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Abstract

Differential privacy is a recently proposed notion of privacy that provides strong privacy
guarantees without any assumptions on the adversary. The paper studies the problem of com-
puting a differentially private solution to convex optimization problems whose objective function
is piecewise affine. Such problem is motivated by applications in which the affine functions that
define the objective function contain sensitive user information. We propose several privacy
preserving mechanisms and provide analysis on the trade-offs between optimality and the level
of privacy for these mechanisms. Numerical experiments are also presented to evaluate their
performance in practice.

1 Introduction

With the advance in real-time computing and sensor technology, a growing number of user-based
cyber-physical systems start to utilize user data for more efficient operation. In power systems, for
example, the utility company now has the capability of collecting near real-time power consumption
data from individual households through advanced metering infrastructures in order to improve
the demand forecast accuracy and facilitate the operation of power plants [1]. At the same time,
however, individual customer is exposed to the risk that the utility company or a potential eaves-
dropper can learn about information that the customer did not intend to share, which may include
marketable information such as the type of appliances being used or even sensitive information such
as the customer’s daily activities. Concerns on such privacy issues have been raised [17] and start
to become one major hindrance to effective user participation [10].

Unfortunately, it has been long recognized that ad-hoc solutions (e.g., anonymization of user
data) are inadequate to guarantee privacy due to the presence of public side information. This fact
has been demonstrated through various instances such as identification of Netflix subscribers in the
anonymized Netflix prize dataset through linkage with the Internet Movie Database (IMDb) [18].
Providing rigorous solutions to preserving privacy has become an active area of research. In the field
of systems engineering, recent work on privacy includes, among others, privacy-preserving filtering
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of streaming data [14], privacy in smart metering [20], privacy in traffic monitoring [3], privacy in
stochastic control [23], etc.

Recently, the notion of differential privacy proposed by Dwork and her collaborators has received
attention due to its strong privacy guarantees [7]. The original setting assumes that the sensitive
database is held by a trustworthy party (often called curator in related literature), and the curator
needs to answer external queries (about the sensitive database) that potentially come from an
adversary who is interested in learning information belonging to some user. Informally, preserving
differential privacy requires that the curator must ensure that the results of the queries remain
approximately unchanged if data belonging to any single user in the database are modified or
removed. In other words, the adversary knows little about any single user’s information from the
results of queries. Interested readers can refer to recent survey papers on differential privacy for
more details on this topic [6].

Aside from privacy, another important aspect to consider is the usefulness of the results of
queries. In the context of systems operation, user data are often used for guiding decisions that
optimize systems performance. Specifically, the “query” now becomes the solution to the optimiza-
tion problem, whereas “user data” correspond to parameters that appear in the objective function
and/or constraints of the optimization problem. It is conceivable that preserving user privacy will
come at the cost of optimality. Indeed, without any considerations on systems performance, one
could protect privacy by choosing to ignore user data, which may lead to solutions that are far from
being optimal.

Several researchers have looked into the application of differential privacy to optimization prob-
lems. For example, Gupta et al. have studied differential privacy in combinatorial optimization
problems and derived information-theoretic bounds on the utility for a given privacy level [9]. Among
all related efforts, one that receives increasingly more attention is applying differential privacy to
convex optimization problems. Convex optimization problems have traditionally been extensively
studied due to the richness in related results in optimization theory and their broad applications. In
the case of unconstrained convex optimization, which appears frequently in machine learning (e.g.,
regression problems), techniques such as output perturbation and objective perturbation have been
proposed by, among others, Chaudhuri et al. [5] and Kifer et al. [13]. Huang et al. have studied the
setting of private distributed convex optimization, where the cost function of each agent is consid-
ered private [12]. Very recently, Hsu et al. have proposed mechanisms for solving linear programs
privately using a differentially private variant of the multiplicative weights algorithm [11].

Rather than focusing on general convex optimization problems or even linear programs, the work
in this paper studies the class of convex optimization problems whose objective function is piecewise
affine, with the possibility of including linear inequality constraints. This form of optimization
problems arises in applications such as `1/`∞-norm optimization and resource allocation problems.
On one hand, focusing on this particular class of problems allows us to exploit special structures
that may lead to better algorithms. On the other hand, such problems can be viewed as a special
form of linear programs, and it is expected that studies on this problem may lead to insights into
applying differential privacy to more general linear programs.

Our major result in this paper is the introduction and analysis of several mechanisms that
preserve differential privacy for convex optimization problems of this kind. These mechanisms
include generic mechanisms such as the Laplace mechanism and the exponential mechanism. We
also propose a new mechanism named differentially private subgradient method, which obtains a
differentially private solution by iteratively solving the problem privately. In addition, we provide
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theoretical analysis on the suboptimality of these mechanisms and show the trade-offs between
optimality and privacy.

2 Problem statement

2.1 Differential privacy

Denote by D the universe of all databases of interest. The information that we would like to obtain
from a database D ∈ D is represented by a mapping called query q : D → Q for some target
domain Q. When the database D contains private user information, directly making q(D) available
to the public may cause users in the database to lose their privacy, and addition processing (called
a mechanism) that depends on q is generally necessary in order to preserve privacy.

Example 1. For a database containing the salaries of a group of people, we can define D = {xi}ni=1,
where xi ∈ R+ is the salary of user i (assuming no minimum denomination). Suppose someone
is interested in the average salary of people in the database. Then the query can be written
as q(D) =

∑n
i=1 xi/n for the target domain Q = R+.

The fundamental idea of differential privacy is to translate privacy of an individual user in the
database into changes in the database caused by that user (hence the name differential). With this
connection, preserving privacy becomes equivalent to hiding changes in the database. Basic changes
include addition, removal, and modification of a single user’s data in the database: addition/removal
is often used if privacy is the presence/participation of any single user in the database (which is
common in surveys of diseases); modification is often used if privacy is in the user data record (if an
adversary cannot tell whether the data record of any single user is modified, it is impossible for the
adversary to obtain exact value of the data). More generally, changes in database can be defined
by a symmetric binary relation on D × D called adjacency relation, which is denoted by Adj(·, ·).
It can be verified that addition, removal, or modification of data belonging to a single user defines
a valid adjacency relation. We will use the the notion of adjacent database hereafter.

In the framework of differential privacy, all mechanisms under consideration are randomized, i.e.,
for a given database, the output of such a mechanism obeys a probability distribution. A differen-
tially private mechanism must ensure that its output distribution does not vary much between two
adjacent databases.

Definition 2 (Differential privacy [7]). A randomized mechanismM : D → Q preserves ε-differential
privacy if for all R ⊆ Q and all pairs of adjacent databases D and D′:

P(M(D) ∈ R) ≤ eεP(M(D′) ∈ R).

The constant ε > 0 indicates the level of privacy: smaller ε implies higher level of privacy. The
notion of differential privacy promises that an adversary cannot tell from the output with high prob-
ability whether data corresponding to a single user in the database have changed. This essentially
hides user information at the individual level, no matter what side information an adversary may
have. The necessity of randomized mechanisms is evident from the definition, since the output of
any non-constant deterministic mechanism will normally change with the input database.

Remark 3. One useful interpretation of differential privacy can be made in the context of detec-
tion theory [24, 8]. Suppose privacy is defined as user participation in the database and thus the
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adjacency relation is defined as addition/removal of a single user to/from the database. Consider
an adversary who tries to detect whether a particular user i is in the database from the output of
an ε-differentially private mechanism M using the following rule: report true if the output of M
lies in some set R∗ ⊆ Q and false otherwise. Let D be the database with user i and D′ be the
one without. We are interested in the probabilities of two types of detection errors: false positive
probability pFP = P(M(D′) ∈ R∗) (i.e., user i is not present, but the detection algorithm reports
true) and false negative probability pFN = P(M(D) /∈ R∗) = P(M(D) ∈ Q\R∗), both of which need
to be small for achieving good detection. Since D and D′ are adjacent, we know from the definition
of differential privacy that

P(M(D) ∈ R∗) ≤ eεP(M(D′) ∈ R∗),
P(M(D′) ∈ Q\R∗) ≤ eεP(M(D) ∈ Q\R∗),

which lead to
pFN + eεpFP ≥ 1 and eεpFN + pFP ≥ 1. (1)

The conditions in (1) imply that pFN and pFP cannot be both too small. Namely, these conditions
limit the detection capability of the adversary so that the privacy of user i is protected. For example,
if ε = 0.1 and the false negative probability pFN = 0.05, then the false positive probability pFP ≥
max{1− eεpFN, e−ε(1− pFN)} ≈ 0.94, which is quite large.

2.2 Problem statement

We consider minimization problems whose objective function f : Rd → R is convex and piecewise
affine:

f(x) = max
i=1,2,...,m

{aTi x+ bi} (2)

for some constants {ai ∈ Rd, bi ∈ R}mi=1. For generality, we also add additional linear inequality
constraints that define a convex polytope P, so that the optimization problem has the following
form:

min.
x

f(x) s.t. x ∈ P. (3)

In this paper, we restrict our attention to the case where user information is in {bi}mi=1, so that
the database D = {bi}mi=1. Any other information, including {ai}mi=1 and P, is considered as public
and fixed. Define the adjacency relation between two databases D = {bi}mi=1 and D′ = {b′i}mi=1 as
follows:

Adj(D,D′) if and only if max
i∈{1,2,...,m}

|bi − b′i| ≤ bmax. (4)

Since D gives a complete description of problem (3), we will often use D to represent both the
database and the corresponding optimization problem. With the definition of adjacency relation,
we are ready to give the formal problem statement.

Problem 4. For all problems in the form of (3), find a mechanism M that outputs an approximate
optimal solution that preserves ε-differential privacy under the adjacency relation (4). Namely, for
all R ⊆ P and all adjacent databases D and D′, the mechanism M must satisfy

P(M(D) ∈ R) ≤ eεP(M(D′) ∈ R).
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2.3 Convex problems with piecewise affine objectives

In the following, we give several examples of convex minimization problems whose objective is
piecewise affine:

Example 5 (`∞-norm). The `∞-norm f(x) = ‖x‖∞ can be rewritten in the form of (2) consisting
of 2d affine functions:

f(x) = max
i=1,2,...,d

|xi| = max{x1,−x1, x2,−x2, . . . , xd,−xd}.

Example 6 (`1-norm). The `1-norm f(x) = ‖x‖1 can be rewritten in the form of (2) consisting
of 2d affine functions:

f(x) =

d∑
i=1

max{xi,−xi} = max
{αi∈{0,1}}di=1

d∑
i=1

(−1)αixi.

Example 7 (Resource allocation). Consider the following resource allocation problem, which is
one such example where private optimal solution may be desired. Suppose we need to purchase a
certain kind of resource and allocate it among n agents, and we need to decide the optimal amount
of resource to purchase. Agent i, if being allocated zi amount of resource, can provide utility cizi,
where ci is its utility gain. This holds until the maximum desired resource (denoted by z̄i) for
agent i is reached.

Suppose the total amount of resource to allocate is given as x ≥ 0. The maximum utility gain
can be determined by the optimal value of the following optimization problem

max.
z

cT z s.t. 1T z ≤ x, 0 � z � z̄, (5)

whose optimal value is denoted as U(x). One can show that U(x) is a concave and piecewise affine
function by considering the dual of problem (5):

min.
λ,ν

νx+ λT z̄ (6)

s.t. ν ≥ 0, λ � 0, λ+ ν1− c � 0.

Strong duality holds since the primal problem (5) is always feasible (z = 0 is a feasible solution),
which allows us to redefine U(x) as the optimal value of problem (5). In addition, since the optimal
value of any linear program can always be attained at a vertex of the constraint polytope, we can
rewrite U as the pointwise minimum of affine functions (hence U is concave):

U(x) = min
i=1,2,...,m

{νix+ λTi z̄}, (7)

where {(νi, λi)}mi=1 are the vertices of the constraint polytope in problem (6). If we are interested
in maximizing the net utility U(x) − µx over x, where µ is the price of the resource, the problem
becomes equivalent to one in the form of (3).

Remark 8. In certain applications, the maximum desired resource z̄i, which is present in the affine
functions in (7), may be treated as private information by agent i. As an example, consider the
scenario where each agent represents a consumer in a power network, and the resource to be allocated
is the available electricity. Then the maximum desired resource z̄i can potentially reveal activities
of consumer i, e.g., small z̄i may indicate that consumer i is away from home.
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3 Useful tools in differential privacy

This section reviews several useful tools in differential privacy that will be used in later sections.
Material in this section includes the (vector) Laplace mechanism, the exponential mechanism, the
post-processing rule, and composition of private mechanisms. Readers who are familiar with these
topics may skip this section.

When the range of query Q is R, one commonly used differentially private mechanism is the
Laplace mechanism [7]. In this paper, we use a multidimensional generalization of the Laplace
mechanism for queries that lie in Rd. Suppose the sensitivity of query q, defined as

∆ := max
D,D′

∥∥q(D)− q(D′)
∥∥
∞ ,

is bounded. Then one way to achieve ε-differential privacy is to add i.i.d. Laplace noise Lap(d∆/ε)
to each component of q, which is guaranteed by the sequential composition theorem (Theorem 15)
listed at the end of this section. However, a similar mechanism that requires less noise can be
adopted in this case by using the fact that the `2-sensitivity of the query ∆2 (defined below) is also
bounded:

∆2 := max
D,D′

∥∥q(D)− q(D′)
∥∥
2
≤
√
d∆.

Theorem 9. For a given query q, let ∆2 = maxD,D′ ‖q(D)− q(D′)‖2 be the `2-sensitivity of q.
Then the mechanism M(D) = q(D) +w, where w is a random vector whose probability distribution
is proportional to exp(−ε ‖w‖2 /∆2), preserves ε-differential privacy.

We are not aware of the name of the mechanism described in Theorem 9. Although the additive
perturbation w in Theorem 9 does not follow the Laplace distribution (in fact, it follows the Gamma
distribution), we will still refer to this mechanism as the vector Laplace mechanism due to its close
resemblance to the (scalar) Laplace mechanism.

Another useful and quite general mechanism is the exponential mechanism. This mechanism
requires a scoring function u : Q × D → R. For a given database D, the scoring function u char-
acterizes the quality of any candidate query: if a query q is more desirable than another query q′,
then we have u(D, q) > u(D, q′). The exponential mechanism ME(D;u) guarantees ε-differential
privacy by randomly reporting q according to the probability density function

exp(εu(D, q)/2∆u)´
q′∈Q exp(εu(D, q′)/2∆u) dq′

,

where
∆u := max

x
max

D,D′ : Adj(D,D′)
|u(D,x)− u(D′, x)|

is the (global) sensitivity of the scoring function u.

Theorem 10 (McSherry and Talwar [15]). The exponential mechanism is ε-differentially private.

When the range Q is finite, i.e., |Q| <∞, the exponential mechanism has the following proba-
bilistic guarantee on the suboptimality with respect to the scoring function.
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Theorem 11 (McSherry and Talwar [15]). Consider the exponential mechanism ME(D;u) acting
on a database D under a scoring function u. If Q is finite, i.e., |Q| <∞, then ME satisfies

P
[
uopt − u(D,ME(D;u)) ≥ 2∆u

ε
(log |Q|+ t)

]
≤ e−t,

where uopt = maxq∈Q u(D, q).

It is also possible to obtain the expected suboptimality using the following lemma.

Lemma 12. Suppose a random variable X satisfies: (1)X ≥ 0 and (2) P(X ≥ t) ≤ e−αt for some
α > 0. Then it holds that E[X] ≤ 1/α.

Proof. Use the fact that X ≥ 0 to write X =
´∞
0 I(X ≥ t) dt. Then

E[X] = E
[ˆ ∞

0
I(X ≥ t) dt

]
=

ˆ ∞
0

E[I(X ≥ t)] dt =

ˆ ∞
0

P(X ≥ t) dt ≤
ˆ ∞
0

e−αt dt = 1/α.

Combine Theorem 11 and Lemma 12 to obtain the expected suboptimality.

Theorem 13. Under the same assumptions in Theorem 11, the exponential mechanism ME(D;u)
satisfies

E [uopt − u(D,ME(D;u))] ≤ 2∆u(1 + log |Q|)/ε.
Finally, there are two very useful theorems that enable construction of new differentially private

mechanisms from existing ones.

Theorem 14 (Post-processing). Suppose a mechanism M : D → Q preserves ε-differential privacy.
Then for any function f , the (functional) composition f ◦M also preserves ε-differential privacy.

Theorem 15 (Seqential composition [16]). Suppose a mechanism M1 preserves ε1-differential pri-
vacy, and another mechanismM2 preserves ε2-differential privacy. Define a new mechanismM(D) :=
(M1(D),M2(D)). Then the mechanism M preserves (ε1 + ε2)-differential privacy.

4 Privacy-preserving mechanisms

This section presents the main theoretical results of this paper. In particular, we propose several
mechanisms that are able to obtain a differentially private solution to Problem 4. We also give
suboptimality analysis for most mechanisms and show the trade-offs between optimality and privacy.

4.1 The Laplace mechanism acting on the problem data

One straightforward way of preserving differential privacy is to obtain the optimal solution from
a privatized version of problem (3) by publishing the entire database D privately using the vector
Laplace mechanism described in Theorem 9. Privacy is guaranteed by the post-processing rule:
once the problem is privatized, obtaining the optimal solution can be viewed as post-processing and
does not change the level of privacy due to Theorem 14.

Theorem 16. The mechanism that outputsMP (b) = b+wP , where wP is drawn from the probability
density function that is proportional to exp(−ε ‖wP ‖2 /

√
mbmax), is ε-differentially private.

Proof. In this case, the query is b, whose `2-sensitivity can be obtained as ∆ = maxb,b′ ‖b− b′‖2 =√
mbmax. Combining with Theorem 9 completes the proof.
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4.2 The Laplace mechanism acting on the problem solution

Another way of preserving differential privacy is to apply the vector Laplace mechanism directly
on the optimal solution xopt(D) of the problem: MS(D) = xopt(D) +wS . The additive noise wS is
drawn from the distribution proportional to exp(−ε ‖wS‖2 /

√
d∆), where ∆ is the sensitivity of the

optimal solution, i.e.,
∆ = max

D,D′ : Adj(D,D′)

∥∥xopt(D)− xopt(D′)
∥∥
2
.

This mechanism is ε-differentially private also due to Theorem 9.
Unfortunately, it is generally difficult to analyze how the optimal solution xopt(D) changes

with D, and hence the exact value of ∆ is often unavailable. However, when the set P is compact,
an upper bound of ∆ can be given by the diameter of P, defined as diam(P) := maxx,y∈P ‖x− y‖2 .
Although diam(P) is still difficult to compute for a generic set P, there are several cases where its
exact value or an upper bound can be computed efficiently. One simple case is when P = {x : 0 ≤
xi ≤ 1, i = 1, 2, . . . , d} is a hypercube and hence diam(P) =

√
d. In the more general case where P is

described by a set of linear inequalities, an upper bound can be obtained by computing the longest
axis of the Löwner-John ellipsoid of P, i.e., the minimum-volume ellipsoid that covers P. The
Löwner-John ellipsoid can be approximated from the maximum-volume inscribed ellipsoid, which
can be obtained by solving a convex optimization problem (in particular, a semidefinite problem,
cf. [2, page 414] ).

Suboptimality analysis for this mechanism is given by the following theorem.

Theorem 17. Define G = maxi ‖ai‖2. The expected suboptimality for the solution perturbation
mechanism MS is bounded as

E[f(MS(D))− f(xopt)] ≤ Gd3/2∆/ε.

Proof. Since f(x)− f(xopt) ≥ 0 for all x ∈ P, we have

E[f(MS(D))− f(xopt)] = E|f(MS(D))− f(xopt)|.

It is not difficult to show that f is Lipschitz with G as the Lipschitz constant, i.e., |f(x)− f(y)| ≤
G ‖x− y‖2 ,which leads to

E[f(MS(D))− f(xopt)] ≤ GE ‖MS(D)− xopt‖2 = GE ‖wS‖2 = Gd ·
√
d∆/ε = Gd3/2∆/ε.

Theorem 17 shows that the expected suboptimality grows as ε decreases (i.e., the level of privacy
increases). The suboptimality also grows with d, which is the dimension of the decision variable x.

4.3 The exponential mechanism

To use the exponential mechanism for privately solving minimization problems, one natural choice
of the scoring function is the negative objective function −f . However, this choice may not work
in all cases, since changes in user data can lead to an infeasible problem, which yields unbounded
sensitivity. Even when the problem remains feasible, the sensitivity of the objective function with
respect to data can be difficult to compute for a generic optimization problem. Nevertheless, the
following shows that the sensitivity for our problem is bounded and can be computed exactly.
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Lemma 18. Suppose the scoring function is given as

u(x,D) = −f(x,D) = − max
i=1,2,...,m

{aTi x+ bi}.

Then the sensitivity of u for the adjacency relation defined in (4) is ∆u = bmax.

Proof. See Appendix A.1.

As a result of Theorem 10 and Lemma 18, we know that we can achieve ε-differential privacy
by using the exponential mechanism given in the following theorem.

Theorem 19. The exponential mechanism ME, which randomly outputs x̃opt according the proba-
bility density function

exp(−εf(x̃opt, D)/2bmax)´
x∈P exp(−εf(x,D)/2bmax) dx

, (8)

is ε-differentially private.

Remark 20. The denominator in (8) needs to remain bounded in order for (8) to be a valid prob-
ability distribution. This trivially holds when P is bounded. When P is unbounded, this can be
shown by using the fact that f(x,D) is affine in x and the integrand decreases exponentially fast
as ‖x‖ → ∞.

Suboptimality analysis for the exponential mechanism is given by the following theorem.

Theorem 21. The expected suboptimality for the exponential mechanism ME is bounded as

E[f(ME(D))− fopt] ≤ C(0, ε) · 2bmax/ε,

where fopt = minx∈P f(x,D) and for any γ ≥ 0,

C(γ, ε) =
exp(−εfopt/2bmax)

´
x : f(x,D)≥fopt+γ dx´

x∈P exp(−εf(x,D)/2bmax) dx
.

Proof. We first prove that for any γ ≥ 0,

P[f(ME(D))− fopt ≥ γ] ≤ C(γ, ε) exp(−εγ/2bmax). (9)

For any given a ∈ R, the exponential mechanism ME(D) with scoring function u satisfies

P[u(ME(D)) ≤ a] =

´
x:u(x,D)≤a exp(εu(x,D)/2bmax) dx´

x∈P exp(εu(x,D)/2bmax) dx

≤
exp(εa/2bmax)

´
x:u(x,D)≤a dx´

x∈P exp(εu(x,D)/2bmax) dx
.

Set u(x,D) = −f(x,D) and a = −(γ + fopt) to obtain (9).
Note that C(γ, ε) ≤ C(0, ε) for all γ ≥ 0. Then

P[f(ME(D))− fopt ≥ γ] ≤ C(0, ε) exp(−εγ/2bmax). (10)

Apply Lemma 12 on (10) to complete the proof.

It can be shown that C(0, ε) increases as ε decreases. Therefore, similar to the solution per-
turbation mechanism MS described in Theorem 17, the expected suboptimality of ME grows as ε
decreases.
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4.4 Private subgradient method

If privacy is not a concern, one way to solve the optimization problem (3) is to use the subgradient
method, which iteratively searches for an optimal solution by moving along the direction of a
subgradient. Although the direction of a subgradient is not necessarily a descent direction, the
subgradient method is still guaranteed to converge if one keeps track of the best (rather than the
most recent) solution among all past iterations. Recall that g is a subgradient of f at x0 if and only
if for all x:

f(x) ≥ f(x0) + gT (x− x0). (11)

For a convex and piecewise affine function f , its subgradient at any given x0 can be obtained as
follows. First find k ∈ {1, 2, . . . ,m} such that

aTk x0 + bk = max
i=1,2,··· ,m

{aTi x0 + bi}. (12)

Then a subgradient at x0 is ak, which can be verified using the definition (11).
It can be seen from (12) that computing subgradients requires access to the private data {bi}mi=1.

Following from Hsu et al. [11], in order to preserve privacy when applying any iterative method
(such as the subgradient method), one must make sure to: (1) privatize the computation during
each iteration; (2) limit the total number of iterations.

One method for obtaining a subgradient privately is to perturb the true subgradient by adding,
e.g., Laplace noise [22]. In our case, since the candidate subgradients come from a finite set {ai}mi=1,
we propose to use the exponential mechanism to privatize the computation of subgradients. Choose
the scoring function usub : {1, 2, · · · ,m} → R as usub(i;x,D) = aTi x + bi (in the following, we will
sometimes drop D for conciseness). The sensitivity of usub at any given x0, which is denoted as
∆usub(x0), can be computed as

max
i∈{1,2,...,m}

max
D,D′
|usub(i;x0, D)− usub(i;x0, D

′)| = bmax.

Algorithm 1 ε-differentially private subgradient.

1. Choose the scoring function u : {1, 2, · · · ,m} → R as

usub(i;x0) = aTi x0 + bi.

2. Select the index i∗ using the exponential mechanism:

P(i∗ = i) ∝ exp(−εusub(i;x0)/2bmax).

3. Output ai∗ as the approximate subgradient at x0.

If the subgradient computation in the regular subgradient method is replaced by Algorithm 1,
the modified subgradient method (Algorithm 2) can be shown to preserve ε-differential privacy using
the sequential composition theorem, since each iteration preserves (ε/k)-differential privacy and the
total number of iterations is k.
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Algorithm 2 ε-differentially private subgradient method.

1. Choose the number of iterations k, step sizes {αi}ki=1, and x
(1) ∈ P.

2. For i = 1, 2, . . . , k, repeat:

(a) Obtain an (ε/k)-private subgradient g(i) using Algorithm 1;

(b) Update x(i+1) := x(i) − αig(i).

3. Output x(k+1) as the solution.

However, since the output of Algorithm 1 does not correspond to a true subgradient, it is natural
to ask how this affects convergence of the optimization procedure. For any given x0, define

γ(j;x0) := max
i∈{1,2,...,m}

usub(i;x0)− usub(j;x0)

= max
i=1,2,...,m

{aTi x0 + bi} − (aTj x0 + bj),

which is the suboptimality gap of choosing aj (in Algorithm 1) measured by the scoring function usub.
As a consequence of using the exponential mechanism in step 2 of Algorithm 1, an upper bound on
the expectation of γ can be obtained using Theorem 13:

Ei∗ [γ(i∗;x0)] ≤ 2bmax(1 + logm)/ε. (13)

The following lemma shows how the suboptimality gap γ affects the subgradient condition (11) if aj
is used as a subgradient.

Lemma 22. For all x, it holds that

f(x) ≥ f(x0) + aTj (x− x0)− γ(j;x0).

Proof. We have

f(x) = max
i=1,2,...,m

{aTi x+ bi}

≥ aTj x+ bj

= (aTj x0 + bj) + aTj (x− x0)
= max

i=1,2,...,m
{aTi x0 + bi} − γ(j;x0) + aTj (x− x0)

= f(x0) + aTj (x− x0)− γ(j;x0).

Remark 23. If j = arg maxi∈{1,2,...,m} usub(i;x0), i.e., aj is a true subgradient, then Lemma 22
recovers the original definition of subgradient:

f(x) ≥ f(x0) + aTj (x− x0).

11



Lemma 22 shows that the suboptimality gap γ also characterizes the extent that the subgradient
condition is violated. Now we are ready to show the expected suboptimality of the differentially
private subgradient method using both the bound (13) on Ei∗ [γ(i∗;x0)] and Lemma 22.

Theorem 24. When the ε-differentially private subgradient method is applied, the expected subop-
timality after k iterations is bounded as

E
[

min
i=1,2,...,k

f(x(i))− fopt
]
≤
R2 +G2

∑k
i=1 α

2
i

2
∑k

i=1 αi
+ γ̄(ε/k), (14)

where R = diam(P), G = maxi=1,2,...,m ‖ai‖2, and γ̄(z) = 2bmax(1 + logm)/z.

Proof. See Appendix A.2.

Theorem 24 shows a tradeoff between privacy and suboptimality. The first term, which also
appears in the convergence analysis for the regular subgradient method, implies that the optimal
gap vanishes as the number of iterations k → ∞. However, if k becomes too large, inaccuracy in
the private subgradients will start to act as a dominant factor in suboptimality as the second term
indicates. In particular, Theorem 24 implies that there exists an optimal number of iterations: as
the number of iterations grows, the first term in (14) decreases, whereas γ̄(ε/k) increases due to
increased level of privacy for each iteration. Similar to previous results given by Theorem 17 and 21,
the second term (due to privacy) grows as ε decreases.

5 Numerical experiments

5.1 Implementation details

In all simulations, the problem data {(ai, bi)}mi=1 are generated from i.i.d. Gaussian distributions.
The constraint set is chosen to be a d-dimensional hypercube centered at the origin: P = {x : − c �
x � c}, whose diameter diam(P) = 2

√
dc. The level of privacy ε is set at 0.1. The expected

objective value for different privacy-preserving mechanisms is approximated by the sample average
from 1000 runs.

Implementation of the vector Laplace noise One way to efficiently generate w from the dis-
tribution proportional to exp(−λ ‖w‖2) is to draw its magnitude w̄ and direction ê (as a unit vector)
separately. It can be shown that w̄ follows the Gamma distribution Γ(d, λ) and the distribution of ê
is isotropic [4]. In order to draw a sample from Γ(d, λ), one can draw d i.i.d. samples w1, w2, . . . , wd
from the exponential distribution: wi ∼ λ exp(−λwi) (wi ≥ 0) and obtain w̄ =

∑d
i=1wi. The

direction ê can be generated by drawing from the d-dimensional standard Gaussian distribution
followed by normalization.

Implementation of the exponential mechanism The exponential mechanism requires draw-
ing samples from a distribution proportional to a non-negative function. Such sampling is usually
performed using Markov chain Monte Carlo (MCMC) methods [19], which draw samples by simu-
lating a Markov chain whose stationary distribution is the target distribution. In this paper, we use
the Metropolis algorithm with a multivariate Gaussian proposal distribution. Due the shape of the
constraint set, the covariance matrix Σ of the Gaussian distribution is chosen to be isotropic, and
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Figure 1: Objective values as a function of the number of iterations. Blue: Objective values obtained
from the regular subgradient method. Black: Objective values obtained from the differentially
private subgradient method.

its magnitude is set to be proportional to the size of the constraint set: Σ = ηcId×d, where Id×d is
the d × d identity matrix, and η = 0.1. Each sample is generated by running 5000 MCMC steps,
after which the Markov chain is considered to have reached its stationary distribution.

Number of iterations for the subgradient method Although Theorem 24 clearly shows that
an optimal number of iterations exists for a given choice of ε, the suboptimality bound is often loose
for a given problem so that optimizing the bound does not provide direct guidance for choosing
the number of iterations. In practice, we observe that the objective value is quite robust to the
number of iterations, as shown in Fig. 1. The plot also includes the objective values obtained from
the regular subgradient method, which decrease slightly as the number of iteration grows. Due to
this robustness, in all subsequent simulations, the number of iterations is fixed at 100.

5.2 Results and discussions

The simulations investigate the effects of changing c (the size of the constraint set P) and m
(the number of member affine functions) on all the mechanisms presented in Section 4. Fig. 2
shows the expected objective value as a function of c as well as the true optimal value obtained
by solving the original problem. For all privacy preserving mechanisms, the expected optimal
value eventually grows as c increases, except that it shows some initial decrease for the exponential
mechanism and the differentially private subgradient method. This non-monotonic behavior can
be explained by noticing two factors that contribute to the objective value. One factor is the
effect of c on the (original) optimization problem itself. As c increases, it leads to a more relaxed
optimization problem and consequently decreases the true optimal value (magenta dashed line).
Another factor of c is on the amount of perturbation introduced by the mechanisms. For example,
for the mechanism that perturbs the solution directly, the magnitude of the vector Laplace noise
grows with c. For the exponential mechanism, the distribution from which the solution is drawn
will become less concentrated around the optimal solution as c grows. We are unable to provide
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Figure 2: Objective values (with error bars corresponding to 2σ error) as a function of c (the size
of the constraint set P) for different mechanisms. The true optimal value is shown for comparison.

a definitive explanation for the other two mechanisms, but it is expected that changes in c have a
similar effect.

The effect of m on the objective value is illustrated in Fig. 3. As m increases, more affine
functions will be added (i.e., the affine functions used for a smaller m is a subset of those used
for a larger m). Unlike changing c, increasing m causes the objective value to monotonically
increase. First of all, adding more affine functions causes the optimal value (magenta dashed line)
to increase even in the absence of privacy constraints. In addition, at least for the case when the
problem is perturbed, the magnitude of the vector Laplace noise grows withm. For the differentially
subgradient method, increase in m also causes the suboptimality gap γ̄ (that has logm dependence)
to increase.

As an interesting observation from all simulations, the differentially subgradient method is su-
perior to other mechanisms. It achieves the lowest expected suboptimality among all mechanisms.
Also, when c increases, it has the slowest growth rate of suboptimality. The reason that why subgra-
dient method works best is not evident from the suboptimality analysis presented in Section 4. It is
known that the subgradient method is quite robust to unbiased noise in subgradients (often known
as the stochastic subgradient method). However, in this work, the noise introduced by the expo-
nential mechanism in Algorithm 1 is biased so that the analysis on stochastic subgradient method
does not directly apply. This remains a interesting question for future investigations.

6 Conclusions

In this paper, we study the problem of preserving differential privacy for the solution of convex
optimization problems with a piecewise affine objective. Several privacy-preserving mechanisms
are presented, including the Laplace mechanism applied on either the problem data or the problem
solution, the exponential mechanism, and the differentially private subgradient method. Theoretical
analysis on the suboptimality of these mechanisms shows the trade-offs between optimality and
privacy: more privacy can be provided at the expense of sacrificing optimality. Empirical numerical
experiments show that the differentially private subgradient method has the least adverse effect on
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Figure 3: Objective values (with error bars corresponding to 2σ error) as a function of m (the
number of member affine functions) for different mechanisms. The true optimal value is shown for
comparison.

optimality for a given level of privacy. In addition, it is likely that the scheme of providing privacy by
iteratively solving an optimization problem privately (as used by the private subgradient method)
can be applied to more general convex optimization problems beyond the specific form studied in
this paper. This appears to be an interesting direction for future investigations.
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A Proofs

A.1 Proof of Lemma 18

Proof. Fix x, D, and D′, and consider the quantity

∆̄u = u(x,D′)− u(x,D)

= max
i=1,2,...,m

{aTi x+ bi} − max
i=1,2,...,m

{aTi x+ b′i}.

Define
j = arg max

i
{aTi x+ bi} and k = arg max

i
{aTi x+ b′i}.

Using the fact that aTj x+ bj ≥ aTi x+ bi for all i ∈ {1, 2, . . . ,m}, we have

∆̄u = (aTj x+ bj)− (aTk x+ b′k) (15)

≥ (aTk x+ bk)− (aTk x+ b′k) = bk − b′k. (16)

Similarly, since aTk x+ b′k ≥ aTi x+ b′i for all i ∈ {1, 2, . . . ,m}, we have

∆̄u ≤ (aTj x+ bj)− (aTj x+ b′j) = bj − b′j . (17)

Combining (15) and (17) together yields

|∆̄u| ≤ max{|bk − b′k|, |bj − b′j |}.

This is due to the fact that if α ≤ γ ≤ β for any constants α, β, and γ, then |γ| ≤ max{|α|, |β|}.
Maximizing |∆̄u| over all possible adjacent pairs of D and D′ yields

max
D,D′ : Adj(D,D′)

|∆̄u| = bmax. (18)

Since (18) holds for any x, we have

∆u = max
x

max
D,D′ : Adj(D,D′)

|u(x,D)− u(x,D′)| = max
x

max
D,D′ : Adj(D,D′)

|∆̄u| = bmax.
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A.2 Proof of Theorem 24

Proof. The proof follows the same procedure as the convergence proof for the stochastic subgradient
descent method (cf. [21]), except for the presence of additional terms that depend on Ei∗ [γ(i∗, x(k))]
due to violation of the subgradient condition (11).

At iteration k, we have

‖x(k+1) − xopt‖22 = ‖x(k) − αkg(k) − xopt‖22
= ‖x(k) − xopt‖22 − 2αkg

(k)T (x(k) − xopt) + α2
k‖g(k)‖22.

Take E(·|x(k)) on both sides to obtain

E
(
‖x(k+1) − xopt‖22

∣∣∣x(k))
= ‖x(k) − xopt‖22 − 2αkE(g(k)T (x(k) − xopt)|x(k)) + α2

kE
(
‖g(k)‖22

∣∣∣x(k)) .
Since g(k) is computed from Algorithm 1, we have

E(g(k)T (x(k) − xopt)|x(k)) ≥ f(x(k))− f(xopt)− Ei∗ [γ(i∗, x(k))]

≥ f(x(k))− fopt − γ̄(ε/k),

where i∗ is defined in Algorithm 1. This leads to

E
(
‖x(k+1) − xopt‖22

∣∣∣x(k))
≤ ‖x(k) − xopt‖22 − 2αk(f(x(k))− fopt − γ̄(ε/k)) + α2

kE
(
‖g(k)‖22

∣∣∣x(k)) .
Now take expectation with respect to x(k):

E‖x(k+1) − xopt‖22
≤ E‖x(k) − xopt‖22 − 2αk(Ef(x(k))− fopt − γ̄(ε/k)) + α2

kE‖g(k)‖22.

Repeat this procedure to obtain

E‖x(k+1) − xopt‖22
≤ E‖x(1) − xopt‖22 − 2

∑k
i=1αi(Ef(x(i))− fopt − γ̄(ε/k)) +

∑k
i=1α

2
iE‖g(i)‖22.

Rearrange the above and use the concavity of element-wise minimum to obtain the suboptimality
bound (14).
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