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Shrinking Complexity of Scheduling Dependencies in LS-SVMBased
LPV System Identification

René Duijkers, Roland Tóth, Dario Piga and Vincent Laurain

Abstract— In the past years, Linear Parameter-Varying
(LPV) identification has rapidly evolved from parametric id en-
tification methods to nonparametric methods allowing the re-
laxation of restrictive assumptions. For example, Least-Square
Support Vector Machines (LS-SVMs) offer an attractive way
of estimating LPV models directly from data without requiri ng
from the user to specify the functional dependencies of the
model coefficients on the scheduling variable. These methods
have also been recently extended in order to automatically
determine the model order directly from data by the help of
regularization. Nonetheless, despite all these recent improve-
ments, LPV identification methods still require some stronga
priori such asi) the dependencies are static or dynamic,ii) it is
known which variables are considered to be the scheduling or
iii) all coefficient functions of the underlaying system depend
on all scheduling variables. This prevents the complexity of the
scheduling dependency of the model to be shrunk gradually
and independently until an optimal bias-variance trade off is
found. In this paper, a novel reformulation of the LPV LS-SVM
approach is proposed which, besides of the non-parametric
estimation of the coefficient functions, achieves data-driven
coefficient complexity selection via convex optimization.The
properties of the introduced approach are illustrated by a
simulation study.

I. I NTRODUCTION

The needto efficiently develop high-performance con-
trol solutions for industrial applications with position de-
pendency, varying operating conditions or nonlinear/time-
varying system behavior, has resulted in an increasing in-
terest for model structures that can represent the behaviorof
such systems with a linear representation, allowing the useof
powerful control synthesis tools. Linear parameter-varying
(LPV) models, introduced in [1], have becomea promising
way of answering to this need in control engineering [2].

An efficient way to estimate LPV models in general
is using aleast-square support vector machine(LS-SVM)
approach [3]. This methodallows to model nonlinear systems
with an LPV input-output(IO) model without requiring from
the user to specify the functional dependencies of the model
coefficientson the schedulingvariables. This is achieved by
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using the dual solution of a regularizedℓ2 loss function.
The resulting approach provides a direct nonparametric es-
timation of the dependencies from data under general noise
conditions,where the estimate is obtained by solvinga set
of linear equations [4], [5].

A particular handicap of the of LS-SVM based LPV iden-
tification approaches is that the non-parametric estimation
is governed by the so-called Kernel functions, which are
assumed to depend on all scheduling variables to avoid prior
structural specification of the dependencies. However, this
corresponds to a prejudice that all coefficient functions of
the underlaying system depend on all of these variables
which is not the case in most practical applications. Com-
monly, it is not known beforehand which variables play a
significant role in the dependence and which variables can
be excluded. Taking all of them into account leads to an
over-parametrization problem which results in an increased
variance and complexity of the estimated models.

In this paper, the aim is to tackle this over-
parameterization by estimating the underlying structure of
the process. To achieve this, weproposea regularization
based LS-SVMmethodwhich penalizes coefficient functions
that are insensitive w.r.t. variations ofthe schedulingvariable.
The introduced penalty on the coefficient functionsgradually
shrinks the non-dependent functions to constants(including
zero), thereby revealing the underlying structure and reduc-
ing complexity in terms of model order and dependency.
In contrast with a previous work [6],the proposed method
does not directlypenalizethe amplitude of thecoefficient
functions, but it shrinks the sensitivity (i.e., the derivative)
of the functions with respect to the schedulingsignals to
zero.This means that the dependency can decrease in terms
of complexity rather than just completely vanishing as in the
sparse estimator approach proposed in [6]. This is highly
beneficial when using the estimated models for control
synthesis, commonly requiring low coefficient complexity.

The paper is organized as follows: first, in SectionII-A ,
the LPV context in which the estimation problem is ad-
dressed is presented. Then, SectionsII-B to II-D describe
the identification problem and the solution usingthe LS-
SVM estimator and the proposed regularization structure.
Finally, the performance of the approach is demonstrated
in a Monte-Carlo study in SectionIII and conclusions are
drawn in SectionIV.

II. LPV MODEL SELECTION

In this section,the proposed approach to determine the
structure and the underlaying dependencies of an LPV-IO



model is detailed. Once the LPV model to be identified
and its variables are introduced, the proposed regularized
identification problem is presented: the objective of coeffi-
cient dependency shrinkage is expressed by introducing an
additional term into the regularizedℓ2 prediction-error cost
function. Finally an LS-SVM estimator is formulated and
it is shown that the introduced regularization term allows
a gradual shrinking of the complexity of the estimated
functional dependencies.

A. Model structure

For the sake of brevity, the simplest form of LPV models
used in the discrete-time IO identification frameworkis
considered,which is theautoregressive with exogenous input
(ARX) structure, defined, in thesingle-input single-output
(SISO) case, as

y(k) =

na
∑

i=1

ai(p(k))y(k− i) +

nb
∑

j=0

bj(p(k))u(k− j) + e(k).

(1)
Here,k ∈ Z denotes the discrete time,e(k) ∈ R is assumed
to be a zero-mean white noise,u(k) ∈ R and y(k) ∈ R

represent the measured input and output signals of the system
to be identified, respectively, andp(k) ∈ R

np is the so-
called scheduling variable, which ranges in a compact set
P ⊆ R

np and, according to the literature (see, e.g., [2]), it is
assumed to be measurable. According to the LPV nature of
the model, the coefficientsai and bj are seen as functions
of the scheduling signalp and they are intended to describe
the varying linear dynamical relation betweenu andy. For
clarity of exposition, in this paper, the model coefficientsai
and bj are consideredto be differentiable andto have only
static dependence onp, i.e., ai and bj only depend on the
value of p at time k. Note that in parametric identification
of LPV systems, the dependence of the coefficient functions
ai and bj on the scheduling parameterp is commonly
parameterized in terms of a linear combination of a finite
number of a priori chosen basis functions (linear basis,
monomials, etc.) in the variablep(k), see e.g., [7], [8].On
the other hand, in this contribution, the dependence ofai and
bj on the scheduling variablep is nota priori parameterized.

Rewrite the model structure (1) as

y(k) =

ng
∑

i=1

ai(p(k))xi(k) + e(k), (2)

wherexi(k) denotes thei-th component of theng = na +
nb + 1-dimensional vectorx(k) defined as

x(k) = [y(k − 1) . . . y(k − na) u(k) . . . u(k − nb)]
⊤

and, with an abuse of notation,{ai(·)}
ng

i=1 stands for all the
associated coefficient functions, according to (1). Similar
to the parametric case, the coefficient functionsai are
considered to have a hypotheticalparameterization

ai(·) = ω⊤
i φi(·), (3)

where eachφi is a nonlinear map from the scheduling
parameter spaceP to a high-dimensional space, the so-
called feature spaceRnH . ωi is an nH-dimensional vector

of constant parameters.In contrast with the parametric case,
the structural dependence of the coefficientsφi on p is
assumed to bea priori unknown and the dimensionnH of
the parameter vectorωi is potentially infinite.One of the
originality of this work with respect to usual assumptions is
to consider thatai(.) might depend only on a dimensional
subset ofp(k). Should the elements ofp(k) correspond to
delayed version of a one dimensional scheduling variable,
the presented approach can be seen as a way to estimate
parsimoniously dynamical or delayed dependencies. Should
the elements ofp(k) be different scheduling variables, the
aim would be to determine which dependencies best suit for
each nonlinear dependency or whether the coefficients are
scheduling dependent at all.

B. Identification problem

The goal is to estimate the dependence of the coefficient
functionsai(·) on the scheduling variablep accurately, but, at
the same time, minimize the “complexity” of these estimated
functions till an appropriate trade off between the prediction
error (fit w.r.t. the data) and variation of the functions over P
is found. The latter corresponds to a particular bias/variance
trade off. This is doneby solving an optimization problem
using a set ofN data pointsDN = {(u(k), p(k), y(k))}Nk=1,
generated by the system to be identified.This system is
assumed to lay inside of the model set corresponding to (1).

Like in non-regularized LS-SVM identification ap-
proaches, e.g.,[3], [9], [10], the optimization problem uses a
cost function penalizing the2-norm of the parametervectors
ωi and the residuale(k) = y(k) −

∑ng

i=1 ω
⊤
i φi(p(k))xi(k)

corresponding to the one-step-ahead prediction error by (1).
Because weaim at estimatingthe dependence ofφi on the
scheduling variablep with a minimal complexity, which
translates to the expectation of a smooth variation of each
ai over P, an additional term to penalize the norm of
the sensitivity of eachφi towards each dimension ofp
is introduced. This results in the following identification
criterion, i.e., cost function:

W(ω, e)=
1

2
‖ω‖2ℓ2+

γ1

2
‖e(k)‖2ℓ2+γ2

ng
∑

i=1

np
∑

j=1

∥

∥

∥

∥

∂ω⊤
i φi(p)

∂pj

∥

∥

∥

∥

ℓ∞

(4)
whereγ1 > 0 andγ2 > 0 represent the tuning hyperparame-
ters specified by the user, commonly required in regularized
optimization.

Due to the differentiability assumption,the norm penaliz-
ing the sensitivity can be written as

∥

∥

∥

∥

∂ω⊤
i φi(p)

∂pj

∥

∥

∥

∥

ℓ∞

= sup
p∈P

∣

∣

∣

∣

∂ω⊤
i φi(p)

∂pj

∣

∣

∣

∣

. (5)

Let us define the index setIτs = {z ∈ Z | s ≤ z ≤ τ}

and the setP = {[p̄
(s1)
1 . . . p̄

(snp )
np ] ∈ P | with s1 ∈

I
ns

1 , . . . , snp
∈ I

ns

1 } which corresponds to an (equidistant)
gridding of P with ns points along each dimension. Using
these grid points, we can calculate a lower-bound approxi-



mationof the sensitivity norm:

sup
p∈P

∣

∣

∣

∣

∂ω⊤
i φi(p)

∂pj

∣

∣

∣

∣

≥ max
p̄∈P

∣

∣

∣

∣

∂ω⊤
i φi(p)

∂pj

∣

∣

∣

∣

p=p̄

. (6)

By introducing the slack variables{ri,j}
ng,np

i=1,j=1, we can
formulate the identification problem in terms of a quadratic
program:

min
w,r,e

1

2

ng
∑

i=1

ω⊤
i ωi +

γ1

2

N
∑

k=1

e2(k) + γ2

ng
∑

i=1

np
∑

j=1

ri,j (7a)

s.t. e(k) = y(k)−

ng
∑

i=1

ω⊤
i φi(p(k))xi(k), k ∈ I

N
1

(7b)

− ri,j ≤
∂ω⊤

i φi(p)

∂pj

∣

∣

∣

∣

p=p̄

≤ ri,j ,

i ∈ I
ng

1 , j ∈ I
np

1 , p̄ ∈ P

(7c)

Note that the parametersωi in (7) cannot be computed since
it would require an explicit representation of the feature maps
φi.

C. Dual formulation

Since we cannot estimate both the parameters and the fea-
ture maps together, the dual formulation of (7) is considered.
For this purpose, let us define theLagrangianas

L(ω, e, r, α, β+, β−) =

1

2

ng
∑

i=1

ω⊤
i ωi +

γ1

2

N
∑

k=1

e2(k) + γ2

ng
∑

i=1

np
∑

j=1

ri,j

−

N
∑

k=1

αk

(

e(k)− y(k) +

ng
∑

i=1

ω⊤
i φi(p(k))xi(k)

)

−

ng
∑

i=1

np
∑

j=1

M
∑

m=1

β+
i,j,m

(

ri,j −
∂ω⊤

i φi(p̄m)

∂pj

)

−

ng
∑

i=1

np
∑

j=1

M
∑

m=1

β−
i,j,m

(

ri,j +
∂ω⊤

i φi(p̄m)

∂pj

)

.

(8)

Hereα = {αk}
N
k=1 , β+ = {β+

i,j,m}
ng,np,M

i=1,j=1,m=1 andβ− =

{β−
i,j,m}

ng,np,M

i=1,j=1,m=1 are the Lagrangian multipliers andP =

{p̄m}Mm=1 is asetcontaining all(M = np×ns) grid points.

The term ∂ω⊤

i φi(p̄m)
∂pj

has been used as a short notation for
∂ω⊤

i φi(p)
∂pj

∣

∣

∣

p=p̄m

.

Next, the Lagrange dual functiong(α, β+, β−) is defined
as theinfimum of L(ω, e, r, α, β+, β−) over (ω, e, r), i.e.,

g(α, β+, β−) = inf
ω,e,r

L(ω, e, r, α, β+, β−). (9)

Since L(ω, e, r, α, β+, β−) is a convex quadratic function
of (ω, e, r), the infimum of the Lagrangedual function
g(α, β+, β−) can be computed from the (necessary and

sufficient) optimality conditions:

∂L

∂ωi

= 0 → ωi =

N
∑

k=1

αkφi(p(k))xi(k) (10a)

+

np
∑

j=1

M
∑

m=1

∂φi(p̄m)

∂pj

(

β−
i,j,m − β+

i,j,m

)

,

∂L

∂e
= 0 → αk = γ1e(k), (10b)

∂L

∂ri,j
= 0 → γ2 =

M
∑

m=1

(

β−
i,j,m + β+

i,j,m

)

. (10c)

Here, condition (10a) needs to be satisfied for alli ∈ I
ng

1 ,
(10b) for all k ∈ I

N
1 and condition (10c) for all i ∈ I

ng

1 and
j ∈ I

np

1 . Substitution of the optimality conditions (10a)-(10c)
into the Lagrangian (8) gives the Lagrange dual function as
given in (11).

In (11), Xi is a diagonal matrix whose diagonal entries are
xi(1), · · · , xi(N). Φ(N)

i ,∆
(M×np)
i , β+, β− are defined as

∆
(M×np)
i =

[

∂φi(p̄1)
∂p1

. . .
∂φi(p̄1)
∂pnp

. . .

. . .
∂φi(p̄M )

∂p1
. . .

∂φi(p̄M )
∂pnp

]

(12a)

and

Φ
(N)
i =

[

φi(1) φi(2) . . . φi(N)
]

, (12b)

β+=
[

β+
i,1,1 . . . β+

i,np,1
β+
i,1,2 . . . β+

i,np,M

]⊤

, (12c)

β−=
[

β−
i,1,1 . . . β−

i,np,1
β−
i,1,2 . . . β−

i,np,M

]⊤

. (12d)

The Lagrange dual problem associated with (7) is now given
by the optimization problem:

min
α,β+,β−

− g(α, β+, β−) (13a)

s.t. γ2 =

M
∑

m=1

(

β−
i,j,m + β+

i,j,m

)

(13b)

β+
i,j,s1,m

, β−
i,j,m ≥ 0, i ∈ I

ng

1 , j ∈ I
np

1 ,m ∈ I
M
1

(13c)

Note that (13) is a convex optimization problem since the
Lagrange dual functiong(α, β+, β−) is concave. In fact, the
matrix

Ωi=







Xi

(

Φ
(N)
i

)⊤

Φ
(N)
i Xi Xi

(

Φ
(N)
i

)⊤

∆
(M×np)
i

(

∆
(M×np)
i

)⊤

Φ
(N)
i Xi

(

∆
(M×np)
i

)⊤

∆
(M×np)
i






(14)

appearing in (11) is positive semidefinite since it is defined
by the product

Ωi =







Xi

(

Φ
(N)
i

)⊤

(

∆
(M×np)
i

)⊤







[

Φ
(N)
i Xi ∆

(M×np)
i

]

. (15)



g(α, β+, β−) = −
1

2γ1
α⊤α+α⊤Y −

1

2

ng
∑

i=1

[

α

β− − β+

]⊤







Xi

(

Φ
(N)
i

)⊤

Φ
(N)
i Xi Xi

(

Φ
(N)
i

)⊤

∆
(M×np)
i

(

∆
(M×np)
i

)⊤

Φ
(N)
i Xi

(

∆
(M×np)
i

)⊤

∆
(M×np)
i







[

α

β− − β+

]

(11)

D. Estimation of the coefficient functions

Since the feature mapsφ are assumed to bea priori
unknown, the parameter vectorωi can not be explicitly com-
puted via (10a). On the other hand, thanks to the structure
of the Lagrange dual function (11), the dual problem can
be solved without a prior specification of thefeature maps
defining the matricesΦ(N)

i and∆(M×np)
i . Let us first rewrite

the matrixΩi in the block form

Ωi =







Xi

(

Φ
(N)
i

)⊤

Φ
(N)
i Xi Xi

(

Φ
(N)
i

)⊤

∆
(M×np)
i

(

∆
(M×np)
i

)⊤

Φ
(N)
i Xi

(

∆
(M×np)
i

)⊤

∆
(M×np)
i







=





Ω
(N,N)
i Ω

(N,M×np)
i

(

Ω
(N,M×np)
i

)⊤

Ω
(M×np,M×np)
i



 . (16)

The entries ofΩ(N,N)
i are given by

[

Ω
(N,N)
i

]

j,k
= x(j)φ⊤

i (p(j))φi(p(k))x(k)

= x(j)Ki(p(j), p(k))x(k),
(17)

whereKi is a positive definite kernel function defining the
inner products ofφ⊤

i (j)φi(k). Consequently,Ki definesΩi

and hence characterizes the feature maps{φi}
ng

i=1 in an
efficient fashion. This allows to characterize a wide range of
nonlinear dependencies as a linear combination of infinitely
many functions (nH = ∞) defined through the choice of
the particular inner product and a relatively low dimensional
parameterα. This approach is called thekernel trick [11],
[12] and in fact it corresponds to function estimator based
on thereproducing kernel Hilbert spacetheory [13].

The matrixΩ(N,M×np)
i is defined as

Ω
(N,M×np)
i =

[

Ji(p̄1) Ji(p̄2) . . . Ji(p̄M )
]

, (18)

where the entries ofJi(p̄) are given by

[

J
(N,np)
i (p̄)

]

j,k
= x(j)φ⊤

i (p(j))
∂φ(p̄)

∂pk
= x(j)

∂Ki(p(j), p̄)

∂pk
.

(19)

Finally, the matrixΩ(M×np,M×np)
i is defined as

Ω
(M×np,M×np)
i =










Hi(p̄1, p̄1) Hi(p̄2, p̄1) . . . Hi(p̄M , p̄1)
Hi(p̄1, p̄2) Hi(p̄2, p̄2) . . . Hi(p̄M , p̄2)

...
...

. . .
...

H
(
i p̄1, p̄M ) Hi(p̄2, p̄M ) . . . Hi(p̄M , p̄M )











,
(20)

whereentries ofHi(p̄1, p̄2) are given by
[

H
(np,np)
i (p̄1, p̄2)

]

j,k
=

∂φ⊤(p̄1)

∂pj

∂φ(p̄2)

∂pk
=

∂Ki(p̄1, p̄2)

∂pj∂pk
.

(21)
It can be noticed that the Kernel not only characterizes

the feature maps, but is also defines their partial derivatives
w.r.t. to the scheduling variables.

For example,a typical choice of kernel is theradial basis
function (RBF) kernel:

Ki(p(j), p(k)) = exp

(

−
‖p(j)−p(k)‖2

ℓ2

σ2
i

)

. (22)

Using RBFs as the kernel in the simplest case wherenp =
1, the derivatives in (19) and (21) become:

∂Ki(s1, s2)

∂s2
=

2(s1 − s2)

σ2
i

Ki(s1, s2), (23a)

∂2Ki(s1, s2)

∂s1∂s2
=

[

2

σ2
i

−
4(s1 − s2)

2

σ4
i

]

Ki(s1, s2). (23b)

Note that other choice of kernel functions supply other
partial derivatives, while in the RBF case, these partial
derivatives corresponds to the first and second moments of
a multidimensional Gaussian distribution.

With the use of this kernel trick, the Lagrangian multipliers
α, β+, β− can be computed through the dual problem (13)
without specifying the feature mapsφi. When we combine
the optimality condition (10a) and the definition of the kernel
function, we can use these Lagrangian multipliers to estimate
the coefficient functions:

ai(·) = φi(·)
⊤ωi =

N
∑

k=1

αkKi(·, p(k))xi(k)

+

np
∑

j=1

M
∑

m=1

∂Ki(·, p̄m)

∂pj

(

β−
i,j,m − β+

i,j,m

)

. (24)

With these estimated coefficient functions,it becomes
possibleto find the underlying dependency structure of the
data generating process. Because of the regulation term, all
coefficient functions without a dependency on a particular
dimension ofp will be forced to zero along that dimension.
By using a threshold value on these relationships,these
dependency structures give valuable knowledge thatcan
be further used in identification steps. Furthermore, due to
the shrinkage on the variation of the estimated coefficient
functions, increasing theγ2 hyper-parameter will directly
result in enforcing asmootherestimate of the dependencies
wherever it is possible without significantly increasing the
ℓ2 loss on the prediction. Thisresultsin a gradual decrease
of the complexity of the estimated functions.



III. S IMULATION EXAMPLE

The performance of the approach w.r.t. recovering the
structural dependence ofan LPV system is shown in this
section by means ofa Monte-Carlostudy based simulation
example. In this study, we assume thatp(k) is scalar (i.e.,
np = 1).

The considered asymptotically stable LPV data-generating
system is described by the difference equation

y(k) = a1(p(k))y(k − 1) + a2(p(k))y(k − 2)

+ a5(p(k))y(k − 5) + a8(p(k))y(k − 8)

+ b2(p(k))u(k − 2) + b7(p(k))u(k − 7) + e(k), (25)

wheree(k) is a zero-mean white Gaussiannoise andu(k)
is the input signal. The coefficients functions are described
by the (nonlinear) functions:

a1(p(k)) = −0.2, (26a)

a2(p(k)) = 0.2 + 0.22 sin(
2

π
p(k)), (26b)

a5(p(k)) = 0.15, (26c)

a8(p(k)) =











−0.4 if p(k) > 0.4;

−p(k) if − 0.4 ≤ p(k) ≤ 0.4;

0.5 if p(k) < −0.4;

(26d)

b2(p(k)) = 0.5, (26e)

b7(p(k)) = exp(−p(k)). (26f)

Note thata1, a5 and b2 do not have a dependency on the
scheduling variablep.

The system described in (25) is estimated from a data set
DN = {(u(k), p(k), y(k))}Nk=1 with N = 500 input, output,
and scheduling-variablemeasurements. To gather data, the
input and the scheduling trajectories have been chosen to
be white-noise sequences, independent of each other, and
with a uniform distributionU(−1, 1). In order to provide
representative results, a Monte-Carlo simulation of 100 runs
is performed. At each run, new realizations of the noise, of
the input and of the scheduling variable are considered. The
average of thesignal-to-noise ratio(SNR) over the Monte-
Carlo simulation is equal to 23 dB, where the SNR is defined,
at each run, as

10 log10

(

∑N
k=1 w(k)

2

∑N

k=1 e0(k)
2

)

, (27)

with w(k) denoting the noise-free system output.
The following LPV model structure is used to estimate the

data-generating system:

y(k) =

na
∑

i=1

ai(p(k))y(k − i) +

nb
∑

j=1

bj(p(k))u(k − j), (28)

with na = nb = 10. In the model structure, the dependencies
of ai(p(k)) andbj(p(k)) on the scheduling variablep are not
specified.

The coefficient functionsai(p(k)) are estimated in two
ways: by means of a non-regularized LS-SVM approach,

corresponding to the minimization of the objective function
(4) for γ2 = 0 and by using theregularizedLS-SVM (RLS-
SVM) approach described in this paper. In both approaches,
radial basis functions are used as kernels to define the
inner product among the feature maps. The values of the
parametersγ1 andγ2 are chosen via cross-validation based
grid search, independently for each method. The intervalP

= [-1 1] is gridded into 13 equidistant nodesP = {p̄m}13m=1.
To compare the regularized LS-SVM to the non-

regularized method, the average (over the Monte Carlo
simulation) of the estimated peak to peak values of the
coefficient functions is computed. These values are reported
in Table I. Here we see that the RLS-SVM method is able
estimate the coefficient functions with a reduced bias and
variance in comparison with the LS-SVM method. The small
mean values of the non-dependent coefficient functions show
that it is possible to extract information about the dependency
structure of the underlying process. This can be further
exploited via thresholdingbasedre-estimation.

In order to visualize the difference between the LS-SVM
and RLS-SVM methods, the difference between the true
coefficient functions and the coefficient functions estimated
with the two methods is plotted in Fig.1, together with
the standard deviation boundaries. The estimated values are
the mean values of the 100 Monte-Carlo runs.The error
reduction by using the RLS-SVM is clearly visible and it can
also be seen that therecoveredcoefficient functionsa1, a5
and b2 do not have any dependency onp. This knowledge
could be further used in order to better parameterize the
model and hence reduce the variance.

IV. CONCLUSIONS

In this paper, we have addressed the problem of identifying
LPV-ARX models in the LS-SVM framework, where the
underlying dependence of the coefficient functions on the
scheduling variable is nota priori known. By penalizing
the sensitivity of the coefficient functions w.r.t. the schedul-
ing variables, the method provides a way to estimate the
dependency structure of the plant without exploiting any
a priori information on the underlying behavior of the
true LPV system. The reported simulation has shown the
effectiveness of the proposed approach in providing a lower-
variance estimate (w.r.t. to standard LS-SVM methods) of
the coefficient functions describing the LPV model.
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Fig. 1. Difference between the true and the estimated coefficient functions
together with the standard deviation boundaries.
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[7] L. Giarré, D. Bauso, P. Falugi, and B. Bamieh, “LPV modelidentifi-
cation for gain scheduling control: An application to rotating stall and
surge control problem,”Control Engineering Practice, vol. 14, no. 4,

pp. 351–361, 2006.
[8] J. W. van Wingerden and M. Verhaegen, “Subspace identification of

bilinear and LPV systems for open- and closed-loop data,”Automatica,
vol. 45, no. 2, pp. 372–381, 2009.

[9] T. Falck, K. Pelckmans, J. Suykens, and B. De Moor, “Identification
of wiener-hammerstein systems using LS-SVMs,” in15th IFAC sym-
posium on System Identification, Saint Malo, France, July 2009.

[10] I. Goethals, K. Pelckmans, J. Suykens, and B. De Moor, “Identification
of MIMO Hammerstein models using least squares support vector
machines,”Automatica, vol. 41, no. 7, pp. 1263–1272, 2005.

[11] B. Schölkopf and A. Smola,Learning with kernels. Cambridge MA:
MIT Press, 2002.

[12] V. Vapnik, Statistical Learning Theory. Wiley-Interscience, 1998.
[13] F. Cucker and S. Smale, “On the mathematical foundations of learn-

ing,” Bulletin of the American Mathematical Society, vol. 39, no. 1,
pp. 1–49, 2001.


	Introduction
	LPV model selection
	Model structure
	Identification problem
	Dual formulation
	Estimation of the coefficient functions

	Simulation example
	Conclusions
	References

