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On the fundamental limitations of performance for
distributed decision-making in robotic networks

Federico Rossi

Abstract— This paper studies fundamental limitations of per-
formance for distributed decision-making in robotic networks.
The class of decision-making problems we consider encom-
passes a number of prototypical problems such as average-
based consensus as well as distributed optimization, leader
election, majority voting, MAX, MIN, and logical formulas.
We first propose a formal model for distributed computation
on robotic networks that is based on the concept of I/0
automata and is inspired by the Computer Science literature on
distributed computing clusters. Then, we present a number of
bounds on time, message, and byte complexity, which we use to
discuss the relative performance of a number of approaches for
distributed decision-making. From a methodological standpoint,
our work sheds light on the relation between the tools developed
by the Computer Science and Controls communities on the topic
of distributed algorithms.

I. INTRODUCTION

Decentralized decision-making in robotic networks is a
ubiquitous problem, with applications as diverse as state
estimation [1], formation control [2], and cooperative task
allocation [3]. In particular, the consensus problem, where
the nodes in a robotic network have to agree on some
common value, has received significant attention in the last
decade following the works in [4], [5]. Most recent efforts in
the Controls community have primarily focused on studying
the properties and fundamental limitations of average-based
consensus, a subclass of the consensus problem where nodes
average their state with their neighbors at each time step [6].
In these works, the dominant performance metric is time
complexity, i.e., convergence time. In contrast, the computer
science community has mainly focused its attention on the
complementary notion of communication complexity, and
“communication-optimal” algorithms for selected consensus
problems are now known [7].

Despite the large interest in consensus problems in the
last decade, little attention has been devoted to the problem
of studying fundamental limitations of performance with
respect to time and communication (in its broadest sense)
complexity. In [6] the author proposes a lower bound on
the time complexity of average-based consensus algorithms;
several lower bounds on the message complexity of specific
instances of the consensus problem are known in the CS
literature [7], but no comprehensive study for more general
distributed decision-making problems is available.

This motivates our work: in this paper, we explore tight
lower bounds on the complexity of a large class of consensus
problems with respect to metrics relevant to robotic systems.

To appreciate the value of the time and communication
complexity metrics, consider the following two scenarios.

Single-hop latency of robotic wireless communication
protocols is often in excess of 10ms. The popular 802.15.4
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protocol is bandwidth-limited: transmission of a 768 bit
message containing the state of a 6DOF vehicle requires
7ms at the maximum allowable bit rate of 115200bps;
latencies four to five times higher are typically observed
in a laboratory environment. On the other hand, latency of
high-bandwidth protocols such as 802.11 (WiFi) is greatly
influenced by collisions: in presence of dozens of agents,
latency is observed to consistently rise above 10ms. Consider
a typical network of 50 robotic agents in an arbitrary
configuration. In Sec. [III| we note that the worst-case optimal
time complexity of the consensus problem is ©(n), with a
constant factor close to one: thus, consensus can be achieved
in approximately 500ms. On the other hand, the popular
average-based consensus protocol has a convergence rate of
O(n?)[8]: convergence can require as much as 25s even on a
static network. Intuitively, choosing a suitably fast consensus
algorithm allows to track and control systems with orders-
of-magnitude faster dynamic behavior.

On the other hand, energy consumption is also a concern in
cyber-physical networks. Consider a swarm of autonomous
underwater vehicles (AUV) tasked with performing a col-
laborative mission such as patrolling. Underwater ultrasonic
communication has significantly higher energy demands than
radio transmissions: for instance, in [9], the authors use 18W
to maintain a 16 kbps link (sufficient to stream rich telemetry
or low-quality images) with 35° antennas over 6500 m.
For underwater operations, omnidirectional communication
is unadvisable because of intersymbol interference caused by
multipath propagation, a phenomenon exacerbated by wide-
beam transceivers. Hence, underwater communication typi-
cally relies on directional antennas and communication with
n agents requires n different messages. Consider, now, an all-
to-all communication scheme to reach consensus (as needed
by flooding and average-based consensus algorithms): in this
case, communication with 50 AUVs would require 900 W
per vehicle, which is impractical (as a comparison, electric
motors on modern Remotely Operated Vehicles (ROVs) such
as NOAA’s Autonomous Benthic Explorer only draw 100 W
in cruise [10]). Hence, in this setting, a time-optimal algo-
rithm such as flooding cannot be implemented. In contrast, a
communication-optimal algorithm such as GHS [11] requires
O(logy n) messages per AUV, resulting in a more practical
power requirement of 102 W.

We mainly restrict our analysis to static networks, but also
provide some extensions to time-varying network topologies.
The contribution of our work is threefold: we extend results
from the computer science literature to a broad class of dis-
tributed decision-making problems (collectively referred to
as generalized consensus) relevant to the control systems and
robotic community; we also present a unified complexity the-
ory for generalized consensus on static networks, identifying
lower bounds on performance for metrics relevant to robotic
systems. Finally, we discuss algorithms that simultaneously



make one or more of these bounds tight.

The paper is structured as follows. In Section we
propose a formal model for robotic networks, complexity
measures and a rigorous definition of the consensus problem
that encompasses problems including (weighed) mean as
well as MAX, MIN and voting. In Section we present
lower bounds on the time, message, and byte complexity
of the consensus problems for sparse and dense networks.
In Section we show tightness of these lower bounds
under mild assumptions. Finally, in Section [V| we draw our
conclusions and we discuss directions for future work. Lower
bounds and optimality results are summarized in Table [I}

We remark two rather interesting findings. On static
networks, a modified version of the GHS minimum span-
ning tree algorithm solves the consensus problem with
simultaneously optimal time, message, byte and storage
complexity. Intuitively, if “few” link reconfigurations are
expected, algorithms based on construction of a spanning
tree are superior to nonhierarchical schemes. Conversely, on
time-varying networks, a simple flooding algorithm Pareto-
dominates average-based consensus in all metrics we in-
vestigate except for storage complexity (arguably a minor
concern in modern robotic systems). However, in practical
implementations average-based consensus may be preferable
to flooding whenever time performance is not critical and
bandwidth (whose role we discuss in [12]) is limited.

II. PROBLEM SETUP

In this section we discuss the network model and we define
the distributed consensus problem we will study in this paper.
A simplified version of our model has first been introduced
by the authors in [14].

A. Agent model

An agent in a robotic network is modeled as an in-
put/output (I/O) automaton, i.e., a labeled state transition
system able to send messages, react to received messages
and perform arbitrary internal transitions based on the current
state and on any messages received. A precise definition of
I/O automaton is provided in [7, pp. 200-204] and is omitted
here in the interest of brevity. All nodes are identical except
for a unique identifier (UID - for example, an integer). The
time evolution of each node in the graph G is characterized
by two key assumptions:

o Fairness assumption: the order in which transitions
happen and messages are delivered is not fixed a priori.
However, any enabled transition will eventually happen
and any sent message will eventually be delivered.

« Non-blocking assumption: every transition is activated
within [ time units of being enabled and every message
is delivered within d time units of being dispatched.

Essentially, the fairness assumption states that every node
will have an opportunity to perform transitions, while the
non-blocking assumption gives timing guarantees (but no
synchronization). We refer the interested reader to [7, pages
212-215] for a detailed discussion of these assumptions.
We argue here that these are minimal assumptions for most
reliable real-world robotic networks.

B. Network model

A robotic network with n agents is modeled as a con-
nected, undirected graph G = (V, E), where V = {1,...,n}

is the node set, and £ C V x V, the edge set, is a
set of unordered node pairs modeling the availability of a
communication channel. Two nodes ¢ and j are neighbors if
(i,j) € E. The neighborhood set of node i € V, denoted
by N;, is the set of nodes 7 € V' neighbors of node i. Our
model is asynchronous, i.e., computation steps within each
node and communication are, in general, asynchronous.

This paper focuses on static networks, i.e., robotic net-
works where the edge set does not change during the
execution of the algorithm. Given a node set with n nodes,
we will consider two classes of graphs:

o Sparse graphs: that is graphs where the number of
edges |E| is less than nlogn.

o Dense graphs: that is graphs where the number of edges
|E| is larger than or equal to nlogn.

Henceforth, we will denote the set of sparse graphs as G,
and the set of dense graphs as G,. Note that for any connected
graph with n nodes, n — 1 < |E| < (3).

From a practical standpoint, sparse and dense graphs
manifest themselves in different robotic problems and give
rise to different issues. In dense graphs (present e.g. in
formation control and rendezvous problems) time complexity
is typically not an issue; on the other hand, message and
byte complexity have to be carefully kept under control to
avoid excessive bandwidth utilization and minimize message
collisions. Especially for large graphs, it is crucial to ensure
that agents only communicate with a small subset of their
neighbors, even if many are available. On the other hand,
in sparse graphs (which typically manifest themselves in
patrolling and deployment applications, where large inter-
agent distances are desirable) message complexity is not an
issue; efficient routing of information, on the other hand, is
crucial to ensure good time performance.

C. Model of computation

At a general level, in this paper we focus on decision-
making problems where each node i, i € {1,...,n}, in
the robotic network is endowed with an initial value x; and
should output the value of a function of all initial values. In
other words, each agent, after exchanging messages (with
any content) with its neighbors and performing internal
state transitions, should output f(z1,...,z,) for some com-
putable function f, referred to as comsensus function. In
the reminder of this section we formalize the notions of
consensus functions and of decentralized algorithms.

1) Consensus functions: In this paper we consider func-
tions defined over totally ordered sets, that is we assume
that the initial conditions x; belong to a set X equipped
with a binary relation (denoted with <) which is transitive,
antisymmetric, and total. Two sets of initial conditions A =
{a1,...,a,} and B = {by,...,b,} are said to be order-
equivalent if a; < a;j < b; < b;. The set of initial conditions
C can be, for example, N, R, and R4 (in the last case the
total order could be the lexicographic order).

A consensus function is a computable function f : X" —
R that depends on all its arguments. More precisely, for each
element © = (z1,...,2,) € X™ and for all ¢ € {1,...,n}

one can find elements x,gl) € X and xz@) € X such that
f(xh...,xl(-l),...,xn) + f(xl,...,a:§2),...

s Tn ).



Time Message (S) Message (D) Msg. (broadcast)

Lower bound n nlogn n? nlogn
Flooding (no failures) n nZlogn n3 n?
GHS modified (no failures) n [13] nlogn n2 nlogn
Avg. based (no failures, ¢) n?log(1/¢) n3logn nt n3
Hybrid clustering [14] nlog(n/m) 2mn + k|Ec|m 2mn + k|Ec|m n(m + log(n/m)
Flooding (D-connectivity) nD n’Dlogn n3D n?D
Avg.-based (D-connectivity) n?Dlog(1/¢) n3Dlogn n*D n3D
Byte (S) Byte (D) Byte (broadcast) Storage
Lower bound (nlogmn)(logn + b) n?(logn + b) (nlogmn)(logn + b) logn + b
Flooding (no failures) n?logn(logn + b) n3(logn + b) n?(logn + b) n(logn +b)
GHS modified (no failures) (nlogn)(logn + b) n?(logn + b) (nlogn)(logn + b) logn+b
Avg. based (no failures, €) n3logn(logn + b) n(logn + b) n3(logn + b) logn+b
Hybrid clustering [14] m(n + k|Ec|)(logn +b) m(n + k|Ec|)(logn +b) n(m + log(n/m)logn m(logn + b)
Flooding (D-connectivity) n3Dlogn(logn + b) n?D(logn + b) n3D(logn + b) n(logn +b)
Avg.-based (D-connectivity) n3Dlogn(logn + b) n*D(logn + b) n3D(logn + b) logn+b

TABLE I: Synoptic view of bounds for distributed consensus. Bounds on time complexity hold for all consensus functions, bounds on
message complexity hold for locally-sensitive or extractive consensus functions, and, finally, bounds on byte and storage complexity hold
for locally-sensitive or extractive consensus functions that are hierarchically computable. S and D denote, respectively, sparse and dense
graphs. The number of agents is denoted as n and the number of communication links is |F|. m is a tuning parameter assuming values in

...

,n}. The parameter |E.| is |E.| = O(min(E, m?)). Time-varying networks are D-connected [6]. For average-based algorithms,

€ is the convergence threshold for termination. We denote in bold face optimality results.

Loosely speaking, such choice of consensus function implies
that each node is needed for the collective decision-making
process.

For some of the results presented in this paper, we will
need the following refinements of the notion of consensus
function:

o Locally-sensitive consensus function: a consensus
function that is sensitive to perturbations that preserve
order. More precisely, let Z = {1,2,...,n} be the set
of node indices and let o : Z — Z be a permutation
(i.e., a bijective correspondence) over Z. Then, for each
permutation o over Z there exists an element x € X"
that is ordered with respect to o, i.e., To(i) < To(h) for
all ¢ < j and such that for all ¢ € {1,...,n} there exist

((Tl()i), xf()l) S l‘l(jl()l) #* 9:‘(72()1) with the properties:

1) xgl()i) < Z4(;) and xf()l) < Zg(j) forall i < j,

T

2) 2o3) < 96((71()7) and z,(;) < 33((72(),) for all j < 1,
1
3) f(xhvzg()lyxn)#f(xh
(1) (2)

(The first two properties ensure that Tyl and Ty
preserve the order of x, while the last property reflects
local sensitivity.)

« Extractive consensus function: a consensus function
such that for all z = (x1,...,2,) € X™ one has
f(z1,...,2,) = x; for some j € {1,...,n}.

The classes of locally-sensitive and extractive consen-
sus functions are neither mutually exclusive nor collec-
tively exhaustive (however, they represent, arguably, a very
broad class of consensus functions of interest to applica-
tions). Loosely speaking, locally-sensitive consensus func-
tions model problems where the decision-making process
depends continuously on the initial values {z;}, for example
for average consensus f(r) = ¢ x, where X = R", z € X,
and c is a vector in R", or for distributed optimization

2
,1’((7()1.), ceTp)-

n

f(x) = argmin Z iz, ;)

z€Rm i

where the objective function is parametrized by x;, under
certain conditions on ; (consider for instance ¢; a positive-

semidefinite quadratic form parametrized by z;). On the
other hand, extractive consensus functions model leader-
election problems or problems where it is desired to extract
some statistics from the data, e.g., MAX and MIN.

Finally, we introduce a representation property for con-
sensus functions that will be instrumental to deriving fun-
damental limitations of performance in terms of amount
of information exchanged. A locally-sensitive or extractive
consensus function is hierarchically computable if it can be
written as the composition of a commutative and associative
binary operator x, that is

flxi,@o, ... @y) = T1 % To % ... % Ty

(The name is inspired by the observation that hierarchically
computable functions can be computed with messages of
small size on a hierarchical structure such as a tree). All
examples of consensus functions mentioned above are indeed
hierarchically computable.

D. Model of communication

Nodes can communicate with their neighbors according to
two communication schemes: directional and local broad-
cast. In the directional communication scheme a node sends
messages to each neighbor individually. This is the case when
nodes in the network are equipped with narrow-band, high-
gain mechanically or electronically steerable antennas. In the
local broadcast communication scheme, a node sends a mes-
sage to all its neighbors simultaneously. This is the typical
case for nodes equipped with omnidirectional antennas.

E. Distributed algorithms

A distributed algorithm for a robotic network is, simply,
a collection of local algorithms, one for each node of the
network (of course, nodes can exchange messages). Nodes
execute the same logical code. Each node is initialized
with an initial condition z; € X. A distributed algorithm
correctly computes a given function if, given an input z €
X", each node outputs the correct value of the function
f(z1,...,x,), and terminates [7] in finite time. Specifically,
the algorithm should output the correct value in at most R
rounds (for synchronous executions) or after R (I + d) time



units (for asynchronous executions). R can be an arbitrarily
large number, hence this assumption is not limiting from
a practical standpoint; however, it will be key to deriving
some of our results. Note that, for asynchronous executions,
termination is not simultaneous.

A particular class of distributed algorithms that will be
instrumental to derive some of the results is represented by
comparison-based algorithms, defined next.

Definition I1.1 (Comparison-based algorithms ([15], [16])).
A distributed algorithm is comparison-based if each local
algorithm manipulates the subset of (totally ordered) initial
values that are locally known only via the three Boolean
operators <,>, and = (recall that the set of initial values
is a totally ordered set). Accordingly, all internal transitions
(including message generation) only depend on the order of
the initial values known to the local algorithm, as opposed
to their numerical value.

F. Complexity measures

The following definitions naturally capture the notions of
time and communication complexity and are widely used in
the theory of distributed algorithms [7].

Let G be a set of graphs with node set V = {1,...,n}
(we are specifically interested in the class of sparse graphs
Gs and in the class of dense graphs G;). For a given graph
G € G, let F(a,z,G) be the set of fair executions for an
algorithm a € A and a set of initial conditions z € X" (a
fair execution is an execution of an algorithm that satisfies
the fairness and non-blocking assumptions stated above).

1) Time complexity: To measure execution time, we as-
sume that a distributed algorithm starts at time ¢ = 0. Time
complexity is defined as the infimum worst-case (over initial
values and fair executions) completion time of an algorithm.
Rigorously, the time complexity for a given consensus func-
tion f with respect to the class of graphs G is

TC(f,G) := inf sup sup sup  T(a,z,a,G),
a€A Geg gexlal a€F(a,z,G)
where T'(a,z,a,G) is the first time when all nodes have
computed the correct value for the consensus function f
and have stopped. The order of the inf-sup operands in the
above expression is naturally induced by our definitions.
By dropping the leading inf,c 4, one recovers the time
complexity of a given algorithm a for a given consensus
function f. In our asynchronous setting, time complexity is
expressed in multiples of 4 d, defined in section [[I-B] (see
also [7]). We will henceforth refer to (I 4+ d) as a time unit.
Note that (I + d) is a (tight) upper bound on the actual time
required to generate and deliver a message.

2) Message complexity for directional communication:
Message complexity is similarly defined as the infimum
worst-case (over initial values and fair executions) number
of messages exchanged by an algorithm before completion.
Rigorously, the message complexity for a given consensus
function f with respect to the class of graphs G is

MC(f,G) = inf sup sup sup M(a,z,a,G),
a€A Geg 1eXICl aeF(a,z,G)

where M (a,z,«, G) is the number of messages exchanged
between time ¢ = 0 and time ¢ = T'(a, z, a, G).

It is important to note that the fype of messages exchanged
depends on the algorithm. In average-based consensus algo-
rithms, nodes typically exchange their state, a real number.

In algorithms such as the well-known Gallager, Humblet and
Spira (GHS) algorithm [11], nodes exchange a wide range
of logical commands establishing hierarchical relationships,
informing neighbors about the progress of the algorithm, and
requiring them to perform edge searches [13]. In flooding
algorithms [7], a single message may contain information
from up to n — 1 nodes. However, as far as message
complexity is concerned, each message counts the same,
regardless of its type and size.

3) Byte complexity for directional communication: In
many instances, message size plays a critical role in the
energy needed for information transmission. To capture this
aspect, in this paper we define byte complexity as the
infimum worst-case (over initial values and fair executions)
overall size (in bytes) of all messages exchanged by an algo-
rithm before its completion. Rigorously, the byte complexity
for a given consensus function f with respect to the class of
graphs G is

BC(f,G) := irelJf4 sup sup sup  B(a,z,a,G),

GeG zeXx|Gl aeF(a,z,G)

where B(a,z,«, ) is the overall size (in bytes) of all
messages exchanged between time ¢ = 0 and time ¢t =
T(a,z,a,G).

4) Message and byte complexity for local broadcast com-
munication: The definitions of message and byte complexity
for local broadcast communication parallels the definitions of
message and byte complexity for directional communication.
Rigorously, the broadcast message complexity for a given
consensus function f with respect to a class of graphs G is

bMC(f,G) = inf sup sup sup bM(a, z, a, Q)
a€A GEG zeXIGl aEF(a,z,G)

where bM (a,x,, G) is the overall number of broadcast
messages exchanged between time ¢ = 0 and time ¢t =
T(a,z,a) (a broadcast message is a message sent by a
node to all its neighbors). Analogously, the broadcast byte
complexity for a given consensus function f with respect to
a class of graphs G is

bBC(f,G) = inf sup sup sup

bB(a,z,a, Q)
a€AGeG peXx |Gl aeF(a,z,G)

where bB(a,z,a,G) is the size (in bytes) of all broadcast
messages exchanged between t = 0 and t = T'(a, z, ).

G. Discussion

It is of interest to compare our model of distributed con-
sensus with the models for the consensus problem developed,
respectively, by the Computer Science community and the
Controls and Robotics community. In the Computer Science
community, distributed consensus is typically defined as the
task of computing via a distributed algorithm any function
of a set of initial conditions such that the following three
properties are fulfilled: agreement (no two processes decide
on different values), validity (in absence of failures, if all
agents start with the same value, then every agent decides on
that value) and fermination (all processes eventually decide)
[7]. In the Controls and Robotics community, on the other
hand, consensus is essentially a synonym for average-based
consensus, where agents compute an asymptotic approxima-
tion of a weighted average of their initial conditions via local
communication [6], [4], [5], [1], [2], [3]. Our model, thus, is
more restrictive than the model considered in the Computer



Science community (since the consensus function is required
to fulfill some mild requirements), while it is (significantly)
more general than the model considered in the Controls
and Robotics community (since average-based consensus is
a particular example of locally-sensitive consensus function
defined over R™).

We mention that we also studied storage complexity,
defined as the infimum worst-case (over initial values and fair
executions) storage size required by every agent executing
the consensus algorithm. We do not discuss this complexity
notion here due to space limitation and because in most cases
it is not a bounding factor. However, we report our results
in the synoptic table (Table [I).

In the remainder of the paper we discuss fundamental lim-
itations of performance of the distributed consensus problem,
in terms of fundamental scalings of the different complexity
measures with respect to the network size (i.e., the number
of nodes n). We also discuss algorithms that, in many cases,
recover such asymptotic bounds. Our asymptotic notation
(e.g., O(g(n)) or Q(g(n)) is standard.

III. LOWER BOUNDS ON ACHIEVABLE PERFORMANCE
FOR DISTRIBUTED CONSENSUS

In this section we present lower bounds for the complexity
measures introduced in Section [ILZH We will discuss the
tightness of these bounds in Section

A. Time complexity

A lower bound on time complexity can be obtained rather
easily.

Proposition III.1 (Lower bound on time complexity). For
a given consensus function f and class of graphs G with n

nodes, TC(f,G) € Q(n).

Proof. By contradiction. Let us assume that there exists a
consensus algorithm a that terminates in o(n) time units for
all graphs G € G, initial conditions z € X and executions
o. We restrict our analysis to synchronous executions of the
algorithm (since synchronous executions are a special case
of asynchronous executions, a lower bound with respect to
the former is also a bound for the asynchronous case). We
also consider a specific graph G where the maximal distance
between any two pairs of nodes is Diam(G) = ©(n) (the
line graph is an example of one such graph). Then there
exist two nodes u, v such that n time units are required
for any information from agent w to reach agent v and
vice versa. Now, consider two executions of the consensus
algorithm that only differ in the initial value of agent v.
Rigorously, we consider two sets of initial values =1, z:(2)
with :vg,l) =+ :c§,2) and x,(cl) = x,(f) Vk # v. Since the algorithm
terminates in fewer than n time units, agent u does not hear
any information from agent v in either execution: therefore
its state is identical at the end of both executions. Then agent
u decides on the same consensus value in both executions.
However, f(z(M) # f(z®) since 2\ # 2?): we have
reached a contradiction. O

B. Message complexity

In this section we restrict our attention to either locally-
sensitive or extractive consensus functions. Our strategy is to
find first a lower bound for “dense” graphs and then a lower
bound for “’sparse” graphs. We start with the former case.

Proposition ITI.2 (Lower bound on message complexity for
dense graphs). For a given locally-sensitive or extractive
consensus function f , MC(P,Gg) € Q(|E)).

Proof. Computation of any consensus function f requires
that at least one message is sent along every edge of a
spanning subgraph of the network. If this were not true, there
would exist two subsets of the nodes V; C V and V2 = V\V;
s.t. no messages are exchanged between nodes in V; and in
V5. Then, nodes in V; would have no information about the
initial values of nodes in V5 and vice versa. Since f depends
on all initial values, this leads to a contradiction. Now, it can
be shown that any computation problem that requires use of a
spanning subgraph (i.e., at least one message sent along each
of its edges) may require |F| — 1 messages (and therefore
Q(|E|) messages) on a certain class of almost complete
graphs [17]. This concludes the proof. O

We now turn our attention to a lower bound that becomes
tight for sparse graphs. We first consider comparison-based
algorithms; we will relax this assumption in Proposition [[II.4

Lemma IIL.3 (Lower bound on message complexity for
sparse graphs and comparison-based algorithms). Let f
be a locally-sensitive or extractive consensus function. Let
A, be the set of comparison-based algorithms that solve
the distributed consensus problem and assume that one
minimizes message complexity over the set A. (we denote
the result of such minimization as MC(f,Gs)|a=4,). Then
MC(f,Gs)ja=a, € Qnlogn).

Proof. Consider the restriction to synchronous executions
(since synchronous executions are a special case of asyn-
chronous executions, a lower bound with respect to syn-
chronous executions translates into a bound for the more
general asynchronous case).

The proof is inspired by [15] and relies on the notion of
c-symmetric rings. Consider a graph with a ring topology
(i.e., the n nodes are lined up along a circle). A segment S
on the ring is a sequence of consecutive nodes in the ring, in
clockwise order. Two segments of the same length are said
order-equivalent if the ordered vector of initial conditions of
their respective nodes are order-equivalent. Let c be a positive
constant. A ring is c-symmetric if, for every [ € N such that
v/n <1 < mn, and for every segment S of length [, there are
at least | cn/l| segments in the ring that are order-equivalent
to S (including S itself). An example is shown in Fig. [I]

We now study the message complexity of comparison-
based algorithms on c-symmetric rings. To this purpose,
without loss of generalityﬂ we consider comparison-based
algorithms where at each synchronous time step (recall that
we are considering synchronous executions) a node decides
whether to send a message to its right neighbor, whether
to send a message to its left neighbor, and whether to
stop execution and decide on a consensus value. Every
received message is stored in the receiver node’s state. Every
sent message contains the sender’s entire state. Nodes can
perform arbitrary internal transitions and have unlimited
computational power. At each time step, the state of a node
contains its initial value, its UID, and the history of messages

! Any consensus algorithm on a ring can be simulated by an algorithm in
this class, since we assume no bound on the nodes’ computational power
and no limitations on their internal transitions; therefore any lower bound
on this class of algorithms applies to all consensus algorithms on rings.



exchanged with the neighbors. The initial conditions include
the nodes’ UIDs, endowed with a total ordering.

It can be shown that (see [15]) (i) for any n, there exists a
set of initial conditions such that there exists a c-symmetric
ring for some ¢ > 0, (ii) if a comparison-based algorithm
exchanges o(nlogn) messages on a c-symmetric ring, then
every node receives information from nodes within distance
k where k < n/2 (hence, from a subset of all nodes), and
(iii) if a comparison-based algorithm exchanges o(nlogn)
messages on a c-symmetric ring, then every node ¢’s state is
order-equivalent to another node j’s state at the end of the
execution. More precisely, the k-neighborhoods of agents @
and j (defined as the set containing the node and the 2k
neighbors closest to it) contain agents with UIDs in identical
order: such neighborhoods (shown in the example in Fig. [T)
can not be distinguished by a comparison-based algorithm.
This implies that the leader election problem has a message

042~153
426 ~537
261~370
615~704

Fig. 1: A 1/2-symmetric ring. Each segment of length [ < 4 (and,
in particular, | = 3) is order-equivalent to another segment. Thus,
each agent’s 2-neighborhood is order-equivalent to another agent’s.
complexity Q(nlogn) [15], since after o(nlogn) message
at least two agents are in states that are indistinguishable by
a comparison-based algorithm.

We now apply these results to distributed consensus prob-
lems with locally-sensitive or extractive consensus functions.
The lower bound €2(n logn) on message complexity directly
applies to extractive consensus functions: any distributed
consensus algorithm capable of extracting the initial value of
a node with o(nlogn) messages would also solve the leader
election problem with o(nlogn) messages, which would
contradict the aforementioned result for leader election.

Consider, now, locally-sensitive consensus functions. We
proceed by contradiction, assuming that there exists a
comparison-based algorithm that solves the consensus prob-
lem with a locally-sensitive consensus function with message
complexity o(nlogn). Consider a given set of initial condi-
tions, x, and let the nodes compute the value of the consensus
function. Then, consider a set of initial conditions 2’ identical
to « except that one of the node’s initial values (and therefore
the overall consensus value) is perturbed without changing
the overall ordering of UIDs and node values (this is possible
by the assumption of locally-sensitive consensus function).
We next show that after o(nlogn) messages at least one
node would output the same consensus value it computed
for initial condition x — a contradiction.

Let the nodes be arranged in a ring and let z(!) be an
initial condition such that the ring is c-symmetric. By the
contradiction hypothesis, after o(nlogn) messages are ex-
changed, every node’s state is order-equivalent to at least one
other node’s state and each node correctly outputs f(x(1))
- call this execution oY), Note that, by fact (ii) above,
each node has only received information from 2k +1 < n
neighbors, including itself. Consider a pair u, v of nodes in

order-equivalent states: there exists one node w that belongs
to the k-neighborhood of u but does not belong to the k-
neighborhood of v. Consider now an initial condition z(%)
identical to (") except that the initial value of w is perturbed
without changing the overall order of agents’ values and
UIDs, and such that f(z()) # f(z()) (this is always
possible when the consensus function is locally-sensitive).
Given initial condition (%), under any execution o® with
o(nlogn) messages, v’s state will be identical (and not
just order-equivalent) to the state under execution a(!), and
therefore v will output f(2(1)) as its consensus value (since
by the contradiction hypothesis the algorithm terminates after
o(nlogn) messages). This is a contradiction. O

The bound in Lemma is instrumental to derive the
desired lower bound over the much more general class
of distributed consensus algorithms. Such bound requires
that the set of initial values, ie., X is “large enough”.
This requirement is automatically satisfied whenever X has
infinite cardinality.

Proposition I11.4 (Lower bound on message complexity for
sparse graphs). Let f be a locally-sensitive or extractive
consensus function. Then there exists a function ¥ (n, R)
such that, if the cardinality of X is greater than or equal
to P(n, R), then MC(f,G) € Q(nlogn).

Proof. The key idea (conceptually identical to that in [15]
and [16]) is to show that, perhaps surprisingly, if the cardi-
nality of & is larger than a (very large) finite number, any
distributed consensus algorithm in A executes on a small
subset of X' in a way that it is indistinguishable from the
execution of a comparison-based algorithm. Lemma [III.
then applies and the claim follows.

As in the proof of Lemma [[II.3] without loss of gener-
ality, we consider synchronous executions and distributed
consensus algorithms (referred to as elementary algorithm)
where at each time step a node decides whether to send a
message to its right neighbor, whether to send a message to
its left neighbor, and whether to stop execution and decide
on a consensus value. Every received message is stored in
the receiver node’s state. Every sent message contains the
sender’s entire state. Nodes can perform arbitrary internal
transitions and have unlimited computational power. At each
time step, the state of a node contains its initial value,
its UID, and the history of messages exchanged with the
neighbors. The initial conditions include the nodes’ UIDs
(totally ordered according to some binary relation <).

We introduce the definition of indistinguishable initial
values. Consider two sets of initial conditions z(!) and z(®,
whose elements are arranged in increasing order, that is

xz(-l) < $§-1) and 3352) < x§-2) for 2 < j. Let o be a permutation
over the set of indexes Z = {1,...,n}. We say that z(*) and
x®) are indistinguishable with respect to an algorithm a € A
if, for any permutation o, the trac of the execution with
initial values 2(?) (with indices permuted according to o)
can be obtained from the trace of the algorithm with initial
values (1) (with indices permuted according to ) merely
by substituting every occurrence of an element of z(2) with
the element of corresponding order in z(1).

ZInformally, the trace is the history of an execution the algorithm: for
each time step, it records all agents’ states and all messages exchanged. For
a formal definition, we refer the reader to [7].



We claim that, if the set X of possible initial values is
large enough, there exists a set W C X with [W| > 2n — 1
such that any two n-subsets U C W of size [U| = n are
indistinguishable with respect to a given consensus algorithm
a € A. This claim follows from Ramsey’s theorem [18,
Theorem B]. Specifically, color every subset i C X of size
|| = n so that indistinguishable sets share the same color.
For any elementary algorithm, there are finitely many set of
indistinguishable initial conditions. This is due to the facts
that (i) there are finitely many permutations o (specifically,
n!), (ii) at each time step each node can make a finite number
of decisions (specifically, 8), and (iii) the algorithm must
terminate within a number of rounds equal to R. Then, by
Ramsey’s theorem, there exists a number ¢(n, R) such that,
if |X| > ¢(n, R), then there exists at least one set W C X
of size [W| = 2n — 1 such that all its n-subsets U C W,
|U| = n, share the same color. Note that ¢(n, R) does not
depend on the specific algorithm under consideration.

~We next claim that there is a set 4/ C W of size
|U| = n such that any elementary algorithm behaves like a
comparison-based algorithm (i.e., one can find a comparison-
based algorithm yielding identical executions) on initial
conditions taken from Y. Specifically, take ¢/ as the set of
the n lowest values in W. We claim that any two order-
equivalent sets of size m < n in U (corresponding to m-
neighborhoods of agents executing the distributed algorithm)
yield identical executions, thus implying that the algorithm
effectively emulates a comparison-based algorithms on initial
values from U. To prove the claim, consider two sets i,
Uy € U of size m. Now append to U1 and Uy the same n—m
elements of W\U. The two resulting n-sets belong to W and
elements of U, and U appear in the same position in both
n-sets: therefore they are indistinguishable and, in particular,
whenever the states of two nodes u and v contain sets U}
and Us, respectively, such nodes will output the same value
for the consensus function.

The proof is then completed by using executions of a (non-
comparison-based) elementary algorithm on U/ to “construct”
a comparison-based algorithm. Specifically, we construct a
comparison-based algorithm whose transitions are identical
to the transitions of a given elementary algorithm on I/, based
on the order of the elements in /. Since no comparison-based
algorithm can solve the consensus problem with o(nlogn)
messages, the claim follows.

We stress the fact that the assumptions of Proposition [II1.4
are satisfied whenever the set of initial conditions has infinite
cardinality (e.g., X =R or & = N).

C. Byte complexity

To prove bounds on byte complexity, we must be a little
bit more specific about the content of the messages. In
particular, we will assume that messages carry the UID of
the sender and/or of the receiver. In practice, virtually all
wireless communication protocols require each message to
carry a UID identifying the sender. In addition, in non-
broadcast communication protocols (as those considered in
this section), messages also need to carry a receiver UID. The
proof of Propositions are omitted: they follow quite easily
from Propositions and (and the fact that a UID
requires logn bytes to be transmitted).

Proposition IIL.5 (Lower bound on byte complexity for
sparse networks). Assume messages carry the sender and/or
the receiver UIDs. Let f be a hierarchically computable
and either locally-sensitive or extractive consensus function.
There exists a function 1p(n, R) such that, if the cardinality
of X is greater than or equal to ¥ (n, R), then BC(f,Gs) €

Q((n logn)logn+n b), where b is the size (in bytes) of an
initial condition in X.

Proposition III.6 (Lower bound on byte complexity for
dense networks). Assume messages carry the sender and/or

the receiver UIDs. Then BC(f,Gg) € Q(|E|logn + nb),
where b is the size (in bytes) of an initial condition in X.

D. Lower bounds for local broadcast algorithms

The lower bounds on message complexity in Sections
and are derived under the assumption of directional
communication (the lower bounds on time complexity is,
instead, general). This section adapts those bounds to the case
of local broadcast communication. The proofs for Proposi-
tions and are omitted: they are a simple conse-
quence of the fact that on ring topologies local broadcasts
only offer a twofold improvement in message complexity.
Note that, in this case, we do not make a distinction between
dense and sparse graphs.

Proposition II1.7 (Lower bound on broadcast message com-
plexity). Let f be a locally-sensitive or extractive consensus
Sfunction and G be a set of graphs with n nodes.There exists a
Sunction v (n, R) such that, if the cardinality of X is greater
than or equal to ¥ (n, R), then bMC(f,G) € Q(nlogn).

Proposition II1.8 (Lower bound on broadcast byte complex-
ity). Assume messages carry the sender and/or the receiver
UIDs. Let f be a locally-sensitive or extractive consensus
Sfunction and G be a set of graphs with n nodes. There exists
a function ¥ (n, R) such that, if the cardinality of X is greater
than or equal to 1(n, R), then bBC(f,G) € Q(nlog® n+nb).

Note that the lower bound on byte complexity for local
broadcast schemes is lower than the corresponding lower
bound for directional communication, as one might intu-
itively expect.

IV. TIGHTNESS OF LOWER BOUNDS ON
ACHIEVABLE PERFORMANCE

In this section we study the tightness of the bounds derived
in Section

1) Time complexity: The bound on time complexity is
tight and is achieved by a flooding algorithm, which repeat-
edly transmits its initial value and all received information
to its neighbors (this result is well-known in the context of
leader election — its extension to our setting is straightfor-
ward).

Proposition IV.1 (Tightness of time complexity). For a
given consensus function f and class of graphs G with n

nodes, TC(f,G) € ©(n).

Proof. In a flooding algorithm, information travels from a
node v to any node at distance k£ from v in no more than
k(I + d) time units (recall that, within our model, by the
fairness and non-blocking assumptions, each node executing
a flooding algorithm will transmit a message at least once



every [ + d time units). Since the distance between any pair
of nodes in G is smaller than or equal to n, and since
each node can correctly compute the value of f once it
has knowledge of all initial values, one can conclude that a
flooding algorithm has time complexity O(n). Comparison
with the the lower bound in Proposition [[II. 1] immediately
leads to the claim.

2) Message complexity: Remarkably, a slight variant of
the GHS algorithm [11], [13] (which builds a minimum
spanning tree) achieves message optimality both for dense
and for sparse graphs.

Proposition IV.2. Let [ be a locally-sensitive or extractive
consensus function. Then MC(f,Gq) € O(|E|). Further-
more, there exists a function ¥(n,R) such that, if the
cardinality of X is greater than or equal to (n, R), then
MC(f,Gs) € ©(nlogn).

Proof. Consider the following variant of the GHS algorithm.
First, a rooted minimum spanning tree (MST) is constructed
by executing the GHS algorithm. This operation requires
O(nlogn + |FE|) messages. Note that at the end of the GHS
algorithm the node that is the root of the MST is aware of
this fact. The root node then requests from all nodes their
initial values with a tree broadcast. After a node is contacted,
it waits until all descendants (if any) have sent it their initial
value; it then forward its initial value and its descendants’ to
its parent. Finally, the root computes the consensus function
and sends the consensus value to all nodes. Given the tree
structure, tree broadcasts and information collection require
exactly n — 1 messages each. The claim then follows. [

3) Byte complexity: To prove tightness of the byte com-
plexity bound, we need to assume that the locally-sensitive or
extractive consensus function is hierarchically computable.

Proposition IV.3. Assume messages carry the sender and/or
the receiver UlDs. Let [ be a locally-sensitive or extractive
consensus function that is hierarchically computable. Then
BC(f,G4) € O(|E|logn + nb). Furthermore, there exists
a function Y(n, R) such that, if |X| > (n,R), then
BC(f,Gs) € ©((nlogn)logn + nb).

Proof. Consider the same variant of the GHS algorithm
introduced in the proof of Lemma As discussed, the
GHS algorithm computes a rooted MST in O(nlogn + |E|)
messages, and the consensus function is computed with
further O(n) messages. Each message exchanged by the
GHS algorithm during the construction of the tree has size
O(logn) [11]. Furthermore, under the assumption that the
consensus function is hierarchically computable, each mes-
sage exchanged transmitted along the tree has size O(b) and
there are O(n) such messages. The claim then follows. [J

4) Tightness of bounds for local broadcast communica-
tion: The study of the tightness of the bounds for lo-
cal broadcast communication hinges upon a slightly more
intricate variation of the GHS algorithm. Specifically, the
message complexity of the GHS algorithm is O(nlogn +
|E|); the |E| factor is due exclusively to challenge-reject
message pairs exchanged by nodes during the search for a
minimum weight outgoing edge (MWOE). In the MWOE
search phase, each node contacts the neighbor connected to
its lowest-weight edge: the neighbor’s reply is positive or

negative depending on the two nodes’ group IDs and can
be delayed based on the two nodes’ levels (we refer the
interested reader to [11] for an in-depth definition of this
terminology). Consider, now, a broadcast protocol, and let
each node simply broadcast its level and group ID every
time these are updated (i.e., at most once per level). We
remark that a node can assume at most logn levels during
execution. Neighbor nodes locally record the broadcasts they
receive and look them up when looking for the MWOE. It
is easy to see that such an algorithm emulates the execution
of the GHS algorithm (and, hence, inherits its correctness).

Proposition IV.4 (Broadcast message complexity of consen-
sus). Let f be a locally-sensitive or extractive consensus
Sfunction and G the set of graphs with node set n. There exists
a function ¥ (n, R) such that, if the cardinality of X is greater
than or equal to ¥ (n, R), then bMC(f,G) € ©(nlogn).

Proof. Consider a distributed consensus algorithm that first
emulates the GHS algorithm to construct a rooted spanning
tree (as discussed above) and then performs the sequence
of initial value requests and routings outlined in the proof
of Proposition The overall number of broadcasts ex-
changed per level during the emulation of the GHS algorithm
is ©(n), since each agent only updates its level and group ID
once per level, and the number of levels is O(logn). Given
that the initial values requests and routings require O(n)
broadcast operations, the algorithm has a broadcast message
complexity of O(nlogn): the claim follows. O

The tightness of the bound on byte complexity follows
immediately from Proposition and its proof is omitted
in the interest of brevity.

Proposition IV.5 (Broadcast byte complexity of consensus).
Assume messages carry the sender or the receiver UIDs. Let
f be a locally-sensitive or extractive consensus function and
G a the set of graphs with n nodes. There exists a function
¥(n, R) such that, if the cardinality of X is greater than or
equal to 1(n, R), then bBC(f,G) € O(nlog” n + nb)).

V. DISCUSSION AND CONCLUSIONS

In Table [I| we provide a synoptic view of our results.
Table [I] also includes results for D-connected networks, that
is networks where the edge set is time-varying and there
exists a constant D € R+ ¢ (possibly unknown to the nodes)
such that the union of all edges appearing in the time
interval [t,t+ D) constitute a connected graph. Due to page
limitations, we omit the proofs for the bounds pertaining
to D-connected networks: such bounds can be derived with
techniques very similar to the ones used in this paper.

Table [I] elucidates the relative advantages of different
approaches to distributed computation. On static networks,
the modified versions of the GHS algorithm discussed in this
paper simultaneously achieve optimal time, message, byte,
and storage complexity under mild assumptions regarding
the consensus function, both for directional and broadcast
communication, and both for sparse and dense graphs. On
the other hand, the GHS algorithm is not readily applicable
to time-varying networks and is sensitive to single-points of
failure (since it relies on the construction of a spanning tree).
In other words, a GHS algorithm has minimal robustness
margins to the disruption of a communication channel.



A flooding algorithm is time-optimal, but as one can ex-
pect has poor message and byte complexity. Also the storage
complexity is worst among all considered algorithms. On the
other hand, flooding is maximally robust to communication
disruptions. Also, somewhat surprisingly, this study shows
how a simple flooding algorithm outperforms an average-
based algorithm (that solves the specific consensus problem
with consensus function f(z) = +1%7z) with respect to all
performance metrics except storage complexity (which is
arguably a minor concern for modern embedded systems).

Finally, the hybrid clustering algorithm introduced by the
authors in [14] has performance intermediate between those
of flooding and GHS, as a function of a tuning parameter m.
The main advantage of this algorithm is to “trade” some of
the optimality of GHS with a tunable “degree of robustness”.

As discussed, GHS-like algorithms (and also the hybrid
algorithm in [14]) can not be readily applied to dynamic
settings. Note, however, that the execution time of GHS is
O(n), an order of magnitude faster than average-based algo-
rithms: if reconfigurations are infrequent (i.e., their frequency
is much lower than O(1/n)), these algorithms can indeed be
applied to nominally dynamic networks.

We conclude this paper with a discussion of the limitations
of our analysis, which immediately reflect into a number of
interesting directions for future research. First, optimal algo-
rithms for D-connected networks are not currently known (of
course, our lower bounds may not be tight), which represents
a key area of study. Second, while locally-sensitive and
extractive consensus functions represent a fairly large class of
consensus functions, it is of interest to generalize our bounds
on message, byte, and storage complexity even further. Third,
we employ a worst-case approach over the classes of sparse
and dense graphs. An interesting direction for future research
would be (i) to derive bounds on a finer partition of the class
of possible graphs, e.g. by parameterizing the graphs by their
maximum node degree, and (ii) by embedding the problem
within a probabilistic structure, to derive performance bounds
with respect to sets of graphs randomly drawn from a given
probability distribution, so that one can derive measures of
average (as opposed to worst-case) performance. Fourth, our
model essentially does not include the notion or robustness
with respect to either stopping (i.e., for malfunctions) or
byzantine (i.e., malicious) failures, which is an aspect of
pivotal importance for the reliable deployment of cyber-
physical systems. Finally, a practical implementations of the
algorithms discussed in this paper could shed additional light
on the relative benefits of the different approaches.

Overall, we hope that this work will prompt researchers
in the field of multi-agent systems to compare their results
against the fundamental lower bounds derived in this paper
to properly evaluate the relative benefits of their approach.
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