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Abstract— We analyze an extension of the well-known linear
consensus protocol for agents moving in two dimensions, where
the standard consensus feedback is multiplied with a rotation
matrix. This leads to a richer family of trajectories, and if only
the new feedback term is applied, periodic solutions emerge.
For special configurations of the controller gains, the form of
the system trajectories is given in terms of the eigenvalues and
eigenvectors of the closed-loop system matrix. We characterize
the resulting closed-loop trajectories for specific choices of the
controller gains and of the communication graph topology. Fur-
thermore, the control strategy is extended to agents with double
integrator dynamics. It is shown that stability is achieved with
sufficiently large velocity feedback. The effect of this feedback
on the overall system performance is further investigated. We
finally provide simulations to illustrate the theoretical results.

I. INTRODUCTION

In recent years, consensus algorithms have become the
cornerstone for decentralized control strategies. This class of
algorithms can be applied when a number of agents need to
agree on a commonly accepted consensus value, while each
agent only has access to information from a subset of the
other agents. Consensus algorithms often offer the building
blocks of more complex control schemes.

The majority of the work on consensus algorithms focuses
on the asymptotic behavior of the system [1]. The results
reported in literature address various agent dynamics, and
different consensus points with respect to the initial condi-
tions are considered [2].

Another topic, that is closely related to the results in this
paper, is vehicle coordination. Classical objectives in this
context are related to flocking, swarming and formation. The
reader may refer to [3], [4] for more information. Finally,
we mention the related work on circumnavigation, see for
instance [5], [6].

The work presented in this paper analyzes and extends
the consensus feedback recently presented in [7]. Therein,
the authors propose an extension of the classical linear
continuous-time consensus for plants with single integrator
dynamics. In contrast to standard linear consensus strategies,
where the feedback action is along the relative line-of-
sight of each pair of agents, in that work an additional
feedback term, which is perpendicular to this line-of-sight
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direction, is considered. This new feedback strategy can pro-
duce consensus points outside the convex hull of the initial
agent positions. Since the paths taken by the agents show
a great variety, depending on the feedback gain coefficients,
initial conditions and graph structure, this paper focuses on
analyzing the transient behavior of the system for single
integrator dynamics. While the standard consensus feed-
back introduces a potential field that guides the trajectories,
the approach in [7] introduces a gyroscopic/non-potential
field. If only “gyroscopic” feedback is applied, the system
exhibits periodic solutions having intricate patterns in the
state space [8]. Furthermore, we extend the control strategy
to double-integrator dynamics and analyze the asymptotic
behavior of the resulting system.

A similar feedback strategy is proposed in [9], which can
be seen as a special case of the feedback law proposed
in [7]. For the single integrator part, the work presented
in [9] focuses more on the asymptotic behavior, while we
focus on the transient behavior and in particular on sustained
oscillations. For the part on double integrators, we consider
relative instead of absolute damping.

After some preliminaries in Section II, we analyze in
Section III the system trajectories of the control strategy
proposed in [7] for a special configuration of the weight
matrices. We focus, in particular, on the case in which the
system exhibits sustained oscillations. We give a number of
results on the closed-loop trajectories for the general case,
and for the special case where all weights are equal and the
graph Laplacian is a circulant matrix. In Section V, we pro-
pose an extension of the control strategy to double integrator
dynamics. We give a sufficient condition for convergence and
quantitatively analyze the influence of the velocity feedback
term. Finally, in Section VI, we provide simulation results
for single- and double-integrator dynamics to illustrate the
theory, and in Section VII we summarize the contributions
of the paper and offer some directions for future work.

II. SYSTEM LAYOUT AND PRELIMINARIES

Let I denote the identity matrix and let 0 denote the zero
matrix, with dimension apparent from the context. Let 1
denote the vector of all ones and let (·)T denote the transpose
of a vector. All vectors will be assumed to be column vectors,
A > 0 denotes that the matrix A is positive definite, and 
denotes the imaginary unit.

A framework similar to the one presented in [7] is consid-
ered. To this end, consider N agents, each with state vector
xi ∈ R2 for agents i ∈ {1, . . . , N}, having single integrator
dynamics, as follows ẋi = ui, with ui ∈ R2. The agent



connections are encoded via an undirected graph G = (V, E)
where V is the set of nodes and E = {(i, j) ∈ V × V} is
the set of edges. Since G is undirected, (i, j) ∈ E if and
only if (j, i) ∈ E . The graph-theoretic notions used below
are largely adopted from [10]. We will assume that G is
static and connected. Every agent corresponds to a node in
V , and an edge between two agents, say i and j, implies that
the corresponding agents are mutually able to measure the
relative vector xi − xj .

Every agent (index i) uses the state difference to each
of its neighbors (index j) zagent,ij = xj − xi to compute
its control action. Consequently, zagent,ij = −zagent,ji. In
order to globally describe the system behavior for every edge
(i, j) in G, either the error variable zi,j = zk = zagent,ij or
zi,j = zk = −zagent,ij is chosen. The orientation of zk will
not play a role in the analysis and is hence arbitrary. This
asymmetry can be described by a directed graph Gd, where
agent i is the head of the edge between nodes i and j if
zi,j = −zagent,ij and the tail of the edge if zi,j = zagent,ij .
The matrix D ∈ RN×M will denote the incidence matrix
of Gd [10]. All zk are stacked together to form the vector
z = [zT1 zT2 . . . zTM ]T ∈ R2M . According to [7], the relation

z = (DT ⊗ I2)x (1)

holds, where I2 is the 2 × 2 identity matrix and x =
[xT

1 xT
2 . . . xT

N ]T ∈ R2N . In this paper we are concerned
with the analysis of the trajectories generated by the control
law introduced in [7], which is of the form

u = −(ΓD⊗ I2)z + (BD⊗ S)z, (2)

with Γ = diag(γ) ∈ RN×N , where γ ∈ RN and B =
diag(β) ∈ RN×N where β ∈ RN , and where S =

[
0 1
−1 0

]
.

The vector u in (2) is a stack vector of all agent inputs,
namely, u = [uT

1 uT
2 . . . uT

N ]T ∈ R2N . Combining (1) and
(2) yields

ẋ = (−(ΓL)⊗ I2 + (BL)⊗ S) x = Θx, (3)

where L = DDT is the Laplacian of G [10]. In terms of
state differences, we have the corresponding equation

ż =
(
−(DTΓD)⊗ I2 + (DTBD)⊗ S

)
z = Θzz. (4)

Equations (3) and (4) represent autonomous, linear systems
in state space form.

III. TRAJECTORIES WITH PARTICULAR GAIN MATRICES

In this section we analyze (3) for the case where the gain
matrices Γ and B are proportional. Furthermore, we analyze
the solution when Γ = 0. When Γ and B are proportional
this means that Γ = αΓM, B = αBM for some αΓ, αB ∈
R, M ∈ RN×N diagonal. This constraint in the choice of
weights allows us to express the eigenvalues and eigenvectors
of the 2N × 2N matrix −(ΓL) ⊗ I2 + (BL) ⊗ S in terms
of the smaller N × N matrix ML. The matrix ML is a
weighted version of the graph Laplacian of G. We call ML
a scaled Laplacian matrix of G.

Lemma 1. Let Γ = αΓM, B = αBM with αΓ, αB ∈ R,
M ∈ RN×N diagonal. Let v ∈ RN be an eigenvector of
ML with corresponding eigenvalue λ ∈ R. Then, the vector
v̄ = v ⊗ [1 ± ]T ∈ C2N is an eigenvector of the matrix
Θ = −(ΓL)⊗I2+(BL)⊗S with corresponding eigenvalue
(−αΓ ± αB)λ.

Proof. First, it is easy to show (see, for instance [7]),
that the eigenvalues (λ) and eigenvectors (v) of BL are
real. Let now ηij be the elements of the matrix BL.
Assuming Γ = αΓM, B = αBM, we obtain for the
eigenvalues and eigenvectors of the matrix Θ as fol-

lows Θv̄ = (−(αΓM⊗ I2 + αBM⊗ S)

(
v ⊗

[
1
±

])
=

(M⊗ (−αΓI2 + αBS))

(
v ⊗

[
1
±

])
= (−αΓ ± αB)λv̄.

The last equation shows that (−αΓ±αB)λ is an eigenvalue
of Θ with corresponding eigenvector v̄.

From Lemma 1, we gain insight of the effect of αΓ and αB

on the system trajectories. Specifically, αΓ is proportional to
the real and αB is proportional to the imaginary part of the
eigenvalues of Θ. If αB = 0 we have the “ordinary” con-
sensus control with all the eigenvalues of Θ being real. For
αΓ = 0, all non-zero eigenvalues of Θ lie on the imaginary
axis. Hence, the system exhibits sustained oscillations, which
could be used, for instance, for decentralized orbit pattern
generation.

In the case where αΓ = 0 and ML is diagonalizable,
we can visualize the system trajectories as superpositions
of circular motions. Since the matrix Θ has real entries, its
eigenvalues appear in complex conjugate pairs. The complex
argument of the odd and even entries of the eigenvectors
differ by ±π/2, and hence if ML is diagonalizable, the tra-
jectories of the agents are superpositions of circular motions.
According to Lemma 1, each conjugate pair of eigenvectors
of Θ causes a circular motion with angular frequency equal
to the eigenvalue λ and radius related to the elements of v.

Theorem 1. Let Γ = 0 and BL be diagonalizable. Let A be
the set of all eigenvectors v corresponding to the non-zero
eigenvalues λv 6= 0 of BL. Then, the solution of (3) is given
by x(t) = x̄ +

∑
v∈A

(|av|(cos(λvt+ arg(av))(v ⊗ [1 0]T) +

sin(λvt+ arg(av))(v ⊗ [0 1]T))), where x̄ ∈ R2N , av ∈ C
are constants that are determined by the initial conditions.

Proof. If Γ = 0 and BL is diagonalizable the solutions of

(3) are x(t) =
2N∑
i=1

aiv̄i exp (λit), where v̄i is the ith eigen-

vector of Θ with eigenvalue λi and ai ∈ C is determined by
the initial conditions. According to Lemma 1 with M = B,
αΓ = 0, αB = 1, the eigenvalues and eigenvectors of Θ are
given by the eigenvalues and eigenvectors of BL according
to λi = ±λv and v̄i = v ⊗ [1 ± ]T. The eigenvectors of
BL with eigenvalue 0 give the constant part of the solution
x̄, which must be real valued since Θ is real valued. The
even positions in v̄i are phase-shifted by π/2 with respect
to the odd positions. Applying Euler’s formula proves the



theorem.

The center of the circular motions of the agents is x̄. The
radius of the circular motion of the ith agent, introduced
by an eigenvector v, is proportional to the ith element of
the eigenvector, and the angular frequency is determined
by the corresponding eigenvalue λ. The radii are scaled by
the magnitude |av|, and the phase of the circular motion
is determined by arg(av). The initial conditions of (3)
determine x̄ and av. They can be chosen, for instance, in
such a way that only a few of modes are present in the
solution, which allows for the design of desired motion
patterns.

Corollary 1. Given x̄ and av for v ∈ A as in The-
orem 1, the initial conditions x(0) are x(0) = x̄ +∑
v∈A

(|av|(cos(arg(av))(v ⊗ [1 0]T) + sin(arg(av))(v ⊗

[0 1]T))).

Proof. The result follows from setting t = 0 in Theorem 1.

With Theorem 1 and Corollary 1, we have a direct link
between the system trajectories, the initial conditions, and
the eigenvalues and eigenvectors of BL. This motivates us
to further study the eigenvalues and eigenvectors of scaled
Laplacians.

IV. EIGENVALUES AND EIGENVECTORS OF SCALED
LAPLACIANS

The results in Section III motivate further investigation of
the eigenvalues and eigenvectors of scaled Laplacian matri-
ces. Recall that, by “scaled Laplacians,” we mean matrices
of the form BL where B is a diagonal matrix, with diagonal
entries β1, . . . , βN , and L is a graph Laplacian. We will
first give some useful properties for a general matrix BL.
Then we give more specific results for the case of special
communication graphs and with B = αI.

A. General Graph Structure and Weights

An important feature for the analysis of consensus algo-
rithms is the property of the graph Laplacian that the only
eigenvector with eigenvalue zero is 1. First, we show that
this property holds even for scaled Laplacians, if at most
one of the weights βi is zero. In order to show this result
we first provide the following lemma.

Lemma 2. Let m be the number of zero diagonal entries
of B. If G is connected, then the rank of BL is N − 1 for
m = 0 and m = 1 and N −m for m > 2.

Proof. Recall that L has rank N − 1 if G is connected [1].
The multiplication with the matrix B scales the row vectors
and therefore it does not change the rank of the matrix if
there are no zero entries in β. Hence, any set of N − 1 row
vectors of L is linearly independent. Therefore, setting one
entry in β to zero will not change the rank of BL. Any
additional zero entry in β will decrease the rank by one as
it replaces one linearly independent row vector by a row of
zeros.

With the previous lemma we can prove Theorem 2:

Theorem 2. If βi = 0 for at most one i ∈ V , and G is
connected, then the null space of BL is one-dimensional
and it is spanned by the vector 1.

Proof. Since the rank of BL in this case is N − 1, there is
only one linearly independent solution, say v, to the equation
BLv = 0. Since the vector 1 has the property L1 = 0 (see
[10]) 1 spans the whole null-space of BL.

From the signs of the diagonal elements of B, we can infer
the signs of the eigenvalues of BL. Considering Theorem 1,
we see that the sign of λv determines the direction of rotation
(clockwise/counter-clockwise) of the corresponding mode.
Therefore, insight into the relation of the weights and the
signs of the eigenvalues can provide valuable information
for trajectory design purposes.

Theorem 3. If β has m positive entries and N−m negative
entries, then BL has m eigenvalues λ with Re(λ) ≥ 0 and
N −m eigenvalues λ with Re(λ) ≤ 0.

Proof. The matrix L has all its off-diagonal elements −1
or 0 depending on whether there is a connection between
the nodes associated with the associated column/row. The
diagonal elements are the number of neighbors of the corre-
sponding agent, and hence it is equal to the negative sum
of the rest of the row elements [10]. From Geršgorin’s
theorem [11] it follows that the eigenvalues lie in the union
of N discs. The ith disc has center βiLii and radius |βiLii|.
Following the logic of the proof for the Geršgorin theorem
in [11], it is then possible to conclude that m eigenvalues
lie in the union of the discs defined by the positive elements
of β, and N −m eigenvalues lie in the union of the discs
defined by the negative elements of β. To show this, write
BL as the sum of a matrix Ad, containing only the diagonal
elements of BL, and a matrix Aod, containing only the off-
diagonal elements of BL. Then, for arbitrarily small positive
values of ε, the eigenvalues of Ad +(1−ε)Aod are located in
two disjoint regions, since the center of the discs is still βiLii
but the radius is (1 − ε) |βiLii|. Since the eigenvalues of a
matrix are continuous functions of its entries, the eigenvalues
located in the negative half-plane for ε > 0 can only go to
zero as ε goes to zero, and they do not enter the positive
plane. Likewise, the eigenvalues located in the positive half-
plane do not enter into the negative half-plane as ε goes to
zero.

B. Circulant Graphs and Equal Weights

In general, there is no known closed-form expression for
the eigenvalues and eigenvectors of BL. For special classes
of graphs and configurations of weights, however, this is
possible.

Next, we present the analysis where all agents have the
same weight, i.e., B = αI, and the communication graph
G is such that L is a circulant matrix. In this case, one can
explicitly compute the eigenvectors and eigenvalues of the
matrix BL. Recall that each row of a circulant matrix is equal



to the row above it, with its elements shifted one position
to the right such that the last element of the previous row
becomes the first element of the current row. We call a graph
with a circulant Laplacian L a circulant graph. A ring graph,
as analyzed in [9], is an example of a circulant graph.

Lemma 3. Let B = αI and let M ⊆ {1, . . . , bN−12 c}.
Assume that there exists an edge between every two
nodes i and j where i ∈ V and j = ((i + m − 1)
mod N) + 1 with m ∈ M. Then the eigenvectors of
BL are vi =

[
ω0
i ω

1
i . . . ω

N−1
i

]T
with ωi = exp

(
2πi
N

)
,

and the corresponding eigenvalues are λi = α
(
2|M| −

2
∑

m∈M
cos( 2π

N im)
)

for i ∈ V .

Proof. Every agent is connected to 2|M| other agents.
Therefore the diagonal elements of L are equal to 2|M|.
The off-diagonal elements of L in the ith row and the
jth column are −1 if j = ((i + m − 1) mod N) + 1
for m ∈ M and zero otherwise. Hence, L is a circulant
matrix. The eigenvectors of a circulant matrix have the
form vi =

[
ω0
i ω

1
i . . . ω

N−1
i

]T
with ωi = exp

(
2πi
N

)
for i = 1 . . . N (see for instance [12]). It follows that
these are also the eigenvectors of the matrix αL. From
the first row of Lvi = λi,Lvi, recalling the structure of
L as described above, we get the expression λi,Lω

0
i =

2|M|ω0
i −

∑
m∈M

(
ωmi + ωN−mi

)
which yields λi,L =

2|M| −
∑

m∈M

(
exp

(
2π
N im

)
+ exp

(
2π
N i (N −m)

))
=

2|M|−
∑

m∈M

(
exp

(
2π
N im

)
+ exp

(
2π
N i (−m)

))
= 2|M|−

2
∑

m∈M
cos
(
2π
N im

)
. The eigenvalues of αL are hence given

by λi = αλi,L.

Lemma 3 gives the eigenvectors of BL as complex
vectors. If we want to make the connection to the solutions of
(3) using Theorem 1, we prefer a basis of real eigenvectors
as the solutions x(t) are real. Therefore, we establish the
following two lemmas, which together show how a complete
basis of real eigenvectors can be constructed from the set of
complex eigenvectors obtained by Lemma 3.

Lemma 4. Let BL be as in Lemma 3. Then, BL has
one eigenvector 1 ∈ RN . If N is even, then BL has an
eigenvector with its kth element equal to (−1)k−1 (k =
1, . . . , N ). The remaining eigenvectors of BL have linearly
independent real and imaginary non-zero parts.

Proof. According to Lemma 3, the kth element of vi is
ωk−1i = exp

(
2π
N i (k − 1)

)
for k = 1, . . . , N . This is a com-

plex number of magnitude 1 and argument (2π/N)i (k − 1).
The real (resp. imaginary) parts of all elements of v are
zero only if the argument is nπ (resp. nπ + π

2 ) where
n ∈ Z. There are only two cases when this occurs. The
first case is when i = N , which gives the eigenvector 1.
The other case is when i = N/2, which exists only if N
is even. Then the kth element of the eigenvector is given
by exp

(
2π
N

N
2 (k − 1)

)
= exp (π(k − 1)) = (−1)k−1. The

real and imaginary parts of v are linearly independent since

the first element of v is always 1, which means that the
first element of Re(v) is 1 and the first element of Im(v)
is 0.

There can only be N linearly independent eigenvectors of
BL. The next theorem gives a subset of eigenvectors, which
(when the real and imaginary parts are considered separately)
constitute a complete basis of linearly independent eigenvec-
tors.

Lemma 5. The real and imaginary parts of the eigenvectors
of BL for i = dN+1

2 e, . . . , N − 1 span the same space as
the real and imaginary parts of the eigenvectors of BL for
i = 1, . . . , bN−12 c.

Proof. Let vi,m = ωm−1i be the mth element of
vi. Then for ` ∈ {1, . . . , bN−12 c} it follows that
Re (vN−`,m) = Re

(
ωm−1N−`

)
= cos

(
2π
N (m− 1)(N − `)

)
=

cos
(
2π
N (m− 1)`

)
= Re (v`,m). Similarly for the imaginary

parts we have that Im (vN−`,m) = Im
(
ωm−1N−`

)
=

sin
(
2π
N (m− 1)(N − `)

)
= − sin

(
2π
N (m− 1)`

)
=

−Im (v`,m).

Therefore, a complete base of eigenvectors for BL can
be constructed from the real eigenvector(s) vN , vN

2
if N

is even, and from the real and imaginary parts of vi for
i = 1, . . . , bN−12 c. Since BL is a real matrix, the imaginary
and real parts of an eigenvector correspond to the same
eigenvalue. We summarize the implications of Lemmas 3,
4, and 5 in the following theorem:

Theorem 4. Let BL be as in Lemma 3. Then a basis of real
eigenvectors of BL can be constructed by:
(a) One eigenvector 1 ∈ RN with eigenvalue 0,
(b) The eigenvectors {Re(vi), Im(vi)|i ∈ {1, . . . , bN−12 }c}

with vi =
[
ω0
i ω

1
i . . . ω

N−1
i

]T
and ωi = exp

(
2πi
N

)
with eigenvalue α

(
2|M| − 2

∑
m∈M

cos( 2π
N im)

)
,

(c) If N is even, one eigenvector with its kth element equal
to (−1)k−1 (k = 1, . . . , N ) and eigenvalue α

(
2|M| −

2
∑

m∈M
cos(πm)

)
.

Together with Theorem 1, Theorem 4 provides a com-
plete analytical solution of (3), which gives insight into the
sustained oscillations exhibited by (3) if Γ = 0. Similar
results can be derived if all diagonal elements of B are such
that all βi with even index i are equal and all βi with odd
index i are also equal. The details are omitted owing to space
constraints.

V. DOUBLE INTEGRATOR DYNAMICS

In this section, we consider double integrator dynamics
instead of single integrator dynamics for the individual
agents. We introduce relative damping by the control law.
The state of each agent i is composed of the two-dimensional
position vector xx,i ∈ R2 and the corresponding velocity
vector ẋx,i = xv,i ∈ R2. The control input for each agent is
the acceleration, that is, ẋv,i = ui. Furthermore, by defining
the relative position measurements as z = (DT ⊗ I2)xx



we have ż = (DT ⊗ I2)xv , where, as before, we have
defined the stack vectors xx = [xT

x,1 . . . xT
x,N ]T ∈ R2N ,

xv = [xT
v,1 . . . xT

v,N ]T ∈ R2N , u = [uT
1 . . . uT

N ]T ∈ R2N

and x = [xT
x xT

v ]T ∈ R4N .
The control input is given by a feedback law similar to

(2), namely, u =
(
− (ΓD ⊗ I2) + (BD ⊗ S)

)
(z + αż),

where Γ,B ∈ RN×N are diagonal matrices and α ∈ R is
the damping coefficient. With this feedback law, we get the
overall dynamics

ẋ =

[
0 I
Θ αΘ

]
x = Θdx. (5)

where Θ = −(ΓL⊗ I2) + (BL⊗ S).
We can express the eigenvalues and eigenvectors of Θd

in (5) in terms of those of Θ. In the previous sections, we
analyzed the eigenvalues and eigenvectors of matrices of this
type. Hence, we can use the following theorem in order to
apply the results from single integrator dynamics to double
integrator dynamics.

Lemma 6. Let Θd be as in (5) with α ≥ 0, and let ṽx be
an eigenvector of Θ with corresponding eigenvalue λ. Then
ṽ = [ṽT

x λ̃ṽT
x ]T is an eigenvector of Θd with corresponding

eigenvalue

λ̃ =
αλ±

√
α2λ2 + 4λ

2
. (6)

Proof. Given the system dynamics in (5) the proof is similar
to the proof of Theorem 6 in [13], and is therefore omitted.

Since λ is complex valued, the connection between λ and
λ̃ is not trivial. As shown in [13], equation (6) also holds
for double integrator consensus dynamics under a directed
communication topology. From [13] we get the following
sufficient condition for α to guarantee that λ̃ is in the left-
half of the complex plane if λ has negative real part.

Lemma 7. Let λ̃ as in (6) where α ≥ 0 and Re(λ) < 0. If
α >

√
−2/Re(λ) > 0 then Re(λ̃) < 0.

The proof of Lemma 7 is a slight modification of the proof
of Theorem 6 in [13], and hence is omitted.

Assuming that Γ > 0, it follows from [7] that the eigenval-
ues of Θ have negative real part, and hence Theorem 6 and
Lemma 7 imply that we can find α > 0, sufficiently large,
such that all eigenvalues of the matrix Θd also have negative
real part, except for two double eigenvalues in zero, which
correspond to a uniform motion of the whole formation. In
particular, Lemma 7 gives a sufficient condition on α for the
system (5) to converge. This observation leads us to the main
result of the this section.

Theorem 5. The dynamic system defined
in (5) asymptotically reaches consensus, i.e.,
limt→∞

(
‖[xT

x,i xT
v,i]

T − [xT
x,j xT

v,j ]
T‖
)

= 0 for all
i, j ∈ V if Γ > 0, α >

√
−2/Re(λ) for all eigenvalues λ

of Θ with λ 6= 0, and Θ has two eigenvalues in zero.

Proof. If λ 6= 0, we know from [7] that all non-zero
eigenvalues of Θ have negative real part. From Lemma 6
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Fig. 1. Maximum real part of λ̃ = 1
2
(αλ ±
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α2λ2 + 4λ) for three

different λ over different values of α. A cross marks the point where α is
according to Lemma 7 for that particular eigenvalue.

and 7, we can conclude that the condition α >
√
−2/Re(λ)

ensures that all Θd have negative real part. This means that
the corresponding modes will converge to zero as time goes
to infinity. Furthermore, we know from [7] that the null-space
of Θ is spanned by vc,1 = 1⊗ [1, 0]T and vc,2 = 1⊗ [0, 1]T

(because (3) reaches consensus). These two vectors are
mapped according to Lemma 6 into eigenvectors [vT

c,1 0T]T,
[vT
c,2 0T]T of Θd with double eigenvalue in zero, which

correspond to modes a1t[vT
c,1 0T]T, a2t[vT

c,1 0T]T, where t
is time, and a1, a2 are coefficients depended on the initial
conditions. Hence, limt→∞

(
|[xT

x,i xT
v,i]

T − [xT
x,j xT

v,j ]
T|
)

=
0 for all i, j ∈ V .

Given an eigenvalue λ of Θ, we can numerically calculate
the two values for λ̃ according to (6) for a range of values
of α. Figure 1 shows the real part of the two values of λ̃
with the larger real part, denoted by rmax, resulting from
three different choices of λ and for different values of α.
The minimal value of α to ensure stability, according to
Lemma 7, is marked with a cross. We see that rmax is
positive for small α, which means that the system diverges.
Increasing α, rmax drops and gets negative. It is easy to see
from (6) that rmax has to be positive if the imaginary part
of λ is non-zero and α = 0. At some point rmax is smallest,
which corresponds to fastest convergence. With higher values
of α, rmax asymptotically increases towards zero, which
can be interpreted as the system response becoming slow
due to damping. The magnitude of all three λs in Figure 1
are normalized to one, so they only differ in terms of their
phase angle. The smaller the phase angle, i.e., the larger the
imaginary part, the larger α needs to be to ensure that rmax is
negative. Also, the smaller the phase angle the larger the rmax.
For larger values of α, there is not much of a difference. For
smaller phase angles, the point with minimum rmax happens
to coincide with the minimum α given by Lemma 7, whereas
for values of λ with the largest phase angle the minimum
rmax is obtained for slightly larger α.

VI. SIMULATIONS

The first part of the numerical simulations illustrates
Theorem 1 and Theorem 4. We let the communication graph



−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

First dimension of xi

S
e
c
o
n
d
d
im

e
n
s
io
n
o
f
x
i

Fig. 2. Simulated trajectories of the agents in the plane with Γ = 0
and B = I. The crosses represent the agents initial conditions. There are
N = 11 agents. The dashed lines indicate the edges in the communication
graph. The communication graph G is as in Lemma 3 with M = {1, 3}.

G be as in Lemma 3 with M = {1, 3}. We use the weights
Γ = 0 (hence we expect periodic solutions) and B = I.
We choose such initial conditions that only the four modes
with smallest (in terms of magnitude) non-zero eigenvalue
for BL are excited. According to Theorem 4, we have that
λ1 = 4− 2(cos( 2π

11 1 · 1) + cos(2π
11 1 · 3)) ≈ 2.60 resulting in

oscillations with period of length 2.41. The plane trajectories
are shown in Figure 2. We can see that the trajectories indeed
are circles. Furthermore, the period of the oscillations is
indeed T = 2π/2.60 ≈ 2.41

In the second part of the numerical simulations, we present
a simulation to illustrate the results of Section V. We choose
a ring graph with N = 9 agents having double integrator
dynamics. The gain matrices are B = Γ = I.

In the first simulation we choose the minimal sufficient
α according to Lemma 7, which, in this case, happens to
be the value that gives fastest convergence. In the top plot
of Figure 3 we see that the agents converge to a consensus.
For the second simulation, we set α to the value which is at
the border of divergence. In the special case of a ring graph,
two critical eigenvalues of the matrix BL are the same, and
therefore two modes are associated to an eigenvalue with
zero real part. The simulation results are shown in the lower
plot of Figure 3. We see, that after some time sustained
oscillations of the same frequency occur. These are caused
by the two modes corresponding to the purely imaginary pair
of eigenvalues.

VII. CONCLUSIONS AND FUTURE WORK

We have analyzed the distributed control strategy proposed
in [7] with the focus on trajectories of sustained oscillations.
We have shown the relationship of the system trajectories
with the eigenvalues and eigenvectors of a scaled graph
Laplacian. Furthermore, we have provided a number of
results on such eigenvalues and eigenvectors for the general
and for a selected, specific case. We have also extended the
proposed control strategy to double-integrator dynamics. We
have provided a sufficient condition for convergence to a
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Fig. 3. Simulations of the extended consensus algorithm for double
integrator dynamics. In the upper plot, the damping factor α was chosen
such that convergence is the fastest. On the lower plot, it was set to the
limit of convergence. The plots show the elements of x(t).

consensus point and analyzed the influence of the damping
coefficient. Finally, we have illustrated the theoretical results
via numerical simulations. The results of this paper can be
used to design periodic trajectories for the agents having
specific properties, that is, in contrast to the results of
[7], it addresses the synthesis question. Future work will
investigate the eigenvalues and eigenvectors of additional
special configurations and different agent dynamics.
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