2
d

dx
p(x, x) + px(x, x) + py(x, x)

)

+ w̃(t, x)

(

pxx(x, x) +
d2

dx2
p(x, x) +

d

dx
px(x, x)

−pyy(x, x) − λ) + p(x, L)w̃(L, t) + (p(x, L)− p1(x))w̃xx(L, t)

− py(x, L)w̃x(L, t).
(26)

From this equation, we get four conditions:

1. Equation for(x, y) ∈ T :

pyyy(x, y) + pxxx(x, y) + py(x, y) + px(x, y) = λp(x, y).
(27)

2. First boundary condition on(x, x) for x ∈ [0, L]:

2
d

dx
p(x, x) + px(x, x) + py(x, x) = 0. (28)

3. Second boundary condition on(x, x) for x ∈ [0, L]:

d2

dx2
p(x, x) +

d

dx
px(x, x)

+ pxx(x, x) − pyy(x, x)− λ = 0.
(29)

4. Appropriate choice ofp1:

p(x, L) = p1(x). (30)

Recall thatT := {(x, y)/x ∈ [0, L], y ∈ [x, L]}.
Moreover, note also that, by settingx = 0 in (20), we get:

p(0, y) = 0, ∀y ∈ [0, L]. (31)

In addition, we have

w̃(t, L) = ũ(t, L) = w̃x(t, L) = 0.

Finally, the kernelp satisfies the following PDE:


































pxxx(x, y) + pyyy(x, y)

+ py(x, y) + px(x, y) = λp(x, y), (x, y) ∈ T ,

p(x, x) = 0, x ∈ [0, L],

px(x, x) =
λ

3
x, x ∈ [0, L],

p(0, y) = 0, y ∈ [0, L].

(32)

Let us make the following change of variable:

x̄ = L− y, ȳ = L− x, (33)



and defineF (x̄, ȳ) := p(x, y). Hence:


































Fx̄x̄x̄(x̄, ȳ) + Fȳȳȳ(x̄, ȳ)

+ Fȳ(x̄, ȳ) + Fx̄(x̄, ȳ) = −λF (x̄, ȳ) (x̄, ȳ) ∈ T

F (x̄, x̄) = 0 x̄ ∈ [0, L]

Fx̄(x̄, x̄) =
λ

3
(L− x̄) x̄ ∈ [0, L]

F (x̄, L) = 0 ȳ ∈ [0, L]

(34)

This PDE has already been studied in [2], where no
explicit solution has been found, but where the existence of
a solution has been proved. Hence, we can conclude that the
kernelp := p(x, y) exists. Note that the functionΠo defined
by (20) is linear (by definition) and continuous (because of
the existence ofp).

VI. STABILITY ANALYSIS OF THE CLOSED LOOP SYSTEM

Instead of dealing directly with the controlled stateu and
the observer statêu, we consider the evolution of the couple
(ũ, û) whereũ stands for the error̃u = u− û, as introduced
in Section V.

By using the output feedback control

κ(t) =

∫ L

0

k(0, y)û(t, y)dy, (35)

the transformationΠ defined in (6) and its inverse, and the
transformationΠo defined in (20) and its inverse, we can
see that(ũ, û) are mapped into(w̃, ŵ) = (Π−1

o (ũ),Π(û))
solutions of the target system











































ŵt + ŵx + ŵxxx + λŵ =

−

{

p1(x)−

∫ L

x

k(x, y)p1(y)dy

}

w̃xx(t, L),

ŵ(0) = ŵ(L) = ŵx(L) = 0,

w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃x(0) = w̃(L) = w̃x(L) = 0.

(36)

Note that the parameterλ is the same for the observer and
the system itself.

Given thatΠ,Πo are continuous maps, invertible and their
inverse maps are also continuous, the exponential stability of
(36) would imply the exponential stability of the closed loop
system and therefore the proof of Theorem 1 will be ended.

In order to prove the exponential stability of (36), we use a
Lyapunov argument. Let us consider the following function,

V (t) = V1(t) + V2(t) + V3(t), (37)

where

V1(t) =
A

2

∫ L

0

|ŵ(t, x)|2 dx (38)

V2(t) =
B

2

∫ L

0

|w̃(t, x)|2 dx (39)

V3(t) =
B

2

∫ L

0

|w̃t(t, x)|
2 dx (40)

with A,B to be chosen later.

Remark 1. We can prove that this Lyapunov function is
equivalent to the one obtained by replacing V3(t) by

Ṽ3(t) =
B

2

∫ L

0

|w̃xxx(t, x)|
2 dx (41)

By this, we mean that the exponential decay of one of them
implies the exponential decay of the other one. In fact, we
can prove that there exist positive constants d1, d2 such that

d1(V2(t) + Ṽ3(t)) ≤ V2(t) + V3(t) ≤ d2(V2(t) + Ṽ3(t)).

◦

Taking the time derivative of the functionV (t), we get
after some computations that

V̇1(t) =A

∫ L

0

ŵt(t, x)ŵ(t, x)dx

≤ (−Aλ+D2)

∫ L

0

|ŵ(t, x)|2dx+A2|w̃xx(t, L)|
2

= 2
(

− λ+
D2

A

)

V1(t) +A2|w̃xx(t, L)|
2

whereD := maxx∈[0,L]

{

p1(x)−
∫ L

x
k(x, y)p1(y)dy

}

.
From the same computation as in (9), we see that

V̇2(t) ≤− 2λV2(t).

Moreover, thanks to the regularityH3(0, L), the same
computation can be applied toz = w̃t (see the proof of
Lemma 1) to obtain

V̇3(t) ≤− 2λV3(t)

Thus, we get:

V̇ (t) ≤2
(

− λ+
D2

A

)

V1(t) +A2|w̃xx(t, L)|
2

− 2λV2(t)− 2λV3(t).

We need to find an upper bound for|w̃xx(t, L)|
2. We

multiply
{

w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃(0) = w̃(L) = w̃x(L) = 0,
(42)

by xw̃xx and after some computations we get

|w̃xx(t, L)|
2 ≤

(

1

L
+ L

)

‖w̃xx‖
2
L2(0,L)

+

(

2λ+
1

L

)

‖w̃x‖
2
L2(0,L)

+
1

L
‖w̃t‖

2
L2(0,L)

(43)

and finally the existence ofa, b > 0 such that

|w̃xx(t, L)|
2 ≤ a‖w̃‖2L2(0,L) + b‖w̃t‖

2
L2(0,L) (44)

Remark 2. Here, we have used that the norm ‖f‖H3(0,L)

and the norm ‖f‖L2(0,L)+‖fxxx‖L2(0,L) are equivalent. See
also Remark 1. ◦



We use the latter inequality to write:

V̇ (t) ≤2
(

− λ+
D2

A

)

V1(t) + 2a
A2

B
V2(t)

+ 2b
A2

B
V3(t)− 2λV2(t)− 2λV3(t).

Therefore,

V̇ (t) ≤2
(

− λ+
D2

A

)

V1(t) + 2
(

− λ+
aA2

B

)

V2(t)

2
(

− λ+
bA2

B

)

V3(t).

In this way, by tuningA,B large enough, we get for any
ε > 0 that

V̇ (t) ≤ 2
(

− λ+ ε
)

V (t),

which gives an exponential stability with decay rate as close
to λ as we want. The rapid stabilization is achieved because
the parameterλ can be chosen as large as desired.

It concludes the proof of the stability of the closed loop
system with the output feedback control law depending on
a boundary measurement of the state.

VII. C ONCLUSIONS

In this paper we have designed an output feedback con-
troller for the linear Korteweg-de Vries equation posed on
a bounded interval. This boundary feedback control acts on
the Dirichlet boundary condition on the left endpoint and
exponentially stabilizes the system by using the boundary
measurementy(t) = uxx(t, L). Because of this choice of
y(t), we have to work on a more regular framework, given
by H3(0, L) as the state space. The backstepping method
is applied together a classical observer in order to build the
control.

This work is the first one addressing the output feedback
problem for the Korteweg-de Vries equation and opens
several possible extensions. Different location for the control
or different boundary conditions can be considered as in
[2], [11]. The choice of the measurement is particularly
interesting. For instance, it would be nice to deal with
the collocated case, which could be harder than the non-
collocated problem considered in this paper. Of course, the
nonlinear case also appears as a natural next step in the
study of this control system. In that context, even performing
simulations of the closed loop system may be an interesting
challenge.
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