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Abstract— In this paper, we consider discrete-time linear-
quadratic-Gaussian (LQG) mean field games over unreliable
communication links. These are dynamic games with a large
number of agents where the cost function of each agent is
coupled with other agents’ states via a mean field term. Further,
the individual dynamical system for each agent is subject to
packet dropping. Under this setup, we first obtain an optimal
decentralized control law for each agent that is a function of
local information as well as packet drop information. We then
construct a mean field system that provides the best approxima-
tion to the mean field term under appropriate conditions. We
also show that the optimal decentralized controller stabilizes
the individual dynamical system in the time-average sense.
We prove an ε-Nash equilibrium property of the set of N
optimal decentralized controllers, and show that ε can be made
arbitrarily small as the number of agents becomes arbitrarily
large. We note that the existence of the ε-Nash equilibrium
obtained in this paper is primarily dependent on the underlying
communication networks.

I. INTRODUCTION

In recent years, dynamic games with a large number of
agents have been studied extensively due to increasing de-
mands of applications in engineering, economics, computer
science, and social sciences [1]–[4]. One such sub-class of
large population games is known as mean field games, in
which there is a large number of agents, and each agent is
coupled with each other via a mean field term that describes
the average of all the agents’ states.

Similar to other noncooperative games, the main objective
of the study of mean field games is to obtain a characteriza-
tion of Nash equilibria under the assumption of rationality
for each player. In general, however, such a characterization
may not be possible because the complexity increases with
the number of players and the dimension of the state space
[3], [5]. The decentralized nature of mean field games also
creates another difficulty, since it requires each agent to have
access to only local information [3], [5].

The Nash certainty equivalence (NCE) principle was pro-
posed in [3] and [6] for linear and nonlinear mean field
games, respectively, to overcome these issues. In general,
the NCE principle consists of two steps: 1) a single optimal
control problem, and 2) approximation of the mean field
term. Under these steps, a deterministic function can be
obtained a priori, by which the overall effect on each agent
of the mean field term can be captured with probability one.
Moreover, the set of individual optimal controllers constitutes
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an ε-Nash equilibrium for the mean field game, where ε
converges to zero as the number of agents, say N , becomes
arbitrarily large. Similar results were obtained in [7], [8]
and [9] where a NCE-like methodology was used, but for
different problem settings.

Other classes of mean field games were also considered
in the literature. Risk-sensitive mean field games were con-
sidered in [10] where their relationship to robust mean field
games was also established. A paper [11] in this conference
develops decentralized optimal controllers for continuous
time linear-quadratic risk-sensitive mean field games. In [12],
LQG mean field games with Markov jump parameters were
studied. In [13], the mean field adaptive control problem was
studied, and the consensus problem was discussed in [14].
Discrete-time mean field games under the notion of oblivious
equilibria were discussed in [2], [5].

In addition to the large number of agents, it is also
natural that the individual dynamical system be subject to
communication constraints, especially packet drops [15]. The
packet drop constraint is able to capture the unreliable nature
of communication from the controller to the system, or from
the system to the sensor. For the single agent case (N = 1),
such a scenario was addressed within the LQG setting in
[16], [17], and a dynamic game or H∞ setting in [18], [19].
The main objective for the single agent case is to obtain
an optimal stabilizing control law and to characterize the
critical value that is the maximum rate of packet losses that
the controller is able to tolerate for stabilization. The packet
drop problems considered so far, however, were for the single
agent case, and the decentralized control problem with a
large number of agents has not yet been studied.

In this paper, we study LQG mean field games when
the individual dynamical system is subject to an unreliable
communication link. A similar problem was considered in
[20] where the individual dynamical system was constrained
by measurement quantization. Here, we assume that the
underlying packet dropping network has transmission control
protocol (TCP); hence each player has access to information
on packet losses. Under this setup, we first obtain an optimal
decentralized control law for each agent that is a function
of local information as well as packet drop information.
We then construct a mean field system that provides the
best approximation to the mean field term under appropriate
conditions. We also show that the optimal decentralized
controller stabilizes the individual dynamical system in the
time-average sense. We prove an ε-Nash equilibrium property
of the set of N optimal decentralized controllers, and then
show that ε can be made arbitrarily small as the number
of agents becomes arbitrarily large. We finally note that the

53rd IEEE Conference on Decision and Control
December 15-17, 2014. Los Angeles, California, USA

U.S. Government work not protected by
U.S. copyright

2697



existence of the ε-Nash equilibrium obtained in this paper
depends on the underlying communication networks.

The structure of the paper is as follows. We formulate the
problem in Section II. The result of a single agent optimal
control problem is given in Section III. The mean field
system is constructed in Section IV. The stability analysis
and the approximation performance are studied in Sections
V and VI, respectively. We discuss an ε-Nash equilibrium
property in Section VII, and end the paper with the conclud-
ing remarks of Section VIII.

II. PROBLEM FORMULATION

We consider the following discrete-time linear dynamical
system for agent i, 1 ≤ i ≤ N :

xi,k+1 = Aixi,k + αi,kBiui,k + wi,k (1)
yi,k = βi,kCixi,k + vi,k, (2)

where xi,k ∈ Rn is the state; yi,k ∈ Rq is the output; ui,k ∈
Rm is the control input; {wi,k} and {vi,k} are i.i.d. Gaussian
processes; Ai, Bi and Ci are time-invariant matrices with
appropriate dimensions; αi,k and βi,k describe control and
measurement losses, respectively; and k ≥ 0 is the time
instance. We have the following assumption on the dynamical
system (1) and (2):

Assumption 1: 1) xi,0 is a Gaussian random vector with
mean zero and E{xi,0xTi,0} = X0 for all i.

2) {wi,k} and {vi,k} are i.i.d. Gaussian processes with
mean zero and covariances W ≥ 0 and V > 0,
respectively, for all i.

3) {αi,k} and {βi,k} are i.i.d. Bernoulli processes with
distributions of P(αi,k = 1) = αi and P(βi,k = 1) = βi

that model control and measurement packet losses of
agent i, respectively.

4) {αi,k, 1 ≤ i ≤ N}, {βi,k, 1 ≤ i ≤ N} {xi,0, 1 ≤
i ≤ N}, {wi,k, 1 ≤ i ≤ N, ∀k}, and {vi,k, 1 ≤ i ≤
N, ∀k} are independent for each i, and are mutually
independent of each other. �

In (1) and (2), Ai, Bi and Ci are system parameters of
each agent that can be identical or different depending on
the game at hand. We assume that the triplet (Ai, Bi, Ci)
constitutes the system parameter θi ∈ Θ, that is, θi :=
(Ai, Bi, Ci) ∈ Θ where Θ is the set of θi. Note that θi is a
vector that stands for the ordered (Ai, Bi, Ci) with stacked
column vectors.

Assumption 2: For the first N agents, Ai, Bi, and Ci are
selected from the following empirical distribution:

FN (θ) =
1

N

N∑
i=1

1{θi≤θ}, θ ∈ Θ, (3)

where 1{·} is the indicator function. Moreover we assume
that when θ = θi, we have αi := α(θ = θi) and βi := β(θ =
θi). We further assume that there is a probability distribution
F (θ) such that FN (θ) converges weakly to F (θ) as N →∞,
i.e., limN→∞ FN (θ) = F (θ), and the support of F (θ), Θ,
is compact. �

Now, agent i is interested in minimizing the cost function:

JNi (ui, u−i) (4)

= lim sup
K→∞

1

K
E

{
K−1∑
k=0

‖xi,k − ρfNk ‖2Q + αi,k‖ui,k‖2R

}
,

where ‖z‖2S := zTSz for some vector z and matrix S ≥ 0,
Q ≥ 0, R > 0, ρ > 0 is a constant, and u−i :=
(u1, ..., ui−1, ui+1, ..., uN ) with ui := (ui,0, ui,1, ...). In (4),
the mean field coupling term fNk describes the average
behavior (as measured by their states) of the first N agents,
which can be written as

fNk ,
1

N

N∑
i=1

xi,k. (5)

We define the decentralized information structure for agent
i:{
Idi,0 = {yi,0, βi,0}
Idi,k = {yi,0:k, ui,0:k−1, αi,0:k−1, βi,0:k}, k ≥ 1,

(6)

where yi,0:k := (yi,0, ..., yi,k) and the same notation applies
to ui,0:k−1, αi,0:k−1, and βi,0:k. We also define the central-
ized information structure:

Ick = {Idi,k, 1 ≤ i ≤ N}.

With these information structures, we can define the fol-
lowing two sets of admissible controls that will be considered
throughout this paper:

Udi = {(ui,0, ui,1, ...) : ui is adapted to

σ(Idi,s, s = 0, 1, ..., k)}
Uci = {(ui,0, ui,1, ...) : ui is adapted to

σ(Ics , s = 0, 1, ..., k)},

where σ(·) is the σ-algebra generated by its argument.
Notice that while the admissible controller in Udi is a

function of agent i’s local state and packet loss information,
the admissible controller in Uci is a function of all the
agents’ states and packet loss information. Therefore, we
have Udi ⊂ Uci . We call the former a set of decentralized
controllers and the latter a set of centralized controllers.

We introduce below an approximate equilibrium solution
for discrete-time mean field games with unreliable commu-
nication formulated in this section.

Definition 1: The set of controllers {ui ∈ Uci , 1 ≤ i ≤ N}
constitutes an ε-Nash equilibrium with respect to the cost
functions {JNi , 1 ≤ i ≤ N}, if there exists ε ≥ 0 such that
for any i, 1 ≤ i ≤ N ,

JNi (ui, u−i) ≤ inf
vi∈Uc

i

JNi (vi, u−i) + ε. �

In what follows, we first obtain an optimal decentralized
controller for a single agent, and provide appropriate condi-
tions under which the mean field term can be approximated
with arbitrarily small error. Subsequently, we analyze the
equilibrium behavior of the set of N -decentralized control
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laws for LQG mean field games over unreliable commu-
nication links in the large population regime, i.e., the case
when N →∞.

III. OPTIMAL TRACKING CONTROL OVER UNRELIABLE
COMMUNICATION LINKS

Consider the cost function

J̄i(ui, g) (7)

= lim sup
K→∞

1

K
E

{
K−1∑
k=0

‖xi,k − ρgk‖2Q + αi,k‖ui,k‖2R

}
,

where ui ∈ Udi and the deterministic function gk can be
viewed as an approximation to the mean field coupling term
in (5). Although this is just an assertion now, it will be shown
later that this claim is true under some specific conditions in
the large population regime. In (7), we assume that g ∈ Cb
where Cb is the set of bounded n-dimensional vector-valued
functions, i.e., Cb = {hk ∈ Rn : ‖h‖∞ := supk≥0 ‖hk‖ <
∞} where ‖ · ‖ denotes 2-norm of vectors. Note that Cb is
a Banach space. The minimization of (7) can be seen as the
optimal tracking problem over an unreliable communication
link with respect to the given reference signal gk [3], [7],
[21].

Theorem 1: Consider the dynamical system (1) and (2),
and the cost function (7) with the information structure (6).
Suppose that Assumption 1 holds, (Ai, Bi) and (Ai,W

1/2)
are controllable, and (Ai, Q

1/2) and (Ai, Ci) are observable.
Suppose αi > αic and βi > βic where αic and βic are defined
by

αic , inf
αi
{0 ≤ αi ≤ 1 : Zi = ATi ZiAi +Q (8)

− αiATi ZiBi(BTi ZiBi +R)−1BTi ZiAi, Zi > 0}
βic , inf

βi
{0 ≤ βi ≤ 1 : P̄i = AiP̄iA

T
i +W (9)

− βiAiP̄iCTi (CiP̄iC
T
i + V )−1CiP̄iA

T
i , P̄i > 0}.

Then:
(i) The optimal decentralized control law for agent i can

be written as

u∗i,k = −Lix̂i,k − Uisi,k+1, (10)

where Zi is a solution of the Riccati equation defined in the
set (8), Ui , (R + BTi ZiBi)

−1BTi , and Li , UiZiAi. In
(10), si,k satisfies the following linear difference equation:

si,k = HT
i si,k+1 − ρQgk, (11)

where Hi , Ai − αiBiLi.
(ii) In (i), the estimated state x̂i,k := E{xi,k|Idk} is

generated by the stochastic Kalman filter

x̂i,k+1 = Aix̂i,k + αi,kBiui,k + βi,kKi,k(yi,k − Cix̂i,k),

where Ki,k = AiPi,kC
T
i (CiPi,kC

T
i +Vi)

−1 is the estimator
gain that is determined by the following stochastic Riccati
equation:

Pi,k+1 = AiPi,kA
T
i +W

− βi,kAiPi,kCTi (CiPi,kC
T
i + V )−1CiPi,kA

T
i ,

where Pi,k = E{ei,keTi,k|Idk} is the error covariance matrix
with ei,k := xi,k − x̂i,k.

(iii) E{Pi,k} satisfies P̃i ≤ E{Pi,k} ≤ P̄i for all k where
P̃i = (1− βi)AP̃iAT +W and P̄i is defined in (9).

(iv) si,k is bounded for all k, i.e., si ∈ Cb, if its initial
condition satisfies si,0 = −

∑∞
j=0(Hj

i )T ρQgj . Moreover,
with this initial condition, si,k can be written as

si,k = −
∞∑
j=k

(H−k+j
i )T ρQgj . (12)

(v) Hi is Hurwitz and Ãi,k := Ai − αi,kBiLi is mean-
square stable1.

(vi) The optimal cost is bounded above by

J̄(u∗i , g)

≤ Tr(ZiW ) + Tr
(

(ATi ZiAi +Q− Zi)

× (P̄i − βiP̄iCTi (CiP̄iC
T
i + V )−1CiP̄i)

)
+ lim sup

K→∞

1

K

K−1∑
k=0

ρ2gTk Qgk − αisTk+1BiUisk+1,

where Tr(·) is the trace operator.

Proof. Parts (i), (ii), (iii), and (vi) can be shown by using
the results in [17]. For part (iv), consider

si,0 = (Hk
i )T si,k −

k−1∑
j=0

(Hj
i )T ρQgj .

Then, it is easy to see that si,0 is the only initial condition
that leads to si ∈ Cb in (12) that proceeds forward in k.
The second statement of part (v) is shown in [16]. The first
statement of (v) follows from Proposition 3.6 in [22]. This
completes the proof. �

Remark 1: (i) Since Hi is Hurwitz, there are constants ci ≥
1 and λi ∈ (0, 1) such that ‖Hi‖k ≤ ciλki where ‖·‖ denotes
2-norm of matrices. Given the system and the cost matrices,
the exact values of ci and λi are dependent on the packet drop
rate αi. Note that due to Proposition 3.6 in [22], αi < αic
does not imply that Hi is not Hurwitz.

(ii) For the single agent case, αic and βic are known as
the critical values of control and measurement losses that
guarantee stability of the system [17].

(iii) The critical value of control packet drops for agent i
satisfies αimin ≤ αic ≤ αimax where

αimin , 1− 1

maxs |λs(Ai)|2

αimax , 1− 1∏
s |λs(Ai)|2

,

where λs(Ai) are the unstable eigenvalues of Ai [17].
Furthermore, αic = αimin and αic = αimax when Bi is square
and invertible, and Bi is rank one, respectively.

(iv) Notice that the Kalman filter in Theorem 1 is time-
varying and random due to the nature of the measurement

1See [22] for the definition of the mean-square stability.
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process and the information structure. Moreover, Pi,k does
not converge unless βi = 1. Detailed analysis of properties
of the error covariance matrix can be found in [17]. �

IV. MEAN FIELD SYSTEM

In this section, we construct a mean field system via state
aggregation, which provides a good approximation to the
mean field term in a sense to be made precise later.

We consider the dynamical system (1) and the decentral-
ized controller (10). Let x̄i,k := E{xi,k}. By substituting
(10) into (1) and taking expectation, the resulting system
can be written as

x̄i,k+1 = −αi
k∑
j=0

Hk−j
i BiUisi,j+1. (13)

Now, by using (13) and the empirical distribution of the
agents introduced in Assumption 2, the mean field system
can be written as

T (g)(k) =:

∫
Θ

α(θ)

k−1∑
j=0

Hk−1−j(θ)B(θ)U(θ)

×

( ∞∑
s=j+1

(H−(j+1)+s(θ))T ρQgs

)
dF (θ), (14)

where dF (θ) denotes the measure induced by the distribution
function F (θ). Note that in (13) and (14), we use θ instead
of i to emphasize the point that we have a continuum of
agents under the parameter set and its empirical distribution
in Assumption 2. Further note that (14) describes the average
behavior of all the agents within Θ; hence it must be
consistent with the mean field coupling term in (5) when
N is sufficiently large.

Assumption 3: (i) (A(θ), B(θ)) and (A(θ),W 1/2) are con-
trollable, and (A(θ), Q1/2) and (A(θ), C(θ)) are observable
for all θ ∈ Θ.

(ii) Communication links satisfy α(θ) > αc(θ) and β(θ) >
βc(θ) for all θ ∈ Θ.

(iii) We have

|ρ|‖Q‖
∫

Θ

|α(θ)|‖B(θ)‖‖U(θ)‖
( ∞∑
s=0

‖H(θ)‖s
)2

dF < 1.�

We now show the existence of a fixed point of (14).

Theorem 2: Suppose that Assumptions 1, 2, and 3 hold.
Then:

(i) The operator T (g) is in Cb, i.e., T (g) ∈ Cb, for all
g ∈ Cb.

(ii) There is a unique g∗ ∈ Cb such that T (g∗) = g∗.

Proof. For Part (i), we have supk≥0 ‖T (g)(k)‖ < ∞ since
Hi is Hurwitz and si ∈ Cb. For the second part, from (i), we
have

‖T (g)− T (h)‖∞ ≤ ‖g − h‖∞|ρ|‖Q‖

×
∫

Θ

|α(θ)|‖B(θ)‖‖U(θ)‖

( ∞∑
s=0

‖H(θ)‖s
)2

dF (θ).

Then by the Banach fixed point theorem and (i), the operator
T (g) has a unique fixed point in Cb. This completes the
proof. �

V. STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM

In this section, we show closed-loop system stability with
the decentralized optimal controller of Theorem 1 and the
approximated mean field term, g∗k, in Theorem 2.

We use the following controller for agent i:

u∗i,k = −Lix̂i,k − Uis∗i,k+1, (15)

where s∗i,k is the bias term in (12) obtained by the fixed
point of the mean field system (i.e. g∗) in Theorem 2.
Therefore, the controller in (15) is now related to the mean
field coupling term due to s∗i,k. We denote the closed-loop
system (1) with (15) by x∗i,k. We also denote the mean field
term and the mean field dynamical system under (15) by
(fNk )∗ and x̄∗i,k, respectively.

Theorem 3: Let Assumptions 1, 2, and 3 hold. Then the
decentralized controller (15) stabilizes the system (1) in the
time-average sense:

sup
N≥1

max
1≤i≤N

lim sup
K→∞

1

K
E
{K−1∑
k=0

‖x∗i,k‖2
}
<∞.

Proof. We drop ∗ to simplify the notation. We write the
closed-loop system with the decentralized control law (15)

xi,k+1 = Ãi,kxi,k + αi,kBiLiei,k − αi,kBiUisi,k+1 + wi,k,

where Ãi,k is defined in Theorem 1. Now, we have the
following relation:

E{‖xi,k‖2}
≤ 4E{‖Ãi,k−1 · · · Ãi,0xi,0‖2}

+ 4E
{k−1∑
j=0

‖Ãi,k−1 · · · Ãi,j+1αi,jBiLiei,j‖2
}

+ 4E
{∥∥∥k−1∑

j=0

Ãi,k−1 · · · Ãi,j+1αi,jBiUisi,j+1

∥∥∥2}
+ 4E

{k−1∑
j=0

‖Ãi,k−1 · · · Ãi,j+1wi,j‖2
}
,

where the second and the last parts in the inequality follow
from the unbiasedness of the Kalman filter in Theorem 1
and the independence of {wi,k}, respectively. Since Ãi,k is
mean-square stable by Theorem 1, we have from Theorem
3.9 in [22] that there exist constants mi ∈ (0, 1) and li ≥ 1
for all i such that

E{‖Ãi,k−1 · · · Ãi,0xi,0‖2} ≤ limk
i Tr(X0)

E{‖Ãi,k−1 · · · Ãi,j+1wi,j‖2} ≤ limk−1−j
i Tr(W ).

Similarly,

E{‖Ãi,k−1 · · · Ãi,j+1αi,jBiLiei,j‖2}
≤ αilimk−1−j

i ‖Bi‖‖Li‖Tr(P̄i),
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where we used the fact that E{‖ei,k‖2} ≤ Tr(P̄i) due to
Theorem 1. Moreover,

E

{∥∥∥k−1∑
j=0

Ãi,k−1 · · · Ãi,j+1αi,jBiUisi,j+1

∥∥∥2
}

≤
k−1∑
j=0

E{‖Ãi,k−1 · · · Ãi,j+1αi,jBiUisi,j+1‖2}

+

k−1∑
j 6=q

E{‖Ãi,k−1 · · · Ãi,j+1αi,jBiUisi,j+1‖2}1/2

× E{‖Ãi,k−1 · · · Ãi,q+1αi,qBiUisi,q+1‖2}1/2

≤
k−1∑
j=0

lim
k−1−j
i V 2

i +

k−1∑
j 6=q

lim
k−1−j/2−q/2
i V 2

i ,

where we used the Cauchy-Schwarz inequality to get the first
inequality, and Vi is the estimate of ‖si‖∞. This shows that

lim sup
K→∞

1

K

K−1∑
k=0

E{‖xi,k‖2}

≤ 4li Tr(X0)

(1−mi)
+

4li Tr(W )

(1−mi)
+

4liα
i‖Bi‖2‖Li‖2 Tr(P̄i)

(1−mi)

+
4liV

2
i

(1−mi)
+

8lim
1/2
i V 2

i

1−mi
<∞.

Finally, since Θ is compact, we have the desired result. �

VI. APPROXIMATION PERFORMANCE

We now establish the consistency between g∗k and the
mean field term (fNk )∗ in the large population regime.

Lemma 1: Under Assumptions 1, 2, and 3, we have:

lim
N→∞

lim sup
K→∞

1

K

K−1∑
k=0

∥∥∥∥∥ 1

N

N∑
i=1

x̄∗i,k − g∗k

∥∥∥∥∥
2

= 0.

Proof. The proof is omitted due to space limitation. �

Lemma 2: Under Assumptions 1, 2, and 3, we have:

lim
N→∞

lim sup
K→∞

1

K
E

{
K−1∑
k=0

∥∥∥∥∥ 1

N

N∑
i=1

x∗i,k − x̄∗i,k

∥∥∥∥∥
2}

= 0.

Proof. Let x̃∗i,k := x∗i,k − x̄∗i,k. Then it can be written as

x̃∗i,k+1 = Ãi,kx̃
∗
i,k + (−αi,k + αi)BiLix̄

∗
i,k

+ (−αi,k + αi)BiUisi,k+1 + αi,kBiLiei,k + wi,k,

where x̃∗i,0 = xi,0. Then, since the Kalman filter in Theorem
1 is unbiased, Ãi,k is mean-square stable, x̄∗i , si ∈ Cb are uni-
formly bounded on Θ, and Θ is compact from Assumption 2,
it can be shown by following a similar line of reasoning as in
Theorem 3 that there exists a constant M > 0, independent
of K and N , such that

lim sup
K→∞

1

K
E

{
K−1∑
k=0

∥∥∥ 1

N

N∑
i=1

x̃∗i,k

∥∥∥2
}
≤ M

N
.

Hence, the result follows. �

We now state the main theorem for this section. The result
below indicates that in the large population regime, we have
the mean-square sense consistency between g∗k and (fNk )∗.

Theorem 4: Suppose that Assumptions 1, 2, and 3 hold.
Then,

lim
N→∞

lim sup
K→∞

1

K
E

{
K−1∑
k=0

∥∥(fNk )∗ − g∗k
∥∥2

}
= 0.

Proof. Note that

lim sup
K→∞

1

K
E

{
K−1∑
k=0

∥∥∥∥∥ 1

N

N∑
i=1

x∗i,k − g∗k

∥∥∥∥∥
2}

≤ lim sup
K→∞

2

K
E

{
K−1∑
k=0

∥∥∥∥∥ 1

N

N∑
i=1

x∗i,k − x̄∗i,k

∥∥∥∥∥
2}

+ lim sup
K→∞

2

K

K−1∑
k=0

∥∥∥∥∥ 1

N

N∑
i=1

x̄∗i,k − g∗k

∥∥∥∥∥
2

.

Then by Lemmas 1 and 2, the result follows. �

VII. ε-NASH EQUILIBRIA OF THE LQG MEAN FIELD
GAME OVER UNRELIABLE COMMUNICATION LINKS

In this section, we show that the set of N -decentralized
control laws constitutes an ε-Nash equilibrium for the LQG
mean field game over unreliable communication links.

Let

JNi (u∗i , u
∗
−i) (16)

= lim sup
K→∞

1

K
E

{
K−1∑
k=0

‖x∗i,k − ρ(fNk )∗‖2Q + αi,k‖u∗i,k‖2R

}
Ji(u

∗
i , g
∗) (17)

= lim sup
K→∞

1

K
E

{
K−1∑
k=0

‖x∗i,k − ρg∗k‖2Q + αi,k‖u∗i,k‖2R

}
JNi (ui, u

∗
−i) (18)

= lim sup
K→∞

1

K

× E

{
K−1∑
k=0

‖xi,k|ui
− ρ(fNk )∗|ui

‖2Q + αi,k‖ui,k‖2R

}
,

where g∗k is obtained from Theorem 4. In (18), xi,k|ui

is the state of agent i under ui ∈ Uci , and (fNk )∗|ui
=

1
N

∑N
i=1 x

∗
i,k|ui

indicates that all agents except i use the
optimal decentralized controller (15), and agent i is under
any full state control ui,k ∈ Uci . Note that in (16) and (18),
the dependency of N is required in order to emphasize the
effect of the mean field coupling term in (5). We next state
two lemmas, without proofs, which will lead to the main
theorem of this section.

Lemma 3: Under Assumptions 1, 2, and 3, we have

JNi (u∗i , u
∗
−i) ≤ Ji(u∗i , g∗) +O((lim sup

K→∞
εNK)1/2),
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where

εNK =
1

K
E
{K−1∑
k=0

‖(fNk )∗ − g∗k‖2
}
. �

Lemma 4: Suppose that Assumptions 1, 2, and 3 hold.
Then:

Ji(u
∗
i , g
∗) ≤ inf

ui∈Uc
i

JNi (ui, u
∗
−i)

+O((lim sup
K→∞

εNK)1/2) +O(
1

N
). �

Theorem 5: Suppose that Assumptions 1, 2, and 3 hold.
Then, the set of N decentralized controllers, {u∗i , 1 ≤ i ≤
N}, where u∗i = (u∗i,0, u

∗
i,1, ..., u

∗
i,k, ...) and u∗i,k is defined

in (15), constitutes an ε-Nash equilibrium for the LQG mean
field game over unreliable communication links. That is, for
any i, 1 ≤ i ≤ N ,

JNi (u∗i , u
∗
−i) ≤ inf

ui∈Uc
i

JNi (ui, u
∗
−i)

+O((lim sup
K→∞

εNK)1/2) +O(
1

N
).

Moreover, ε := O((lim supK→∞ εNK)1/2)+O( 1
N ) converges

to zero as N →∞.

Proof. The result follows from Lemmas 3 and 4. �

Before concluding this section, it is worth mentioning
that if the packet drop rate of a particular agent, say i,
fails to satisfy Assumption 3(ii), then the corresponding
decentralized controller does not exist; therefore, the set of
optimal control laws in (15) is no longer able to constitute
an ε-Nash equilibrium. Moreover, the dynamical system for
agent i cannot be stabilized. This implies that the existence
of the ε-Nash equilibrium obtained in this paper is very much
dependent on the underlying communication network.

VIII. CONCLUDING REMARKS

In this paper, we have studied LQG mean field games with
unreliable communication links. We have obtained decen-
tralized optimal controllers for each agent, which uses their
local measurements received over unreliable communication
channels. Using these controllers, we have constructed the
mean field system, and then shown that it provides an
asymptotically accurate approximation to the mean field
term under appropriate conditions. We have also shown
closed-loop system stability under the individual decentral-
ized optimal controller. We have further shown that the set
of N -decentralized optimal controllers possesses an ε-Nash
equilibrium property, and ε can be made arbitrarily close to
zero as N → ∞. One important aspect is that the nature
of communication conditions and particularly the extent of
reliability of the communication links is the most important
factor to guarantee the existence of an ε-Nash equilibrium.
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