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Output Feedback Control of the Linear Korteweg-de Vries Equation*

Swann Mark and Eduardo Cerga

Abstract— This paper presents the design of an output output feedback control, i.e., a feedback law depending onl
feedback control for a linear Korteweg-de Vries equation. his  on some partial measurements of the state.
design is based on the backstepping method which uses a pqr jinear and autonomous finite-dimension systems, a
\olterra transformation. An appropriate observer is intro duced s o o . -
and the exponential stability of the closed-loop system isrpven. stabilizability and an Obser_vablll'Fy a_\ssumptlons are sieffit

to ensure that the separation principle holds. In other sjord
if there exists a controller, which asymptotically statsk
the origin of the system and an observer which converges

The Korteweg-de Vries equation, introduced in 1895 bwsymptotically to the state system, the output feedbadk bui
the Dutch mathematicians Diederik J. Korteweg and his stdirom this observer and this state feedback asymptotically
dent Gustav de Vries, describes approximatively the behnavistabilizes the origin of the system. In a PDE framework this
of long waves in a water channel of relatively shallow depthprinciple is no longer true and the stability of the closedgd
This nonlinear partial differential equation, describgd b system is not guaranteed.

The basic question to state the problem is which kind
of measurements are we going to consider. The case of a
has been deeply studied in the controllability sense (sge [®oundary measurement is the most challenging one and the
[4], [1] and the references therein). By considering diffenatural choice for the KdV equatiofil(2) should bg) =
rent boundary conditions on an interval L] and different w,(¢,0). Unfortunately, the system is not observable with
boundary actuators, we get control results of differentireat this choice. In fact, ifL = 27, then the stationary solution
Roughly speaking, the system is exactly controllable whea(t,z) = 1 — cos(z), satisfies [R) withx(¢t) = 0 and in
the control acts from the right endpoirt= L, and null- additionu,(¢,27) = 0 for any time¢. The length2x is not
controllable when the control acts from the left endpairt  the only one for which observability does not hold (see e.g.
0. (8], [1D).

In this article we focus, as a first step opening further re- In this paper we consider the output given by
search, on the stabilizability problem for the linear Kergg-
de Vries equation with a control acting on the left Dirichlet y(t) = tiaw(t, L). (3)
boundary condition. The studied system can be written @y using this measurement, we build an observer and apply
follows: the backstepping method to design an output feedback con-

Ut + Uy + Ugpy = 0, trol which exponentially stabilizes the closed-loop syste
. . o The traceu,.(t, L) can be considered itself as a boundary
u(t,0) = r(t), u(t, L) =0, ue(t, L) =0, () condition or e(ven)a control ([5], [4]) and therefore the c®oi
(0, 2) = uo(x), of this output is not an artificial one.
where x denotes the control input and, is the initial This paper is organized as follows. In Sectioh II, we
condition. state our main result. Sectiédnllll is devoted to recall the

Some full state feedback controls have already been dgtate feedback control designed in [2].[T0 IV, we state some
signed in the literature. Let us mention [3] where a Gramiarregularity results needed to consider the measureniént (3)
based method is applied in the case where the control acts@s a continuous function. The observer is built in Section
the right endpoint and [11] where the backstepping methdd In Section V], the stability of the closed loop controller
is applied with different boundary conditions. With the sam observer system is proven. Finally, Sectjion] VIl states some
approach than the last paper, we have [2] where sydiem @nclusions.
is considered.

However, in most cases, we have no access to the full .
state of the system, and it is more realistic to design an Based on [7] and [10], we construct the following ob-

|. INTRODUCTION

up(t, ) + ug(t, ) + Ugra(t, ) + u(t, 2)u (t,2) =0, (1)

II. MAIN RESULT
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C > 0 such that the coupled system @)-(3)-(@) is globally
exponentially stable with a decay rate equals to A, i.e., for
any ug € H?(0,L) we have

u(t, ) ers o,y @t ) 20,2y < Ce M |luoll 20,1
(5)

IIl. FULL STATE FEEDBACK DESIGN

IV. REGULARITY RESULT
As we said in the introduction, we consider

y(t) = Ugx (t, L)

as a partial measurement of the solution. However, since we
have the trace of the second derivative with respect tif
u, we need a regularity stronger than in [2]. Indeed, we ask

(12)

In [2] the following Volterra transformation is introduced the outputy(¢) to be a continuous function. Thus we have

L

wle) = Mu(a)) = u(e) = [ ko yudy. @

x

The functionk is chosen such that the trajectary= u(¢, z),
solution of [2), with control

L
(t) = / B0, y)ult, y)dy, @)

is mapped into the trajectory = w(t, z), solution of the
linear system

Wi + Wy + Wage + Aw = 0,
{ (8)

w(t,0) = w(t,L) = wy(t,L) =0,
which is exponentially stable i\ > 0. In fact, from a
Lyapunov approach, we get
d L

L
— lw(t,z)|*dz = —|w,(t,0)|* — 2/\/ lw(t, z)|*dx

< —2)\/0L lw(t,z)|*dz, o

which gives an exponential decay rate equals\téor the
L?2—norm of the statew.
The kernel functiork = k(z,y) is characterized by:

kpwe + kyyy + ke + by = =Xk, Iin T,

k(z,L) =0, in [0, L],

k(z,2) =0, in [0, L], (10)
ky(x, ) = %(L —x), in [0, L],

whereT := {(z,y)/x € [0, L],y € [z, L]}. The solution of

the following lemma.

Lemma 1. Let us consider system
Up 4 Uy + Ugze = 0,
u(t,0) = k(t), u(t,L) =0, uy(t,L) =0,
u(0,2) = up(x),

where ug € H?(0,L) and x(t) € H'(0,T). Then u €

C([0,T],H?(0,L)) N L*(0,T; H*(0,L)) and u,.(-, L) €
c([0,TY)).

Proof. This proof is based on [6]. Let us consider the
following coordinates transformation

(13)

v = Uy (14)
The dynamics ofv can be written as follows:
U + Vgga + Uz = 0,
v(t,0) = ik(t) € L*(0,T), v(t,L) = v, (t,L) =0,
v(0,2) = (—uy’ —up) € L*(0, L).
(15)

By already known well-posedness results for KdV ([6]),
we get
ve C([0,T],L*0,L)) N L*0,T; H*(0, L))
=u; € C([0,T],L*(0,L)) N L*(0,T; H'(0, L))
=u € C([0,T], H*(0, L)) N L*(0,T; H*(0, L))

(16)
=g, € C([0,T], H' (0, L)) N L*(0,T; H*(0, L))
=g, € C([0,T] x [0, L])
=g (-, L) € C([0,T7)
Thus it concludes the proof of Lemrha 1. O

V. OBSERVER DESIGN

(I0) exist. This is proved by using the method of successive

approximations. Unlikely the case of heat or wave equations Based on [7], and more precisely on [10], we can write,

we do not have an explicit solution. for system
In [2] it is proved that the transformatio](6) linking

(2) and [®) is invertible, continuous and its inverse is also

Ut + Uy + Uggr = Oa

u(t,0) = k(t), u(t,L) = u,(t,L) =0, a7

continuous. Therefore, the exponential decaydoisolution
of (8), implies the exponential decay for the solutian

y(t) = uzz(tv L)a

controlled by [). Thus, with this method, the followingthe corresponding observer

theorem is proven.

Theorem 2. (Sate feedback stabilization for KdV ([2])
For any A > 0, there exist a feedback control law x =

k(u(t,.)) and C' > 0 such that
l[u(t, Mlz20.0) < Ce™*[|uoll2(0.1) (11)

for any solution of @)-(2).

ﬁt + ﬁz + ﬂmmm + 1 (I)[uzz (t7 L) - ﬂmm(tv L)] - 07
a(t,0) = k(t), a(t,L) = G,(t, L) = 0.
(18)
The construction of the observer is based on the finite-
dimensional design fo: = Ax + Bu, y = Cz, which
proposes the observer = A# + Bu + L(y — C#). If

we consider the erroe = = — Z, thené = (A — LC)e,



and we have to look for a matrix, insuring a good By adding [(22),[(2B) and_(25), we get
performance. Because of the infinite-dimensional fram&wor_ ~
we are working in, a matrixX is not enough. Thus we need %t T iz + sz — P1(2) iy (L) =

a functionp (z). Wy (t, x) + Wy (t, ) + Waga (t, ) + M0(t, )
In our case, we consider the errar:= « — u, which L
satisfies - / (=Ap(z,Y) + py(T,Y) + Pyyy(2,Y)
Up + Uy + Upze — P1(2) U (t, L) =0, (19) + Paaa(®,y) + pu(z,9))0(y, t)dy
w(t,0) =a(t, L) = u,(t,L) = 0.

. d
+ Wy (t, ) <2d—p(:17, x) + pa(z, ) + py(z, a:)>
Given a positive parameter, we look for a transformation .

] d? d
11, defined by + w(t,x) (pm(:c,x) + ﬁp(:c,x) + Epm(x,x)

L
ﬁ(w)=Ho(tb(:v))=@(:v)—/ p(z,y)w(y)dy  (20)  —pyy(z,2) = A) +plz, L)w(L,t) + (p(x, L) — p1(2))Waea (L, 1)

. - . . . _py(qu)uN}z(Lat)'
such that the trajectoryi, solution of [19) is mapped into (26)

the trajectoryw = w(t, z), solution of the linear system
From this equation, we get four conditions:

B(t,0) = 0, B(t, L) = 0, wy(t, L) = 0, (21) 1. Equation for(z,y) € T:

which is exponentially stable with a decay rate depending  Puvu(%:Y) + Poaa(,y) + py(2,9) + pa(@,y) = Ap(z, y).

on the value of\ as shown in[{9). (27)
Now, the key step is to find the kerngl= p(z,y) such 5 Eijrst houndary condition ofir, z) for « € [0, L]:
thata(t, z) = I, (w(t, z)) satisfies[(IV). By focusing oh(R0)
and using the Leibniz rules, we get: 9 d p(2,7) + pal@, ) + py (2, 2) = 0 28)
N ) x ) Y ) - Y-

e Differentiation along[(2I1) dx
3. Second boundary condition dm, z) for x € [0, L]:

L
Uy ﬁ}t(l') - / p(w,y)[—ﬁ)y(y, t) - wyyy(yvt) - )\ﬁ}(y, t)]dy )

d d
@p(:c, x) + %pm(:z:, ) 29)
+ Pz (T, 7) — pyy(z,2) — XA = 0.

L
@1(e) = [ (Apo9) + y(2.0) + Dyunl9) 0, )y
+ p(x, L)w(L,t) — p(z, z)w(x,t) + p(x, L)Wes (L, 1)
— p(@, 2)Wye (2, 1) + py (0, 0)0y (7) — py (2, L)W (L, t)

+pyy($ L) (L t) pyy(x,x)zb(x,t) p(z, L) = p1(z). (30)
(22)

e Three differentations with respect to the variable

4. Appropriate choice 0p;:

Recall that7 := {(z,y)/x € [0, L], y € [z, L]}.
Moreover, note also that, by setting= 0 in (20), we get:
L
ala,t) = e t) + pla, )i 6) — [ pala,)ltv)dy

(23) p(07 y) =0, Wye [07 L] (31)

In addition, we have

U =w T i x,x)w(t,x T, )W T
fiva(t,7) = W (t,0) + - pla, )it ) + plo, @) (¢, ) ) B — ) — 0

L
+ pa (@, 2)0(t, z) — /z Paa(z,y)0(t, y)dy Finally, the kerne satisfies the following PDE:

(24)
Paaa(T,Y) + Pyyy (2, y)
2 +py(x,y) +pu(x,y) = Ap(x,y), (x,y) €T,
U (t, ) = @g;m(t,:c) + %p(z,x}@(t,x) p(ﬁz;() :yz) pgc(E [g,)L], p(z,y), (2,9) -
+ 2 p(a, 1), (t, ) pal,2) = %:17 zel0,L)],
+ p(z, 2)Wey (t, ) + dd Pz, )W (t, ) (25) p(0,y) =0, yel0,L]
+ P (2, 2)Ws (t, ) + oo (x, 2)W(L, ) Let us make the following change of variable:

L



and defineF'(z,y) := p(z,y). Hence: Remark 1. We can prove that this Lyapunov function is
equivalent to the one obtained by replacing Vs(t) by

Fozw(Z,9) + Fygy(2,9) .
+ Fy(z,9) + Fa(2,9) = -AF(2,9) (2,9) €T Vs(t) = E/ [ Wpes(t, )| da (41)
F(z,2)=0 z€]0,L] (34) 2 Jo

o A o By this, we mean that the exponential decay of one of them
F3(z,2)=3(L-7) z€[0,L] implies the exponential decay of the other one. In fact, we
F(z,L)=0 gel0,L] can prove that there exist positive constants d; , dy such that

This PDE has already been studied in [2], where nod;(Va(t) 4+ Va(t)) < Va(t) + Va(t) < da(Va(t) + Va(t)).
explicit solution has been found, but where the existence of
a solution has been proved. Hence, we can conclude that the
kernelp := p(x, y) exists. Note that the functiol, defined  Taking the time derivative of the functiok (t), we get

by (20) is linear (by definition) and continuous (because Gifter some computations that
the existence o).

[¢]

L
V1. STABILITY ANALYSIS OF THE CLOSED LOOP SYSTEM  Vi(?) :A/O Wy (t, 2)w(t, z)dw

Instead of dealing directly with the controlled stateand L
the observer state, we consider the evolution of the couple < (-Ax+ Dg)/ [(t, 2)[*dw + A®| iy, (¢, L)[?
(u,u) wherew stands for the errofi = u — @, as introduced D2 0
in Section[Y. - 2(—)\+ 7)Vl(lt)+A2|mw(1t,L)|2

By using the output feedback control

L A where D := max,¢[o, 1 {pl (z) — sz k(z,y)p (y)dy}
K(t) = /0 k(0,y)a(t, y)dy, (35) From the same computation as [ (9), we see that

the transformationI defined in [6) and its inverse, and the Va(t) < — 2X\Va(t).
transformationlI, defined in [2D) and its inverse, we can _
see that(ii, @) are mapped intdw, @) = (IL; (), (@) Moreover, thanks to the regularityZ®(0, L), the same

solutions of the target system computation can be applied to = w, (see the proof of

. . . . Lemma[l) to obtain
Wi + Wy + Wapy + A0 =

L Va(t) < — 2AVa(t)
- {pl (‘T) - / k(xa y)pl (y)dy} Wy (t7 L)?

(36) Thus, we get:
w(0) = (L) = iy (L) = 0,

’ D2 20,7 2
s 4 Gy + tiags + A = 0, V() <2( = A+ 5 ) Vi) + A2fisa (8, L)|
W,(0) = w(L) = W, (L) = 0. — 2A\Va(t) — 2AV3(t).
Note that the parameteris the same for the observer and We need to find an upper bound foi...(t, L)]?. We
the system itself. multiply
Given thatll, II,, are continuous maps, invertible and their Wy + Wy + Wage + AW = 0,
inverse maps are also continuous, the exponential stabflit 0(0) = w(L) =y (L) =0 (42)

(38) would imply the exponential stability of the closed oo
system and therefore the proof of Theorfdm 1 will be endedly zw,, and after some computations we get
In order to prove the exponential stability 6f {36), we use a

Lyapunov argument. Let us consider the following function, 1
~ 2 ~ 2
e, P < (4 2) 1ol

V() = Vi(t) + Va(t) + Va(0), (37) . 2
where B + <2/\ + Z) ldnlFo0n — 43)
A . 1
W@ZEA'M“W”$ (38) + T30,y
B (Y ) and finally the existence af, b > 0 such that
V) =5 [ latto) do (39)
OL @00 (t, D)* < all@]|720, ) + Oll@tl|7200,r)  (44)
Va(t) = g/ [y (t, )|? dx (40) Remark 2. Here, we have used that the norm || f|| g3 (0,1,
0

and the norm || f{| .2 (0,z) + || fz= | L2 (0,2) @re equivalent. See
with A, B to be chosen later. also Remark [11 o



We use the latter inequality to write: [5]

2 2

V(t) §2(—A+ %)Vl(t) +2G%Vz(t) [6]

2
+ 2 V(1) — 20h (1) — 2014 (0).

B [7]
Therefore, 18]
. D? A2
V() g2(—x+7)vl(t)+2(—x+ %)Vz(t) o
bA?
2(—/\+?)V3(t). [10]

In this way, by tuning4, B large enough, we get for any (;1;
e > 0 that

V(t) < 2(— /\+6)V(t),

which gives an exponential stability with decay rate ase&los
to A as we want. The rapid stabilization is achieved because
the parameteA can be chosen as large as desired.

It concludes the proof of the stability of the closed loop
system with the output feedback control law depending on
a boundary measurement of the state.

VII. CONCLUSIONS

In this paper we have designed an output feedback con-
troller for the linear Korteweg-de Vries equation posed on
a bounded interval. This boundary feedback control acts on
the Dirichlet boundary condition on the left endpoint and
exponentially stabilizes the system by using the boundary
measuremeny(t) = w,.(t, L). Because of this choice of
y(t), we have to work on a more regular framework, given
by H3(0,L) as the state space. The backstepping method
is applied together a classical observer in order to buiéd th
control.

This work is the first one addressing the output feedback
problem for the Korteweg-de Vries equation and opens
several possible extensions. Different location for thetiad
or different boundary conditions can be considered as in
[2], [11]. The choice of the measurement is particularly
interesting. For instance, it would be nice to deal with
the collocated case, which could be harder than the non-
collocated problem considered in this paper. Of course, the
nonlinear case also appears as a natural next step in the
study of this control system. In that context, even perfoigni
simulations of the closed loop system may be an interesting
challenge.
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