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Shrinking Complexity of Scheduling Dependencies in LS-SVMBased
LPV System Identification

René Duijkers, Roland Toéth, Dario Piga and Vincent Laurai

Abstract— In the past years, Linear Parameter-Varying
(LPV) identification has rapidly evolved from parametric id en-
tification methods to nonparametric methods allowing the re
laxation of restrictive assumptions. For example, Least-Quare
Support Vector Machines (LS-SVMs) offer an attractive way
of estimating LPV models directly from data without requiri ng
from the user to specify the functional dependencies of the
model coefficients on the scheduling variable. These methsd
have also been recently extended in order to automatically
determine the model order directly from data by the help of
regularization. Nonetheless, despite all these recent impve-
ments, LPV identification methods still require some stronga
priori such asi) the dependencies are static or dynamidj) it is
known which variables are considered to be the scheduling or
iii) all coefficient functions of the underlaying system depend
on all scheduling variables. This prevents the complexity fothe
scheduling dependency of the model to be shrunk gradually
and independently until an optimal bias-variance trade offis
found. In this paper, a novel reformulation of the LPV LS-SVM
approach is proposed which, besides of the non-parametric
estimation of the coefficient functions, achieves data-dven
coefficient complexity selection via convex optimizationThe
properties of the introduced approach are illustrated by a
simulation study.

I. INTRODUCTION

using the dual solution of a regularizeéd loss function.
The resulting approach provides a direct nonparametric es-
timation of the dependencies from data under general noise
conditions,where the estimate is obtained by solviagset

of linear equations [4], [5].

A particular handicap of the of LS-SVM based LPV iden-
tification approaches is that the non-parametric estimatio
is governed by the so-called Kernel functions, which are
assumed to depend on all scheduling variables to avoid prior
structural specification of the dependencies. Howeves, thi
corresponds to a prejudice that all coefficient functions of
the underlaying system depend on all of these variables
which is not the case in most practical applications. Com-
monly, it is not known beforehand which variables play a
significant role in the dependence and which variables can
be excluded. Taking all of them into account leads to an
over-parametrization problem which results in an incrdase
variance and complexity of the estimated models.

In this paper the aim is to tackle this over-
parameterization by estimating the underlying structure o
the process. To achieve this, vweoposea regularization
based LS-SVMnethodwhich penalizes coefficient functions

The needto efficiently develop high-performance con-thatare insensitive w.r.t. variationstiie schedulingariable.

trol solutions for industrial applications with positiore-d

The introduced penalty on the coefficient functignadually

pendency, varying operating conditions or nonlinear/timeShrinks the non-dependent functions to constgimsiuding
varying system behavior, has resulted in an increasing i€ro) thereby revealing the underlying structure and reduc-
terest for model structures that can represent the behaf/iorind complexity in terms of model order and dependency.
such systems with a linear representation, allowing theofise N contrast with a previous work [6he proposed method

powerful control synthesis toaldinear parameter-varying
(LPV) models, introduced in [1], have becoragromising
way of answering to this need in control engineering. [2]

does not directlypenalizethe amplitude of thecoefficient
functions, but it shrinks the sensitivity (i.e., the detiva)
of the functions with respect to the schedulisignalsto

An efficient way to estimate LPV models in genera€ro.This means that the dependency can decrease in terms

is using aleast-square support vector machifeS-SVM)

of complexity rather than just completely vanishing as ia th

approach [3]. This methoallows to model nonlinear systems SParse estimator approach proposed in [6]. This is highly

with an LPVinput-output(lO) model without requiring from

beneficial when using the estimated models for control

the user to specify the functional dependencies of the mod@Nthesis, commonly requiring low coefficient complexity.

coefficientson the schedulingariables. This is achieved by
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The paper is organized as follows: first, in Sectibn\,
the LPV context in which the estimation problem is ad-
dressed is presentedhen, Sectionsl-B to II-D describe
the identification problem and the solution usittte LS-
SVM estimator and the proposed regularization structure
Finally, the performance of the approach is demonstrated
in a Monte-Carlo study in Sectiohl and conclusions are

the Centre de Recherche en Automa—drawn in SectionV.
rue Jean
E-mai

II. LPV MODEL SELECTION

In this section,the proposed approach to determine the
structure and the underlaying dependencies of an LPV-10



model is detailed. Once the LPV model to be identifieaf constant parameterk contrast with the parametric case,
and its variables are introduced, the proposed regularizéfte structural dependence of the coefficiestson p is
identification problem is presented: the objective of ceeffiassumed to ba priori unknown and the dimensiony of
cient dependency shrinkage is expressed by introducing #rve parameter vectap; is potentially infinite.One of the
additional term into the regularizetd prediction-error cost originality of this work with respect to usual assumptiogs i
function. Finally an LS-SVM estimator is formulated andto consider thai;(.) might depend only on a dimensional

it is shown that the introduced regularization term allowsubset ofp(k). Should the elements gf(k) correspond to

a gradual shrinking of the complexity of the estimatedielayed version of a one dimensional scheduling variable,
functional dependencies. the presented approach can be seen as a way to estimate
parsimoniously dynamical or delayed dependencies. Should
) ) the elements op(k) be different scheduling variables, the
For the sake of brevity, the simplest form of LPV models;jn \ould be to determine which dependencies best suit for

used in the discrete-time 10 identification framewas gach nonlinear dependency or whether the coefficients are
consideredwhich is theautoregressive with exogenous '”pmscheduling dependent at all.

(ARX) structure, defined, in thsingle-input single-output
(SISO) case, as

A. Model structure

B. ldentification problem

Na Nb
y(k) = Zai(p(k))y(k —1)+ ij (p(k))u(k —7)+e(k). The goal is to estimate the dependence of the coefficient
i=1 j=0 functionsa; () on the scheduling variabjeaccurately, but, at
Here,k € Z denotes the discrete time(k) € R is assumed the same time, minimize the "complexity” of these est_mated
functions till an appropriate trade off between the predict

1o be a zero-mean wh|t_e noise(k) € R gnd y(k) € R error (fit w.r.t. the data) and variation of the functions o¥e
represent the measured input and output signals of thensystée

to be identified, respectively, ang(k) € R" is the so- IS found. The latter corresponds to a particular bias/naga

called scheduling variablewhich ranges in a compact settrade off. This is dondy solving an optimization problem

) ; h ) N
P C R™ and, according to the literature (see, e.g., [2]), it jis/>ing a set ofv data pointsDy = {(u(k), p(k), y(k)) s,

assumed to be measurable. According to the LPV nature ggsnjn[r?é?jdtob?; t?ﬁsi?ésgr?héomgzéﬁsgg 'zgdr]; Sgri;?.g)g (
the model, the coefficients; and b; are seen as functions y P

of the scheduling signal and they are intended to describe Like in nonregularized LS'S.VM i_dentification ap-
the varying linear dynamical relation betweerand y. For proaches,_e.g[3], [9.]’.[10]’ the optimization problem uses a
clarity of exposition, in this paper, the model coefficieats cost fléntcr?on pegagflzg Tﬁ—nkc;) rm of the pgramelzmectzrs
andb; are consideredo be differentiable ando have only and the residu (k) = y(k) = 352 w; ."'(.p( ))i(k)
static dependence om ie., a; andb; only depend on the correspondm_g to the qne—§tep—ahead prediction errotpy (
value ofp at time k. Note that in parametric identification Because weim at estimatinghe dependence g; on the

of LPV systems, the dependence of the coefficient functiort%he?tf[“ngt vz;r:abl@ W'ttht_a m]lnlmal cotrl:plex_n}[/_, Wh'fCh h
a, and b, on the scheduling parameter is commonly ranslates to the expectation of a smooth variation of eac

parameterized in terms of a linear combination of a finit?ﬁ over Pt .‘?n afdd|t|onal ;cerm dto penﬁ“é? the. norm of
number of a priori chosen basis functions (linear basis, € sensitvity o eachy; owards each dimension qj
monomials, etc.) in the variable(k), see e.g., [7], [8]On is introduced This results in the following identification

the other hand, in this contribution, the dependenae @ind criterion, i.e., cost function:
b; on the scheduling variabjeis nota priori parameterized. ng np

: 1l m 2 dw ¢i(p)
Rewrite the modelgstructurdX as W(w,e)= §Hw||z2+7||€(’f)|\z2+72 ;; o .
y(k) = a;(p(k))z; (k) + e(k), (2) (4
(&) ; (p(E)as(k) + elk) where~y; > 0 and~. > 0 represent the tuning hyperparame-
ters specified by the user, commonly required in regularized

wherez;(k) denotes the-th component of they, = n, +

ny, + 1-dimensional vector:(k) defined as optimization

- Due to the differentiability assumptiothe norm penaliz-
z(k) =[y(k—=1) ... y(k —na) u(k) ... u(k —np)] ing the sensitivity can be written as
and, with an abuse of notatiofig;(-)};%, stands for all the - .
associated coefficient functions, according . (Similar Hawi i(p) Ow; ¢i(p) ‘
to the parametric case, the coefficient functioms are Op; Op;
considered to have a hypothetigarameterization

®)

= sup
lo,  PEP

Let us define the index s@f = {z € Z | s < z < 7}

() = w. b (- s .
ai() = w; ¢i("), (3) and the setP = {[pgsl) ﬁ%p’“’)] e P | withs; €
where each¢; is a nonlinear map from the schedulingly,...,s, € I*} which corresponds to an (equidistant)

parameter spac® to a high-dimensional space, the so-gridding of P with ng points along each dimension. Using
called feature spac®"". w; is an ny-dimensional vector these grid points, we can calculate a lower-bound approxi-



mation of the sensitivity norm: sufficient) optimality conditions:

dw;! ¢i(p) ‘ dw;' ¢i(p) oL N
sup | —=—>*| > max |——=> . 6 _ _ . )
i R Zak@(p(k))xz(k) (10a)
By introducing the slack variable$r; ;};%;"7_,, we can +Z Z O¢i(Pm) (5= — B )
formulate the identification problem in terms of a quadratic L op; 1,5,m i,4,m)
program: ==
oL
N S 5 = 0 = ar =me(k), (10b)
gl’ui_zw A DILL RS WL Ry —0 - —i(ﬁ‘ + B m) (10¢)
=1 IZ i=1 j=1 5‘7“1-,]- = 72 —m:1 i,j,m i.j,m) -
st Zw bi(p(k))z;(k), keIl

Here, condition {09 needs to be satisfied for allc 1},
(7b) (10D for all ¥ € IY¥ and condition {09 for all i € I}* and

dwT 6:(p) jelyr. Substitution of the optimality condition&(()a)-(loq
— 1 < —t < Tigs into the Lagrangiang) gives the Lagrange dual function as
Op; . (7€) o
. . 7o lp=p given in (L1).
iel*,jell”,peP In (11), X; is a diagonal matrix whose diagonal entries are

. A . (N) (Mxnp) a4 p— .
Note that the parametess in (7) cannot be computed since 2i(1), - wi(N). @7 A , 87, B~ are defined as

it would require an explicit representation of the featuiggs AOTxng) _ [ 20 Du(51)
Gi.- i = opr T Opay

9¢i(Pm) 9¢i(Pm) }
C. Dual formulation ot Top, oy (12a)

Since we cannot estimate both the parameters and the fead
ture maps together, the dual formulation @f (s considered.

N
For this purpose, let us define thagrangianas oM =[p:i(1) ¢:(2) ... &(N)], (12Db)
T
L(w,e,r,a,BT,87) = 5+:{ :1,1 B Mp,L 51,1,2 B;:np,Mi| ,» (12¢)
Ng N ng MNp T
1 = ... B . - -
5 wawi + % Z eQ(kj) + Yo Z Z Tij B |:Bz,1,1 Bz,np,l 61,1,2 Bz,np,M:| . (12d)
=1 k=1 1=1 j=1

The Lagrange dual problem associated withi§ now given

B zN:ak <e(k:) — k) + iw;@(p(k))xi(k:)> by the optimization problem:
(8)

=1 . + _
min  — g(a, 87, 13a
ng - BT 615m) ,min g(e, B7,87) (13a)
590 35 DL GRS et M
=ty=tm=t ’ st 2= (Bijm + Biim) (13b)
Ng MNp T — m=1
awi ¢Z(pm)
722 Zﬂv]vm <T.i’j+ ap ’ 6,] s1 m76i7,j,m 207 iEH;LgMj Eﬂyllpﬂ/neﬂiw
i=1 j=1m=1 J (13C)
Herea = {a}iL, , B = {8, )5, and 3~ = Note that (3 is a convex optimization problem since the
{5;] m}jgf;’ffm , are the Lagrangian multipliers arl=  Lagrange dual functiop(«, 5T, 37) is concave. In fact, the
{pm}D_, is asetcontaining all(M = ny, x ns) grid points. matrix
dw; i(Pm) i
The term =722 has been used as a short notation for X (@(N))T@(N)X. Y (q)(N))TA(Man)
ow/ ¢i(p) A i i i\ *i i
Op; . Qz* T T (14)
j P=Pm ) ) ) (A(_I\/Ixnp)) CI)(N)X (A(_I\/Ixnp)) A(_I\/Ixnp)
Next, the Lagrange dual functigf(c, 87, 37) is defined i i v i i

- . + — H
as theinfimum of L(w, e, 7, o, 57, 57) over (w, e, ), I.e., appearing in {1) is positive semidefinite since it is defined

g(a, BT,87) = inf L(w,e,r,a,8",87). (9) by the product

w,e,r

| s S X, (8
Since L(w,e,r,a, f7,57) Is a convex quadratic function _ i\ ®i {cD(N)X- A(MX"P)} (15)

of (w,e,r), the infimum of the Lagrangedual function L (A(_Mmp))T
g(a, 3T, 37) can be computed from the (necessary and !



n M\ | (N N\ T A (Mxng
Tt B 0 K o | R
gl B, = 7o -5 - _ g+ T , T - A+

2m 24|78 (AgMan)) oM x, (AEMX"N) AQTxm) | BT =0
(11)
D. Estimation of the coefficient functions whereentries of H;(p1, p2) are given by
Since the feature maps are assumed to ba priori H(,,Lp,np)(,_ ) B 09" (p1) 0¢(p2) ~ OK;(p1, p2)
unknown, the parameter vectoy can not be explicitly com- g b1 p2 ik Op; opr.  Op;Opx

puted via (09. On the other hand, thanks to the structure (21)

of the Lagrange dual functionl{), the dual problem can It can be noticed that the Kernel not only characterizes

be solved without a pr|0r specification of tiieature maps the feature maps, but is also defines their partial derigativ

defining the matrice®!™) and A" *"») et us first rewrite  W.I.t. to the scheduling variables

the matrixQ); in the block form For examplea typical choice of kernel is theadial basis
function (RBF) kernel:

r T T
(™Y ™) v (oM A(Mxng) NP
0, X; (<I>z )T<I>, Xi X (<I>z )TA, Ki(p(), p(k)) = exp (_M) . (22)
(A(Mxnp)) (I)(N)XL (A(-ZVIXHP)) A(-wanp) i
L\ ! ! ! Using RBFs as the kernel in the simplest case where-
Q- QM) 1, the derivatives in19) and @1) become:
= (N, Mxnp)\ | (Mxng,Mxnp) | - (16) K; sy —
() B Ve ORi(s1,50) _ 21 —s2) g oy (23a)
- 0sa o;
The entries onEN’N) are given by 0Ki(s1,52) _ {32 G —432)2} K(s1,50). (23b)
081089 o; o;
[QZ(-N"MLk = z(5)¢; (p(5)) i (p(k))z(k) 17 Note that other choice of kernel functions supply other

: : artial derivatives while in the RBF case, these partial
2(G)Ki(p(5), p(k))x(k), Serivatives corresponds to the first and second morﬂents of
where K; is a positive definite kernel function defining thea multidimensional Gaussian distribution.
inner products of; (4)¢; (k). Consequentlyk; definesQ; With the use of this kernel trick, the Lagrangian multipdier
and hence characterizes the feature méps}*, in an «, 3%, 5~ can be computed through the dual problets)(
efficient fashion. This allows to characterize a wide ranfye gvithout specifying the feature maps. When we combine
nonlinear dependencies as a linear combination of infinitethe optimality condition 104 and the definition of the kernel
many functions 4z = oc) defined through the choice of function, we can use these Lagrangian multipliers to eséma
the particular inner product and a relatively low dimension the coefficient functions:
parametern. This approach is called thieernel trick [11],
[12] and in fact it corresponds to function estimator based a;(-) = d)i(')Twi — ZakKi(-,p(k))wi(k)
on thereproducing kernel Hilbert spactheory [13].
The matrixQ™" ") is defined as " OKi(,Pm)
, BepprLn L) (5 = B) - (2)
QM) [ Lpy) i) ... Ji(pu)], (18) j=1m=1 Pi
With these estimated coefficient functionis, becomes
possibleto find the underlying dependency structure of the
LOKi(p(4),P) data generating process. Because of the regulation tekm, al
x(])T- coefficient functions without a dependency on a particular
k(lg) dimension ofp will be forced to zero along that dimension
By using a threshold value on these relationshifese
is defined as dependency structures give valuable knowledge teat
be further used in identification steps. Furthermore, due to
the shrinkage on the variation of the estimated coefficient
PR functions, increasing thes hyper-parameter will directly
result in enforcing amootherestimate of the dependencies
wherever it is possible without significantly increasing th
: {5 loss on the prediction. Thigesultsin a gradual decrease
Hi(ﬁl,pM) H;(p2,Prr) --- Hi(Pr, Par) of the complexity of the estimated functions.

where the entries of;(p) are given by

10w = ati)oT w) L -

Finally, the matrixqQ{ " ")

(J\4><np,]\/1><np) o
Q;

H;i(p1,p1) Hi(p2
H;(p1,p2) (

’t| 't|
’t| 't|
v

) 3
—
33
5

bS]

[
S~—



[1l. SIMULATION EXAMPLE corresponding to the minimization of the objective functio

The performance of the approach w.rt. recovering th&") for 72 = 0 and by using theegularizedLS-SVM (RLS-
structural dependence @n LPV system is shown in this SVM) approach described in this paper. In both approaches,

section by means ci Monte-Carlostudy based simulation radial basis functions are used as kernels to define the
example. In this study, we assume thdt) is scalar (i.e., inner product among the feature maps. The values of the
ny = 1), parametersy; and~, are chosen via cross-validation based

The considered asymptotically stable LPV data-generatiff§id search, independently for each method. The inteval
system is described by the difference equation =[-1 1] is gridded into 13 equidistant NOd&S= {pn } ;1 -

To compare the regularized LS-SVM to the non-
y(k) = a1 (p(k)y(k — 1) + as(p(k))y(k — 2) regularized method, the average (over the Monte Carlo
+ as(p(R))y(k — 5) + as(p(k))y(k — 8) S|mul_a_t|0n) of t_he e_stlmated peak to peak values of the
coefficient functions is computed. These values are regorte
+ba(p(k))u(k —2) + br(p(k))u(k —7) +e(k), (25) iy Tablel. Here we see that the RLS-SVM method is able
wheree(k) is a zero-mean white Gaussiaoise andu(k) estimate the coefficient functions with a reduced bias and
is the input signal. The coefficients functions are describe¥@riance in comparison with the LS-SVM method. The small
by the (nonlinear) functions: mean values of the non-dependent coefficient functions show
that it is possible to extract information about the depecgle
a1(p(k)) = —0.2, (26a) structure of the underlying process. This can be further
-~ .2 exploited via thresholdinpasedre-estimation.
ax(p(k)) = 0.2+0.22 Sm(Ep(k))’ (26D) In order to visualize the difference between the LS-SVM
as(p(k)) = 0.15, (26c) and RLS-SVM methods, the difference between the true
04 i plk) > 04 coefficient functions and the coefficient functions estinat
with the two methods is plotted in Fidl, together with

as(p(k)) = | —p(k) ff —04<p(k) <04;  (26d) the standard deviation boundaries. The estimated val@es ar
0.5 it p(k) < —0.4; the mean values of the 100 Monte-Carlo ruiife error

ba(p(k)) = 0.5, (26e) reduction by using the RLS-SVM is clearly visible and it can

br(p(k)) = exp(—p(k)). (26f) also be seen that thecoveredcoefficient functionsay, as

and b, do not have any dependency pn This knowledge
Note thata;,as; and b, do not have a dependency on thecould be further used in order to better parameterize the

scheduling variable. model and hence reduce the variance.
The system described %) is estimated from a data set
Dn = {(u(k), p(k),y(k))}_, with N = 500 input, output, IV. CONCLUSIONS

and scheduling-variableneasurements. To gather data, the In this paper, we have addressed the problem of identifying

input and the scheduling trajectories have been chosen LtBV—ARX models in the LS-SVM framework, where the

be white-noise sequences, independent of each other, aunrgderl ing dependence of the coefficient functions on the
with a uniform distributionZ/(—1,1). In order to provide ying dep

representative results, a Monte-Carlo simulation of 10Gsru schedulmg _varlable 1S nolalprlorl knpwn. By penalizing
. N . tpe sensitivity of the coefficient functions w.r.t. the sdbke

is performed. At each run, new realizations of the noise, of variables. the method provides a wav to estimate the
the input and of the scheduling variable are considered. Th ’ P Y

average of thesignal-to-noise ratio(SNR) over the Monte-
Carlo simulation is equal to 23 dB, where the SNR is define
at each run, as

épendency structure of the plant without exploiting any
priori information on the underlying behavior of the

fue LPV system. The reported simulation has shown the

effectiveness of the proposed approach in providing a lewer

Z;i\;lw(k)Q variance estimate (w.r.t. to standard LS-SVM methods) of
10 logyo —ZN co(k)2 ) (27) " the coefficient functions describing the LPV model.
k=1
with w(k) denoting the noise-free system output. REFERENCES
The foIIOW|_ng LPV mo.del structure is used to estimate the[l] 3.'S. Shamma and M. Athans, “Analysis of gain schedulettrobfor
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AND bj(p(k)) ESTIMATED BY MEANS OF THELS-SVMAND RLS-SVMAPPROACH

TABLE |
AVERAGE AND VARIANCE (OVER 100 MONTE-CARLO RUNS) OF THE MAXIMUM PEAK TO PEAK VALUE OF THE COEFFICIENT FUNCTIOl\Sai(p(k))

ai az as as as ae ar as ag aio
True value 0 0.22 0 0 0 0 0 0.9 0 0
Mean (RLS-SVM)|| 2.1-10=®> 2.0-10-1 2.2-1073 3.8-10% 86-10=%* 22-10-% 3.1-10-* 870-10-! 37.100* 2.7.10°8
Mean (LS-SVM) || 8.8-10=2 1.7-10"' 9.4.1072 4.8-1072 14-107' 6.6-1072 7.3.1072 54-10"' 58.1072 4.5-1072
Var (RLS-SVM) || 5.8-10710 84.10"* 42.10=® 2.7-107'% 1.2.107°> 29-107'6 20-.-10"% 84.10* 7.1-10°6 7.1.10°16
Var (LS-SVM) 1.1-107% 87-107* 1.3-107% 85-100% 1.5.-107% 89-107* 86-107* 24.107% 93.107* 5.8-.10"*

b1 b bs ba bs be br bs bg bio
True value 0 0 0 0 0 0 2.35 0 0 0
Mean (RLS-SVM)|| 2.2-10~8 3.8-107° 2.4-10"% 3.1-1078% 26-107% 23.10°% 1.8.10° 4.1-107% 6.6-108 7.2.10°8
Mean (LS-SVM) || 4.6-1072 2.1-107' 4.3.1072 4.0-1072 45-1072 4.4-1072 85-107' 4.1-1072 58.1072 4.6-1072
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