
Turnpike and dissipativity properties
in dynamic real-time optimization and economic MPC

Timm Faulwasser1, Milan Korda1, Colin N. Jones1 and Dominique Bonvin1

Abstract— We investigate the turnpike and dissipativity prop-
erties of continuous-time optimal control problems. These prop-
erties play a key role in the analysis and design of schemes for
dynamic real-time optimization and economic model predictive
control. We show in a continuous-time setting that dissipativity
of a system with respect to a steady state implies the existence of
a turnpike at this steady state and optimal stationary operation
at this steady state. Furthermore, we investigate the converse
statements: We show that the existence of a turnpike at a
steady state implies (a) that this steady state is the optimal
steady state; and (b) that over an infinite horizon the system
is optimally operated at this steady state. We draw upon a
numerical example to illustrate our findings.

Index Terms— dissipativity, turnpike property, dynamic real-
time optimization, economic model predictive control

I. INTRODUCTION

Recently there has been a growing interest in dynamic
real-time optimization (dRTO) under the new label economic
MPC (eMPC), cf. [4, 6, 11, 14, 17]. Dissipativity properties
have shown to be very useful in the analysis of convergence
and stability properties of dRTO/eMPC schemes [1, 4, 6,
11]. For instance, it is shown in [1] in a discrete-time setting
that a dissipativity property (with respect to the supply rate
related to the stage cost and an optimal steady state) implies
that the system is optimally operated at this steady state over
an infinite horizon. Additionally, observations of turnpike
behavior of optimal control problems arising from eMPC
formulations has been observed [6, 17].

The main goal of this paper is to analyze the relation
between dissipativity properties, turnpike properties and op-
timal operation at steady state. In contrast to previous works
[1, 6], we work in a continuous-time setting. We extend
a discrete-time result on the relation between dissipativity
and optimal operation at a steady state given in [1] to the
continuous-time setting. Furthermore, we show that a certain
dissipativity property implies the existence of a turnpike in
the solutions of the related optimal control problems. In
essence, we generalize a classical result on the existence
of turnpike properties of optimal control problems [2] by
replacing convexity assumptions and terminal constraints
with dissipativity properties. Additionally, we investigate a
converse statement: Assuming a purely state-dependent cost
function, we show that the existence of a turnpike at a
steady state implies that the system is optimally operated
at this steady state. By investigating the relation between
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dissipativity, turnpikes and optimal operation at steady state,
we show that optimal operation at steady state can be verified
by establishing either dissipativity or turnpike properties of
the corresponding optimal control problems. Specifically,
we consider a Van de Vusse reactor to demonstrate that
dissipativity properties can be verified via sum-of-squares
techniques.

The remainder of this paper is structured as follows:
Section II introduces a formal definition of turnpike and
dissipativity properties as well as the definition of optimal
operation at a steady state. Section III presents the main
results and their proofs. We illustrate our findings via a
numerical example in Section IV.

II. PRELIMINARIES

We briefly recall the notions of optimal operation at steady
state, dissipativity with respect to a steady state and turnpike
properties of optimal control problems.

A. Optimal Steady State Operation

We consider the nonlinear system given by

ẋ = f(x, u), x(0) = x0, (1)

where the states x ∈ Rnx and the inputs u ∈ Rnu are
constrained to lie in the compact sets X ⊂ Rnx and U ⊂
Rnu . We assume that the vector field f : Rnx ×Rnu → Rnx

is Lipschitz on X × U . A solution of (1) starting at time
0 at x0 driven by the input u : [0,∞) → U is denoted as
x(·, x0, u(·)).

Consider the largest controlled invariant set X0 ⊆ X given
by

X0 = {x0 ∈ X | ∃u : [0,∞) → U :

∀t ≥ 0 x(t, x0, u(·)) ∈ X} . (2)

This set is the largest subset of X that can be rendered
positively invariant via an admissible control u(·).

Furthermore, consider a finite-horizon optimal control
problem (OCP) that aims at minimizing the objective func-
tional

JT (x0, u(·)) =
∫ T

0

F (x(t), u(t))dt (3)

where F : X × U → R is the cost function and T is called
the optimization horizon. We assume that F is Lipschitz on
X × U . The OCP reads

minimize
u(·)∈M([0,T ],U)

JT (x0, u(·)) (4a)



subject to (1) and

∀t ∈ [0, T ] : x(t) ∈ X , u(t) ∈ U , (4b)

where M([0, T ],U) denotes the class of measurable func-
tions on [0, T ] taking values in the compact set U ⊂ Rnu .
The pair (x(·, x0, u(·)), u(·)) is called admissible if u(·) ∈
M([0, T ],U) and, for all t ∈ [0, T ], the corresponding
trajectory satisfies x(t, x0, u(·)) ∈ X . An optimal solution to
(4) is denoted by u⋆(·) and the corresponding state trajectory
is written as x⋆(·, x0, u

⋆(·)).1
While OCP (4) aims at optimizing the transient perfor-

mance of system (1), one can as well ask for the best
stationary operating conditions. These conditions are given
by the following steady-state optimization problem:

minimize
(x̄,ū)∈Rnx+nu

F (x̄, ū) (5a)

subject to
f(x̄, ū) = 0 (5b)
(x̄, ū) ∈ X × U . (5c)

Here F : X × U → R is the same cost function as in (3).
Note that throughout this paper we use the superscript ·̄ to
indicate that a variable is a steady state. An optimal solution
to this static optimization problem is denoted as (x̄⋆, ū⋆).
The set of admissible steady states is denoted as

X̄ = {x̄ ∈ X | ∃ ū ∈ U , 0 = f(x̄, ū)}. (6a)

The set of optimal steady states is then denoted by X̄ ⋆, i.e.,

X̄ ⋆ = {x̄⋆ ∈ X̄ | ∃ ū⋆ ∈ U s.t. (x̄⋆, ū⋆) is optimal in (5)}.
(6b)

In the operation of dynamic processes, it is of major in-
terest to know whether the best infinite horizon performance
can be achieved at the best steady state or via permanent
transient operation. The optimal operation over an infinite
horizon is defined similar to [1, 6] as follows:

Definition 1 (Optimal operation at steady state):
System (1) is said to be optimally operated at steady
state if there exists (x̄, ū) ∈ X̄ × U such that, for any initial
condition x0 ∈ X and any infinite-time admissible pair
(x(·, x0, u(·)), u(·)), we have

lim inf
T→∞

1

T
JT (x0, u(·)) ≥ F (x̄, ū). (7)

The following lemma follows trivially from the former
definition.

Lemma 1: If system (1) is optimally operated at the steady
state (x̄, ū), then (x̄, ū) is an optimal solution to (5).

B. Turnpike Properties of OCPs

It is well known that the properties of infinite-horizon
optimal control problems are closely related to turnpike
properties; see [2, 18].

Definition 2 (Turnpike property): The solution pairs
(x⋆(·, x0, u

⋆(·)), u⋆(·)) of (4) are said to have an

1Here, we assume for simplicity that the optimal solution exists and is
attained. We refer to [10, 16] for conditions ensuring the existence of optimal
solutions to OCP (4).

approximate turnpike property with respect to the steady
state x̄ ∈ X̄ if there exists a function ν : (0,∞) → [0,∞)
such that for all x0 ∈ X0 and all T > 0 we have

µ[Θε,T ] < ν(ε) ∀ ε > 0,

where µ[·] is the Lebesgue measure on the real line and

Θε,T := {t ∈ [0, T ] : ∥x⋆(t, x0, u
⋆(·))− x̄∥ > ε} . (8)

The turnpike property states that, for any initial condition
x0 and any horizon length T > 0, the time that the optimal
solutions spend outside an ε-neighborhood of x̄ is bounded
by ν(ε), where ν(ε) is not a function of the horizon length T .
Note that, according to Definition 2, the steady state at which
the turnpike takes place has to be the same for all horizon
lengths T ≥ 0. In essence, the turnpike property of solutions
to an OCP can be understood as the existence of an arc along
which the optimal trajectory x⋆(·) stays close to the steady
state x̄ in the sense of the Euclidean norm ∥ ·∥, and the time
length of this arc increases with increasing horizon length
T . Similar definitions of turnpike properties for the case of
discrete-time optimal control problems are used [3, 18]. For
continuous-time problems, a similar definition is implicitly
given in [2].

Remark 1: Note that Definition 2 implies that the steady
state x̄ at which the turnpike occurs is asymptotically reach-
able from all x0 ∈ X0.

C. Dissipativity

It has been shown in [1] that for discrete time systems a
certain dissipativity property is closely linked to the question
of optimal operation at steady state. We briefly recall the
necessary definitions.

For some x̄ ∈ X̄ consider w : X × U → R

w(x, u) = F (x, u)− F (x̄, ū) (9)

where F is the cost function in (3) and (5).
Definition 3 (Dissipativity with respect to a steady state):

System (1) is said to be dissipative on D ⊆ X × U with
respect to the steady state x̄ ∈ X̄ if there exists a bounded
storage function S : X → R such that

∂S

∂x
f(x, u) ≤ w(x, u) (10)

holds for all (x, u) ∈ D.2 If in addition for some class K
function α it holds that

∂S

∂x
f(x, u) ≤ −α(∥x− x̄∥) + w(x, u), (11)

then (1) is called strictly dissipative on D with respect to the
steady state x̄.

Due to this dissipativity notion, the function w in (9) is
called a supply rate.

2Note that we define the storage function S : X → R to take real values
instead of postive real values. Since the domain of S is assumed to be
compact, one could as well consider S : X → R+

0 .



III. MAIN RESULTS

The main purpose of this paper is to establish links
between the three following formal statements/assumptions:

Statement 1: System (1) is strictly dissipative on the set
X ×U with respect to the steady state x̄ ∈ X̄ and the supply
rate w (9).

Statement 2: System (1) is optimally operated at the op-
timal steady state pair (x̄⋆, ū⋆), x̄⋆ ∈ X̄ ⋆.

Statement 3: For all x0 ∈ X0, the optimal solutions of
OCP (4) have an approximate turnpike at x̄.
Subsequently, we show that

• Statement 1 ⇒ Statement 3;
• Statement 1 ⇒ Statement 2;
• Statement 3 ⇒ Statement 2.

These relations are sketched in Fig. 1.
For some of these relations we will invoke a reachability

assumption. Consider the set

R(x̃, T ) := {x0 ∈ X | ∃u(·) ∈ M([0, T ],U) :
x(·, x0, u(·)) ∈ X , x(T, x0, u(·)) = x̃} , (12)

which is the set of initial conditions x0 ∈ X for which a
point x̃ ∈ X is reachable in an admissible way in some
finite time T ∈ (0,∞).

Assumption 1: There exists a time TX̄⋆ < ∞ such that,
for all x0 ∈ X0, there exists an optimal steady state x̄⋆ ∈ X̄ ⋆

reachable in time TX̄⋆ , i.e.,∪
x̄⋆∈X̄⋆

R(x̄⋆, TX̄⋆) ⊃ X0.

Implications of Dissipativity

We first prove a technical statement.
Lemma 2: If Statement 1 is true for some steady state

x̄ ∈ X̄ , then x̄ = x̄⋆, i.e., x̄ is the unique solution to (5)
in the sense that there exists ū such that (x̄, ū) attains the
optimum in (5) and x̄ is unique.

Proof: By definition of x̄, there exists ū ∈ U such
that f(x̄, ū) = 0. Let (x̄⋆, ū⋆) be an optimal solution to (5).
Evaluating the strict dissipativity condition (11) at (x̄⋆, ū⋆)
yields

0 ≤ −α(∥x̄⋆ − x̄∥) + F (x̄⋆, ū⋆)− F (x̄, ū).

Since (x̄, ū) is feasible in (5), we have

F (x̄⋆, ū⋆)− F (x̄, ū) ≤ 0.

Thus the fact that α is of class K implies that x̄⋆ = x̄.
Remark 2: Note that it is possible to have two steady state

pairs (x̄, ū1), (x̄, ū2) with F (x̄, ū1) = F (x̄, ū2), u1 ̸= u2 and
to be dissipative with respect to x̄.

Theorem 1 (Dissipativity ⇒ turnpike): Suppose that
Statement 1 and Assumption 1 hold for x̄⋆ ∈ X̄ . Then
Statement 3 holds at x̄⋆, i.e., the optimal solutions to (4)
have an approximate turnpike at x̄⋆.
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Fig. 1. Implications between disspativity, turnpike propterties and optimal
operation at steady state.

Proof: Let (x⋆(·), u⋆(·)) be an optimal solution to (4)
on the horizon [0, T ]. Integrating the dissipation inequal-
ity (11) gives

S(x⋆(T ))− S(x⋆(0)) ≤ −
∫ T

0

α(∥x⋆(t)− x̄⋆∥)dt

+

∫ T

0

F (x⋆(t), u⋆(t))− F (x̄⋆, ū⋆) dt.

By Assumption 1, x̄⋆ is reachable from every x0 ∈ X0 in
a time TX̄⋆ < ∞; therefore, the second integral is bounded
from above by KF := 2TX̄⋆ sup{F (x, u) | x ∈ X , u ∈
U} < ∞ for all x0 ∈ X0, independently of T . In addition,
since S(·) is bounded on X , the left-hand side is bounded
in absolute value (independently of T ) by some KS < ∞.
Hence, we have∫ T

0

α(∥x⋆(t)− x̄⋆∥)dt ≤ KS +KF .

Next, using the definition of Θε,T and the fact that α is of
class K, we obtain∫ T

0

α(∥x⋆(t)− x̄⋆∥)dt ≥
∫
Θε,T

α(∥x⋆(t)− x̄⋆∥)dt

≥ α(ε)µ[Θε,T ].

Therefore

µ[Θε,T ] ≤ (KS +KF )/α(ε) =: ν(ε),

where ν(ε) does not depend on T .
This result is an extension of a classical result given in [2,

Thm. 4.4]. Therein, a turnpike property is proved under the
assumption of strict convexity of F and via consideration of
a terminal constraint x(T ) = xT for the OCP (4). Statements
similar to Theorem 1 have been derived for the discrete-time
case in [3, 6].

Next, we verify that dissipativity implies optimal operation
at steady state.

Theorem 2 (Dissipativity ⇒ opt. op. at steady-state): If
Statement 1 holds at x̄⋆, then Statement 2 holds, i.e., system
(1) is optimally operated at the steady state x̄⋆.

Proof: For contradiction, assume that there exists an
infinite-time admissible pair (x∞(·), u∞(·)) and a sequence



{Tk}∞k=1 with Tk+1 ≥ Tk and Tk → ∞ such that

lim
k→∞

1

Tk
JTk

(x0, u∞(·)) ≤ F (x̄⋆, ū⋆)− σ (13)

for some σ > 0. Integrating the dissipation inequality (10)
and dividing by Tk gives

1

Tk
[S(x∞(Tk))− S(x∞(0))] ≤

≤ 1

Tk
JTk

(x0, u∞(·))− F (x̄⋆, ū⋆).

Since the storage function S is bounded on X and x∞(t) ∈
X for all t ∈ [0, T ], the left-hand side of the above inequality
converges to zero for Tk → ∞, whereas the right-hand side
converges to below −σ < 0, which is a contradiction.

Note that, in the proof of Theorem 2, we never invoked the
strict dissipativity term α(∥x− x̄⋆∥); therefore the following
stronger statement holds:

Proposition 1: If system (1) is dissipative (not necessarily
strictly) on the set X ×U with respect to the steady state x̄⋆

and the supply rate w from (9), then Statement 2 holds, i.e.,
the system (1) is optimally operated at the steady state x̄⋆.

Implications of Turnpike Properties

Theorem 3 (Turnpike ⇒ opt. operated at steady-state):
Consider system (1). Suppose that Statement 3 holds at the
steady-state x̄ and the cost function F does not depend on
u, i.e., ∂F (x,u)

∂u = 0. Then system (1) is optimally operated
at the steady state x̄.

Proof: Since we assume that F (x, u) is independent of
u, we simply write F (x) throughout the proof. Fix x0 ∈ X0

and, for contradiction, assume that there exists an infinite-
time admissible pair (x∞(·), u∞(·)) and a sequence {Tk}∞k=1

with Tk+1 ≥ Tk and Tk → ∞ such that

lim
k→∞

1

Tk
JTk

(x0, u∞(·)) ≤ F (x̄)− σ (14)

for some σ > 0. Next, observe that the turnpike property
and Lipschitz continuity of F (x) imply that there exists a
function γ(·), independent of T , such that

µ[Ωε,T ] < γ(ε),

where

Ωε,T = {t ∈ [0, T ] | |F (x⋆
T (t))− F (x̄)| > ε},

and where x⋆
T (·) denotes any optimal solution to (4) with

horizon T . Setting m := minx∈X F (x) and Ωc
ε,Tk

:=
[0, Tk] \ Ωε,Tk

, we have for arbitrary ε > 0:∫ Tk

0

F (x⋆
Tk
(t))dt =

∫
Ωε,T

F (x⋆
Tk
(t))dt+

∫
Ωc

ε,T

F (x⋆
Tk
(t))dt

≥ mµ[Ωε,Tk
] +

∫
Ωc

ε,T

F (x̄)− ε dt

= mµ[Ωε,Tk
] +

∫ Tk

0

F (x̄)− ε dt−
∫
Ωε,Tk

F (x̄)− ε dt

= mµ[Ωε,Tk
] + Tk(F (x̄)− ε)− µ[Ωε,Tk

](F (x̄)− ε).

Since µ[Ωε,Tk
] < γ(ε) independently of Tk, dividing by Tk

and letting k → ∞ gives:

lim
k→∞

1

Tk

∫ Tk

0

F (x⋆
Tk
(t))dt ≥ F (x̄)− ε.

Selecting ε < σ, we arrive at a contradiction to (14) since
the pair (x∞(·), u∞(·)) truncated to [0, Tk] is admissible for
the OCP (4) for any Tk ≥ 0.

The following corollary says that a turnpike can occur only
at an optimal steady state:

Corollary 1 (Turnpikes only at optimal steady state):
Let the assumptions of Theorem 3 hold. Then there exists
a ū ∈ U such that (x̄, ū) = (x̄⋆, ū⋆), i.e. (x̄, ū) is optimal
in (5).

Proof: Follows from Theorem 3 and Lemma 1.
Remark 3: The preceding corollary is a consequence of

the turnpike definition used in this paper, which implies
asymptotic reachability of x̄ from all x0 ∈ X0 (see Re-
mark 1). If instead a local definition of turnpike is used,
analogous local results can be established.

One might wonder whether or not the consideration of
purely state-dependent cost functions F is restricting. There
are two answers to this question: (a) one augments the
dynamics (1) by considering the inputs u as state variables
and using u̇ as new input variables; (b) one may change
the definition of the turnpike property. If one changes
(8) such that instead of ∥x⋆(t, x,u

⋆(·)) − x̄∥ the distance
∥(x⋆(t, x,u

⋆(·)), u⋆(t)) − (x̄, ū)∥ is considered, then Theo-
rem 3 can be extended to general Lipschitz continuous cost
functions F : X × U → R.

The next result shows that augmenting the system by
considering u̇(t) as new inputs preserves dissipativity.

Lemma 3: Suppose, that the system (1) is dissipative on
D ⊆ X ×U with respect to a steady state x̄ ∈ X̄ , f(x̄, ū) =
0. Then, the augmented system

ż = g(z, v) =

(
f(x, u)

v

)
, z = (x, u) (15)

is dissipative with respect to the steady state z̄ = (x̄, ū).
Proof: Consider the candidate storage function Σ :

Rnx+nu → R, Σ(z) = Σ(x, u). Evaluation of Σ along the
trajectories of the augmented system (15) yields

∂Σ

∂z
g(z, v) =

(
∂Σ

∂x
,
∂Σ

∂u

)(
f(x, u)

v

)
=

∂Σ

∂x
f(x, u)+

∂Σ

∂u
v.

Dissipativity of (1) with respect to a steady state x̄ :

f(x̄, ū) = 0 implies
∂S

∂x
f(x, u) ≤ w(x, u). Thus, we obtain

that the supply rate w(z) = w(x, u) and the storage function
Σ(z) = S(x) satisfy the dissipation inequality (10).
Thus we conclude that the assumption of purely state-
dependent cost functions is not overly restrictive.

IV. EXAMPLE: CHEMICAL REACTOR

To illustrate the results from the last section we consider a
Van de Vusse reactor as an example, [15]. In a continuously
stirred tank reactor, three endothermal chemical reactions
A

k1→ B
k2→ C and 2A

k3→ D take place. A partial model



of the reactor, including the concentration of species A and
B, cA, cB in mol/l and the reactor temperature ϑ in ◦C as
state variables, reads

ċA = rA(cA, ϑ) + (cin − cA)u1 (16a)
ċB = rB(cA, cB, ϑ)− cBu1 (16b)

ϑ̇ = h(cA, cB , ϑ) + α(u2 − ϑ) + (ϑin − ϑ)u1, (16c)

where

rA(cA, ϑ) = −k1(ϑ)cA − 2k3(ϑ)c
2
A (16d)

rB(cA, cB, ϑ) = k1(ϑ)cA − k2(ϑ)cB (16e)

h(cA, cB, ϑ) = −δ
(
k1(ϑ)cA∆HAB + k2(ϑ)cB∆HBC

+ 2k3(ϑ)c
2
A∆HAD

)
(16f)

ki(ϑ) = ki0 exp
−Ei

ϑ+ ϑ0
, i = 1, 2, 3. (16g)

The system parameters can be found in [15]. The inputs
u1, u2 are the normalized flow rate of A through the reactor
in 1/h and the temperature in the cooling jacket in ◦C. The
states and inputs are subject to the constraints

cA ∈ [0, 6]mol
l cB ∈ [0, 4]mol

l ϑ ∈ [70, 200]◦C
u1 ∈ [3, 35] 1h u2 ∈ [0, 150]◦C.

(17)
We consider the problem of maximizing the production

rate of cB; thus we specify the cost function F in (3) and
(5) as

F (cB , u1) = −βcBu1, β > 0. (18)

A. Numerical Verification of Dissipativity

To numerically verify dissipativity, we approximate the
exponential term ki(θ) by its fourth-order Taylor expansion
at ϑ = 110◦C. This yields a reasonable approximation of
ki(θ) over the box [70, 200]. This way the system dynamics
become polynomial and a polynomial storage function can
be sought using sum-of-squares (SOS) programming. Indeed,
by choosing a quadratic class K function α := ᾱ∥x− x̄⋆∥2,
where ᾱ > 0 is an optimization variable, all data in the
dissipation inequality (11) become polynomial. We solve the
following optimization problem:

maximize
ᾱ∈[0,1],S(·)∈R[x]

ᾱ (19a)

subject to ∀(x, u) ∈ X × U

w(x, u)− ᾱ∥x− x̄⋆∥2 − ∂S

∂x
f(x, u) ≥ 0, (19b)

where R[x] denotes the ring of polynomials. The nonnegativ-
ity constraint (19b) is replaced by a sufficient SOS constraint;
here we used the standard Putinar condition [13] imposed for
each of the four vertices of U separately (this is possible since
u enters the dynamics affinely and U is convex). This leads to
a semidefinite programming problem (SDP), which is solved
using SeDuMi [12]. Details of sum-of-squares programming
are omitted for brevity; see, e.g., [9] for a general treatment
or [5] for an application of SOS programming to dissipativity
problems. The strict dissipativity constant ᾱ is constrained
to [0, 1] for numerical reasons.

The optimal steady state x̄⋆ = [2.1756, 1.1049, 128.53]T ,
ū⋆ = [35, 142.76]T is computed using an SQP-method from
Matlab’s function fmincon, and its global optimality is
verified using Gloptipoly [7].

Seeking a polynomial storage function of degree five using
sum-of-squares programming results in a feasible problem
with ᾱ = 1, thus verifying strict dissipativity with respect to
x̄⋆ on X × U .

B. Numerical Verification of Turnpike Properties

In order to numerically show turnpike properties, we solve
the following OCP

minimize
u(·)

∫ T

0

−βcB(t)u1(t)dt

subject to (16) and (17).
(20)

To foster comparability with the numerically obtained stor-
age function, the Arrhenius terms (16g) are again approx-
imated by the fourth-order Taylor series developed at ϑ =
110◦C. OCP (20) is solved for two initial conditions with
a piecewise-constant input parametrization via a direct mul-
tiple shooting implementation [8]. For the initial condition
cA(0), cB(0), ϑ(0)) = (1.5, 1.2, 140) we consider an opti-
mization horizon of T = 0.5; for cA(0), cB(0), ϑ(0)) =
(5.1, 0, 100) we use T = 0.25. The results are depicted in
Fig. 2.

The plots in the upper part of Fig. 2 show the trajectories
of states cA, cB and ϑ and their optimal steady-state values.
The dynamic trajectories obtained via OCP (20) are plotted
in blue or green depending on the considered horizon length.
The optimal steady-state values are plotted in red. Clearly,
the optimal solutions converge rapidly to the optimal steady
state and diverge close to the end of the horizon. In other
words, the optimal solutions to (20) exhibit the turnpike
property.

The lower part of Fig. 2 depicts the inputs u1, u2 (middle
and right plot). Note that the input u1 is always at its
upper limit. The left plot illustrates the strict dissipation
inequality (11). To this end we define

δ(t) =

(
∂S

∂x
f(x, u) + α(∥x− x̄⋆∥)− w(x, u)

)∣∣∣∣ x=x(t)
u=u(t)

,

where α(∥x − x̄⋆∥), w(x, u) and the storage S(x) are the
ones computed in Section IV-A. Note that δ(t) ≤ 0 implies
that the strict dissipation inequality (11) is satisfied.

In Fig. 2 (lower part, left side) δ(t) is plotted along
the optimal solutions to (20). We see that the dissipation
inequality (11) is satisfied for both cases.

V. CONCLUSIONS

This paper has investigated the relation between dissi-
pativity properties of optimal control problems, turnpike
properties of the optimal solutions, and optimal operation at
steady state over an infinite horizon. We extended discrete-
time results to show that dissipativity implies (a) optimal op-
eration at steady state and (b) a turnpike property of optimal
solutions. Furthermore, we showed that turnpike properties



Fig. 2. Simulation results for the Van de Vusse reactor (16).

of optimal solutions imply optimal operation at steady state.
Finally, we demonstrated by means of a numerical example
that, for polynomial systems, dissipativity of optimal control
problems can be verified via sum-of-squares programming.

Future work will consider the establishment of additional
relations between dissipativity, turnpikes and optimal opera-
tion at steady state.
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Vol. 384. Lecture Notes in Control and Information Sciences.
Springer Berlin, 2009, pp. 119–138.

[15] R. Rothfuß, J. Rudolph, and M. Zeitz. “Flatness based con-
trol of a nonlinear chemical reactor model”. In: Automatica
32 (1996), pp. 1433–1439.

[16] R. Vinter. Optimal Control. Springer, 2010.
[17] L. Würth, J. Rawlings, and W. Marquardt. “Economic dy-

namic real-time optimization and nonlinear model-predictive
control on infinite horizons”. In: ADCHEM 2009 (Interna-
tional Symposium on Advanced Control of Chemical Pro-
cesses), Istanbul, Turkey, 12-15.07.2009. 2009.

[18] A.J. Zaslavski. Turnpike Properties in the Calculus of Vari-
ations and Optimal Control. Vol. 80. Springer, 2006.


