
A New Event-Driven Cooperative Receding Horizon Controller for
Multi-agent Systems in Uncertain Environments

Yasaman Khazaeni and Christos G. Cassandras
Division of Systems Engineering

and Center for Information and Systems Engineering
Boston University

Brookline, MA 02446
yas@bu.edu,cgc@bu.edu

Abstract— In previous work, a Cooperative Receding Horizon
(CRH) controller was developed for solving cooperative multi-
agent problems in uncertain environments. In this paper, we
overcome several limitations of this controller, including poten-
tial instabilities in the agent trajectories and poor performance
due to inaccurate estimation of a reward-to-go function. We
propose an event-driven CRH controller to solve the maximum
reward collection problem (MRCP) where multiple agents
cooperate to maximize the total reward collected from a set of
stationary targets in a given mission space. Rewards are non-
increasing functions of time and the environment is uncertain
with new targets detected by agents at random time instants.
The controller sequentially solves optimization problems over
a planning horizon and executes the control for a shorter
action horizon, where both are defined by certain events
associated with new information becoming available. In contrast
to the earlier CRH controller, we reduce the originally infinite-
dimensional feasible control set to a finite set at each time step.
We prove some properties of this new controller and include
simulation results showing its improved performance compared
to the original one.

I. INTRODUCTION

Cooperative control is used in systems where a set of con-
trol agents with limited sensing, communication and compu-
tational capabilities seeks to achieve objectives defined glob-
ally or individually [1],[2]. Uncertain environments further
require the agents to respond to random events. Examples
arise in UAV teams, cooperative classification, mobile agent
coordination, rendez-vous problems, task assignment, persis-
tent monitoring, coverage control and consensus problems;
see [3],[4],[5],[6],[7],[8],[9],[10],[11] and references therein.
Both centralized and decentralized control approaches are
used; in the latter case, communication between the agents
in order to make collaborative decisions plays a crucial role.

In this paper, we consider Maximum Reward Collection
Problems (MRCP) where N agents are collecting time-
dependent rewards associated with M targets in an uncertain
environment. In a deterministic setting with equal target
rewards a one-agent MRCP is an instance of a Traveling
Salesman Problem (TSP), [12],[13]. The multi-agent MRCP
is similar to the Vehicle Routing Problem (VRP) [14]. These
are combinatorial problems for which globallly optimal solu-

The authors’ work is supported in part by NSF under Grant CNS-
1139021, by AFOSR under grant FA9550-12-1-0113, by ONR under grant
N00014-09-1-1051, and by ARO under Grant W911NF-11-1-0227.

tions are found through integer programming. For example,
in [15],[16], a deterministic MRCP with a linearly decreasing
reward model is cast as a dynamic scheduling problem and
solved via heuristics.

Because of the MRCP complexity, it is natural to re-
sort to decomposition techniques. One approach is to seek
a functional decomposition that divides the problem into
smaller sub-problems [17],[18] which may be defined at
different levels of the system dynamics. An alternative is a
time decomposition where the main idea is to solve a finite
horizon optimization problem, then continuously extend this
planning horizon forward (either periodically or in event-
driven fashion). This is in the spirit of receding horizon
techniques used in Model Predictive Control (MPC) to solve
optimal control problems for which obtaining infinite horizon
feedback control solutions is extremely difficult [19]. In such
methods, the current control action is calculated by solving
a finite horizon open-loop optimal control problem using
the current state of the system as the initial state. At each
instant, the optimization yields an optimal control sequence
executed over a shorter action horizon before the process
is repeated. In the context of multi-agent systems, a Coop-
erative Receding Horizon (CRH) controller was introduced
in [20] with the controller steps defined in event-driven
fashion (with events dependent on the observed system state)
as opposed to being invoked periodically, in time-driven
fashion. A key feature of this controller is that it does not
attempt to make any explicit agent-to-target assignments, but
only to determine headings that, at the end of the current
planning horizon, would place agents at positions such that
a total expected reward is maximized. Nonetheless, as shown
in [20], a stationary trajectory for each agent is guaranteed
under certain conditions, in the sense that an agent trajectory
always converges to some target in finite time.

In this paper, we consider MRCPs in uncertain environ-
ments where, for instance, targets appear/disappear at ran-
dom times and a target may have a random initial reward and
a random reward decreasing rate. The contribution is to intro-
duce a new CRH controller, allowing us to overcome several
limitations of the controller in [20], including potential
instabilities in the agent trajectories and poor performance
due to inaccurate estimation of the reward-to-go function.
We accomplish this by reducing, at each event-driven control

ar
X

iv
:1

40
3.

34
34

v2
 [

cs
.S

Y
]

 2
9

A
ug

 2
01

4

evaluation step, the originally infinite-dimensional feasible
control set to a finite set and by improving the estimation
process for the reward to go, including a new “travel cost
factor” for each target which accommodates different target
configurations in a mission space. We also establish some
properties of this new controller whose overall performance
is significantly better relative to the original one, as illustrated
through various simulation examples.

In section II, the MRCP is formulated and in Section III
we place the problem in a broader context of event-driven
optimal control. In Sections IV and V the original CRH con-
troller is reviewed and the proposed new controller and some
of its properties are established. In Section VI simulation
examples are presented and future research directions are
outlined in the conclusions.

II. PROBLEM FORMULATION

We consider a MRCP where agents and targets are located
in a mission space S. There are M targets defining a set T =
{1, ..,M} and N agents defining a set A = {1, ..., N}. The
mission space may have different topological characteristics.
In a Euclidean topology, S ⊂ R2 as illustrated in Fig. 1 with
a triangle denoting a base, circles are agents and squares are
targets. In this case, the distance metric d(x, y) is a simple
Euclidean norm such that d : S × S → R is the length
of the shortest path between points x, y ∈ S. Moreover,
the feasible agent headings are given by the set Uj(t) =
[0, 2π], j ∈ A. If there are obstacles in S, the feasible
headings and the shortest path between two points should be
defined accordingly. Alternatively, the mission space may be
modeled as a graph G(E, V) with V representing the location
of targets and the base. Feasible headings are defined by the
(directed) edges at each node and the distance d(u, v) is the
sum of the edge weights on the shortest path between u and
v. In this paper, we limit ourselves to a Euclidean mission
topology.

Targets are located at points yi ∈ S, i ∈ T . Target i’s
reward is denoted by λiφi(t) where λi is the initial maximum
reward and φi(t) ∈ [0, 1] is a non-increasing discount
function. By using the appropriate discounting function we
can incorporate constraints such as hard or soft deadlines for
targets. An example of a discount function is

φi(t) =

{
1− αi

Di
t if t ≤ Di

(1− αi)e−βi(t−Di) if t > Di
(1)

where αi, βi and Di are given parameters. Agents are located
at xj(t) ∈ S. Each agent has a controllable heading at time
t, uj(t) ∈ Uj(t) = [0 2π]. The velocity of agent j is

vj(t) = Vj

[
cos(uj(t))
sin(uj(t))

]
(2)

where we assume that Vj is a fixed speed.
We define a mission as the process of the N agents

cooperatively collecting the maximum possible total reward
from M targets within a given mission time T . Upon
collecting rewards from all targets, the agents deliver it
to a base located at z ∈ S. Events occurring during a
mission can be controllable (e.g., collecting a target’s reward)

1 2

1

2
3

4
5

B

Fig. 1. Sample mission space with filled blue regions as obstacles

or random (e.g., the appearance/disappearance of targets or
changes in their location). The event-driven CRH controller
we will develop, handles these random events by re-solving
the optimal control problem as in the original CRH controller
in [20]. In order to ensure that agents collect target rewards in
finite time, we assume that each target has a radius si > 0
and that agent j collects reward i at time t if and only if
d(xj(t),yi) ≤ si.

III. AN EVENT-DRIVEN OPTIMIZATION VIEW

We view the solution of a MRCP as a sequence of head-
ings for all agents and associated heading switching times.
We define a policy π as a vector [u, ξ] where ξ = [ξ1, ..., ξK]
are the switching time intervals over which headings are
maintained with tk+1 =

∑k
l=1 ξl, and t1 = 0. The control

u = [u1, ...,uK] with uk = [u1(tk), ..., uN (tk)] is the vector
of all the agent headings at time tk. With M bounded, there
exist policies π such that all targets are visited over a finite
number of switching events. Each switching time tk is either
the result of a controllable event (e.g., visiting a target) or
an uncontrollable random event. This is a complex stochastic
control problem where the state space Ξ is the set of all
possible location of agents Xk = [x1(tk), ...,xN (tk)] and
targets Yk = [y1, ...,yMk

] with Mk = ‖Tk‖ and Tk is the
set of unvisited targets at time tk. As the mission evolves, Mk

decreases and the mission is complete when either Mk = 0
or a given mission time T is reached. The complete system
state at time tk is (Xk,Yk) ∈ Ξ. We define the optimization
problem P as:

max
π

K∑
k=1

Rπ(tk,Xk,Yk) (3)

where

Rπ(tk,Xk,Yk) =

Mk∑
i=1

N∑
j=1

λiφi(tk)1{d(xj(tk),yi) ≤ si}

The time a target is visited is a controllable event associated
with a heading switching. In a deterministic problem, there is
no need to switch headings unless a target is visited, but in an
uncertain setting the switching times are not limited to these
events. We define a subsequence τπ = {τπ1 , τπ2 , ..., τπM} of
{t1, ...tK}, M ≤ K, so that τπi is the time target i is visited.
Note that τπ is not a monotonic sequence, since targets can
be visited in any order. Therefore, (3) can be rewritten as

max
π

M∑
i=1

λiφi(τ
π
i) (4)

Defining the immediate reward as being collected during a
time period ξk and the reward-to-go as being aggregated over
all t > tk + ξk, an optimality equation for this problem is:
J(tk,Xk,Yk) = max

uk,ξk

[
JI(tk,Xk,Yk,uk, ξk) + J(tk+1,Xk+1,Yk+1)

]
(5)

where J(tk,Xk,Yk) denotes the maximum total reward at
time tk with current state (Xk,Yk) and JI(tk,Xk,Yk,uk, ξk)
is the immediate reward collected in the interval (tk, tk+1].
Finally, J(tk+1,Xk+1,Yk+1) is the maximum reward-to-go
at tk+1 assuming no future uncertainty, i.e., we avoid the
use of an a priori stochastic model for the environment,
opting instead to react to random events by re-solving (5)
when this happens. Letting τ∗ = maxi∈T {τπi }, we set
J(τ∗,XK ,YK) = 0. Henceforth, we write J(tk,Xk,Yk) =
J(tk) for brevity. Had we assumed a fixed value for ξk a
priori, the optimization problem (5) could have been solved
using Dynamic Programming (DP) with the terminal state
reached when no target is left in the mission space. However,
a fixed ξk does not allow for real-time reactions to new
events. This fact, along with the size of the state space
renders DP impractical and motivates a receding horizon
control approach where we set ξk = Hk based on a planning
horizon Hk selected at time step tk. Then, a finite horizon
optimal control problem over (tk, tk + Hk] is solved to
determine the optimal control u∗k. This control is maintained
for an action horizon hk ≤ Hk. A new optimization problem
is re-solved at tk+1 = tk+hk or earlier if any random event
is observed. Following (5), the optimization problem Pk is

max
uk

[JI(uk, tk, Hk) + J(tk+1, Hk+1)] (6)

where J(tk+1, Hk+1) and JI(uk, tk, Hk) were defined
above assuming ξk = Hk. The immediate reward is zero if
agents do not visit any target during (tk, tk+Hk], otherwise
it is the reward collected over this interval. Fixing the value
of Hk is not constraining, since it is always possible to stop
and re-solve a new problem at any t > tk.

IV. CRH CONTROL SCHEME

In this section we briefly review the CRH controller
introduced in [20] and identify several limitations of it to
motivate the methods we will use use to overcome them.

Cooperation Scheme: In [20] the agents divide the mission
space into a dynamic partition at each mission step. The
degree of an agent’s responsibility for each target depends on
the relative proximity of the agent to the target. A neighbor
set is defined for each target which includes its b closest
agents, b = 1, 2, . . ., sharing the responsibility for that target
until another agent moves closer. A value of b = 2 is used
in the previous and current work for simplicity. Defining
cij(t) = d(yi,xj(t)) to be the direct distance between target
i and agent j at time t, let Bl(yi, t) be the lth closest agent
to target i at time t. Formally,

Bl(i, t) = argmin
j∈A,j 6=B1(i,t),...,j 6=Bl−1(i,t)

{cij(t)} (7)

Let βb(i, t) = {B1(i, t), ..., Bb(i, t)} be a neighbor set based
on which a relative distance function is defined for all j ∈ A:

δij(t) =


cij(t)∑

k∈βb(i,t)

cik(t)
if j ∈ βb(i, t);

1 otherwise

(8)

Obviously, if j /∈ βb(i, t), then δij(t) = 1. The relative
proximity function p(δij(t)) defined in [20] is viewed as the
probability that target i will be visited by agent j:

p(δij(t)) =


1, if δ ≤ ∆
1−∆−δ
1−2∆ , if ∆ ≤ δ ≤ 1−∆

0, if δ > 1−∆
(9)

Here, ∆ ∈ [0, 1
2) defines the level of cooperation between the

agents. By increasing ∆ an agent will take full responsibility
for more targets, hence less cooperation. Each agent takes
on full responsibility for target i if δij(t) ≤ ∆. As shown
in [20], when ∆ = 1

2 the regions converge to the Voronoi
tessellation of the mission space, with the location of agents
at the centers of the Voronoi tiles. There is no cooperation
region in this case and each agent is fully responsible for the
targets within its own Voronoi tile. On the other hand, when
∆ = 0 no matter how close an agent is to a target, the two
agents are still responsible for that target.

Planning and Action Horizons: In [20], Hk is defined as
the earliest time of an event such that one of the agents can
visit one of the targets:

Hk = min
l∈Tk

{d(xj(tk),yl)

Vj

}
(10)

This definition of planning horizon for the CRH controller
ensures no controllable event can take place during this
horizon. It also ensures that re-evaluation of the CRH control
is event-driven, as opposed to being specified by a clock
which involves a tedious synchronization over agents. Fig.
2 illustrates how Hk is determined when Vj = 1. The CRH
control calculated at tk is maintained for an action horizon
hk ≤ Hk. In [20] hk is defined either (i) through a random
event that may be observed at te ∈ (tk, tk + Hk] so that
hk = te − tk, or (ii) as hk = γHk, γ ∈ (0, 1). It is also
shown in [20] that under (10) the CRH controller generates a
stationary trajectory for each agent under certain conditions,
in the sense that an agent trajectory always converges to
some target in finite time.

A. Original CRH Controller Limitations

Instabilities in agent trajectories: The optimization prob-
lem considered in [20] uses a potential function which
is minimized in order to maximize the total reward. The
stationary trajectory guarantee mentioned above is based on
the assumption that all minima of this function are at the
target locations. If this assumption fails to hold, the agents
are directed toward the weighted center of gravity of all
targets. This can happen in missions where targets attain
a symmetric configuration, leading to oscillatory behavior
in the agent trajectories. An example is shown in Fig. 5(a)
with the original CRH controller applied to a single agent,
resulting in oscillations between three targets with equal

rewards. This problem was addressed in [21] by introducing
a monotonically increasing cost factor (or penalty) C(uj) on
the heading uj . While this prevents some of the instabilities,
it has to be appropriately tuned for each mission. We show
how to overcome this problem in Section V.

Hedging and mission time: The agent trajectories in [20]
are specifically designed to direct them to positions close
to targets but not exactly towards them unless they are
within a certain “capture distance,” the motivation being
that no agent should be committed to a target until the
latest possible time so as to hedge against the uncertainty of
new, potentially more attractive, randomly appearing targets.
This hedging effect is helpful in handling such uncertainties,
but it can create excessive loss of time, especially when
rewards are declining fast. This can be addressed by more
direct movements towards targets, while also re-evaluating
the control frequently enough. The feasible control set in
the original CRH is the continuous set [0, 2π]N , and by
appropriately reducing this to a discrete set of control values
we will show how we can eliminate unnecessary hedging.
This also reduces the complexity of the optimal control
problem at each time step and facilitates the problem solution
over a finite number of evaluations.

Estimation of reward-to-go: In the original CRH control
scheme, the visit times are estimated as the earliest time any
agent j would reach some target i, given a control uk at time
tk and maintained over (tk, tk+Hk]. Thus, the estimated visit
time τ̃lj(uk, tk, Hk) for any l ∈ Tk is
τ̃lj(uk, tk, Hk) = tk +Hk + d(xj(tk +Hk, uj(tk)),yl)

where xj(tk +Hk, uj(tk)) is the location of the agent j in
the next time step given the control uj(tk). This is a lower
bound for τ̃ij feasible only when Mk ≤ N , leading also to
a mostly unattainable upper bound for the total reward. We
will show how this estimate is improved by a more accurate
projection of each agent’s future trajectory.

V. THE NEW CRH CONTROLLER

In this section we present a new version of the CRH
controller in [20]. Using the definition of xj(tk+Hk, uj(tk))
given above and assuming Vj = 1 for all agents, the feasible
set for xj(tk +Hk, uj(tk)) is defined as

Fj(tk, Hk) = {w ∈ S| d(w,xj(tk)) = Hk} (11)

In a Euclidean mission space with no obstacles, Fj(tk, Hk)
is the circle centered at xj(tk) with radius Hk. Let
qi(xj(t)) = 1{d(xj(t),yi) ≤ si} be the indicator function
capturing whether agent j visits target i at time t. We define
the immediate reward at tk:

JI(uk, tk, Hk) =
N∑
j=1

Mk∑
l=1

λlφl(tk +Hk)ql(xj(tk +Hk, uj(tk)))

(12)
Following the definition of τi as the visit time of target i in
(4), we define τ̃ij as the estimated visit time of target i by
agent j. Here τ̃ij > tk and any of the agents in the mission
space has a chance to visit target i. At time tk we define an
estimate of the reward-to-go J(tk+1, Hk+1) for each uk as
J̃(uk, tk+1, Hk+1) = (13)

N∑
j=1

Mk+1∑
l=1

λlφl(τ̃lj(uk, tk, Hk)) · ql(xj(τ̃lj(uk, tk, Hk)))

We previously mentioned that the original CRH control
approach used a lower bound for estimating τ̃ij . We improve
this estimate and at the same time address the other two
limitations presented above through three modifications: (i)
We introduce a new travel cost for each target, which
combines the distance of a target from agents, its reward,
and a local sparsity factor. (ii) We introduce an active target
set associated with each agent at every control evaluation
instant tk. This allows us to reduce the infinite dimensional
feasible control set at tk to a finite set. (iii) We introduce a
new event-driven action horizon hk which makes use of the
active target set definition. With these three modifications,
we finally present a new CRH control scheme based on a
process of looking ahead over a number of CRH control
steps and aggregating the remainder of a mission through a
reward-to-go estimation process.

Travel Cost Factor: At each control iteration instant tk,
we define ζi(tk) for target i to measure the sparsity of
rewards in its vicinity. Let D̄i > 0 be such that φi(D̄i) = 0
for each i ∈ T and set Di = min(D̄i, T) so that the average
reward decreasing rate of i over the mission is given by
λi/Di. Let the set {1, 2, ..., I} contain the indices of the I
closest targets to i at time tk. We then define the sparsity
factor for target i as

ζi(tk) =

I∑
l=1

γl
d(yi,yl)

λl/Dl
(14)

where γ ∈ [0 1] is a parameter used to shift the weight
among the I targets. Note that ζi(tk) is time-dependent since
the set of I closest targets changes over time as rewards are
collected. A larger ζi(tk) implies that target i is located in
a relatively sparse area and vice versa. The parameter I is
chosen based on the number of targets in the mission space
and the computation capacity of the controller. The main idea
for ζi(tk) comes from [22] where it was used to solve TSP
problems with clustering. Next, for any point in x ∈ S, we
define target i’s travel cost at time tk as

ηi(x, tk) =
d(x,yi)

λi/Di
+ ζi(tk) (15)

The travel cost is proportional to the distance metric, so the
farther a target is from x the more costly is the visit to that
target. It is inversely proportional to the reward’s average
decreasing rate, implying that the faster the reward decreases,
the less the travel cost is. Adding ζi(tk) gives a target in a
sparse area a higher travel cost as opposed to one where there
is an opportunity for a visiting agent to collect additional
rewards from its vicinity.

Active Targets: At each control iteration instant tk, we
define for each agent j a subset of targets with the following
property relative to the planning horizon Hk:

Sj(tk, Hk) =
{
`|∃ x ∈ Fj(tk, Hk) (16)

s.t. ` = argmin
i∈Tk

ηi(x, tk +Hk), i = 1, 2, ...,Mk

}

x1(t)

y1

y2

y3y6

y4 y5
Hk

Fig. 2. The Active Target Set for agent 1: S1(x1(tk), Hk) = {1, 2, 4, 5}

This is termed the active target set and (16) implies that
i ∈ Tk is an active target for agent j if and only if it has the
smallest travel cost from at least one point on the reachable
set Fj(tk, Hk). This means that every x ∈ Fj(tk, Hk) is
associated with one of the active targets and, therefore, so
does every feasible heading uj(tk). which corresponds to
active target l if and only if:

l = argmin
i∈Tk

ηi
(
x(tk +Hk, uj(tk)), tk +Hk

)
(17)

When d(x, y) is continuous, active targets partition the
reachable set Fj(tk, Hk) into several arcs as illustrated in
Fig. 2 where, for simplicity, we assume γ = 0 in (14) and
all λi and φi(t), i = 1, . . . ,M are the same. In this case,
agent 1 has four active targets: S1(tk, Hk) = {1, 2, 4, 5}. The
common feature of all points on an arc is that they correspond
to the same active target with the least travel cost.

Construction of Sj(tk, Hk): For each target l ∈ Tk and
each agent j, let Lk(xj(tk), l) be the set of points x ∈ S
defining the shortest path from xj(tk) to yl. The intersection
of this set with Fj(tk, Hk) is the set of closest points to target
l in the feasible set:

Cl,j(tk, Hk) = Lk(xj(tk), l) ∩ Fj(tk, Hk) (18)

In a Euclidean mission space, Lk(xj(tk), l) is a convex com-
bination (line segment) of xj(tk) and yl, while Cl,j(tk, Hk)
is a single point where this line crosses the circle Fj(tk, Hk).
The following lemma provides a necessary and sufficient
condition for identifying targets which are active for an agent
at tk using Cl,j(tk, Hk).

Lemma 1. Target l is an active target for agent j at time
tk if and only if, ∀i ∈ Tk

ηl(Cl,j(tk, Hk), tk+1) ≤ ηi(Cl,j(tk, Hk), tk+1) (19)

Proof: See Appendix.
Action Horizon: The definition of hk in [20] requires fre-

quent iterations of the optimization problem through which
u∗k is determined in case no random event is observed to
justify such action. Instead, when there are no random events,
we define a new multiple immediate target event to occur
when the minimization in (10) returns more than one target
meaning the agent is at an equal distance to at least two
targets. We then define hk to be the shortest time until the
first multiple immediate target event occurs in (tk, tk +Hk]:

hk = min
{
Hk, inf

{
t > tk : ∃l, l∗ ∈ Tk s.t. (20)

d(xj(tk + t, uj(tk)),yl) = d(xj(tk + t, uj(tk)),yl∗)
}}

Consequently, this definition of hk eliminates any unneces-
sary control evaluation.

A. Look Ahead and Aggregate Process

In order to solve the optimization problem Pk in
(6) using the CRH approach, we need the estimated
visit time τ̃ij(uk, tk, Hk) for each uk through which
J̃(uk, tk+1, Hk+1) in (13) can be evaluated. This estimate
is obtained by using a projected path for each agent. This
path projection consists of a look ahead and an aggregate
step. In the first step, the active target set Sj(tk, Hk) is
determined for agent j. With multiple agents in a mission,
at each iteration step the remaining targets are partitioned
using the relative proximity function in (9). We denote the
target subset for agent j as Tk,j where:

l ∈ Tk,j ⇐⇒ p(δlj(tk)) > p(δlq(tk)) ∀q ∈ A (21)

Let |Tk,j | = Mk,j . All τ̃ij(uk, tk, Hk) are estimated as if j
would visit targets in its own subset by visiting the one with
the least travel cost first. We define the agent j’s tour as the
permutation θj(uk, tk, Hk) specifying the order in which it
visits targets in Tk,j . For simplicity, we write θj and let θji
denote the ith target in agent j’s tour. Then, for all l ∈ Tk,j
and tk+1 = tk +Hk:
ηθj

1
(xj(tk+1, uj(tk)), tk+1) ≤ ηl(xj(tk+1, uj(tk)), tk+1)

and with n = 2, ...,Mk,j − 1, for all l ∈ Tk,j − {θj1, ..., θjn},
ηθj

n+1
(yθj

n
, τ̃θj

n
(uk, tk, Hk)) ≤ ηl(yθj

n
, τ̃θj

n
(uk, tk, Hk))

where

τ̃θj
n
(uk, tk, Hk) = tk +Hk +

n−1∑
i=1

d(yθj
i
,yθj

i+1
) (22)

This results in the corresponding τ̃lj(uk, tk, Hk) for all l ∈
Tk,j . We can now obtain the reward-to-go estimate as
JA(uk, tk, Hk) = (23)

N∑
j=1

Mk+1,j∑
l=1

λlφl(τ̃lj(uk, tk, Hk)) · ql(xj(τ̃lj(uk, tk, Hk)))

Recalling the immediate reward in (12), the optimization
problem Pk becomes:

max
uk∈[0 2π]N

[
JI(uk, tk, Hk) + JA(uk, tk, Hk)

]
(24)

In (11) we defined the feasible set for the location of
agent j in the next step tk+1 = tk + Hk. In a Euclidean
mission space, each point x ∈ Fj(tk, Hk) corresponds to a
heading v(x) relative to the agent’s location xj(tk). Using
the definition in 18 let:
Vj(tk, Hk) =

{
v(x)|x = Cl,j(tk, Hk), l ∈ Sj(tk, Hk)

}
and

Vk = V1(tk, Hk)× V2(tk, Hk)× ...× VN (tk, Hk)

In the next lemma, we prove that in a single-agent mission
with the objective function defined in (24) the optimal control
is u1(tk) = v(Cl,1(tk, Hk)) for some l ∈ S1(tk, Hk).

Lemma 2. In a single agent (N = 1) mission, if u∗1 is
an optimal solution to the problem:

max
uk∈[0 2π]

[
JI(uk, tk, Hk) + JA(uk, tk, Hk)

]
(25)

then u∗1 ∈ Vj(tk, Hk)

Proof: See Appendix.
The implication of this lemma is that we can reduce the
number of feasible controls to a finite set as opposed to the
infinite set [0, 2π].

Theorem 1: In a multi-agent MRCP mission, if u∗ =
[u∗1, ..., u

∗
N] is the optimal solution to the problem in (24)

then u∗ ∈ Vk.
Proof: See Appendix

Theorem 1 reduces the problem Pk to a maximization
problem over a finite set of feasible controls:

max
uk∈Vk

[
JI(uk, tk, Hk) + JA(uk, tk, Hk)

]
This reduces the size of the problem compared to the
original CRH controller. The following algorithm generates
controls in this manner at each step tk and is referred to as
the “One-step Lookahead” CRH controller (extended to a
“K-step Lookahead” algorithm in what follows).

CRH One-step Lookahead Algorithm:
1) Determine Hk through (10).
2) Determine the active target set Sj(tk, Hk) through (16) for

all j ∈ A.
3) Evaluate JA(uk, tk, Hk) for all uk ∈ Vk through (22) and

(23)
4) Solve Pk in (24) and determine u∗

k.
5) Evaluate hk through (20)
6) Execute u∗

k over (tk, tk+hk] and repeat Step 1 with tk+1 =
tk + hk.

B. K-Step Lookahead
The One-step Lookahead CRH controller can be extended

to a K-step Lookahead controller with K > 1 by exploring
additional possible future paths for each agent at each time
step tk. In the One-step Lookahead algorithm, the optimal
reward-to-go is estimated based on a single tour over the
remaining targets. The K-step Lookahead algorithm esti-
mates this reward by considering more possible tours for
each agent as follows. For any feasible uj(tk) ∈ Vj(tk, Hk)
the agent is hypothetically placed at the corresponding next
step location xj(tk+1). This is done for all agents to maintain
synchronicity of the solution. At xj(tk+1), a new active
target set is determined, implying that agent j can have
|Sj(tk + Hk, Hk+1)| possible paths. At this point, we can
repeat the same procedure by hypothetically moving the
agent to a new feasible location from the set Fj(tk+1, Hk+1)
or we can stop and estimate the reward-to-go for each
available path. Thus, for a Two-Step Lookahead, problem
Pk becomes:

max
uk∈Vk

[
JI(uk, tk, Hk) + max

uk+1∈Vk+1

[
JI(uk+1, tk+1, Hk+1)

+ JA(uk+1, tk+1, Hk+1)
]]

(26)

We extend the previous algorithm to a 2-step lookahead in
the following. For a K-step we should repeat steps 1 and 2
for K times before moving to step 4 of the algorithm.

CRH 2-step Lookahead Algorithm:
1) Determine Hk through (10).
2) Determine the active target set Sj(tk, Hk) through (16) for

all j ∈ A.

x11

2

3

4
5

(a)

0
1

3
4

2
5

5
2

4
2
3
5

3
2
5

5
2

5
3
2

2
3

2
4

1
3
5

5
3

5
1
3

3
1

(b)

Fig. 3. (a): Five-target mission, (b): The tree structure

3) Repeat steps 1&2 for tk+1 = tk + Hk and xj(tk+1) =
xj(tk+1, uj(tk)) for all uj(tk) ∈ Vj(tk, Hk).

4) Evaluate JA(uk+1, tk+1, Hk+1) for all uk+1 ∈ Vk+1

through (22) and (23)
5) Solve Pk in (26) and determine u∗

k.
6) Evaluate hk through (20)
7) Execute u∗

k over (tk, tk+hk] and repeat Step 1 with tk+1 =
tk + hk.

This procedure can easily be repeated and the whole
process can be represented as a tree structure where the root
is the initial location of the agent and a path from the root
to each leaf is a possible target sequence for the agent. In
Fig. 3(a) a sample mission with 5 targets is shown with
its corresponding tree in Fig. 3(b). A brute-force method
involves 5! = 120 possible paths, whereas the tree structure
for this mission is limited to 11 paths. The active target set
for agent 1 consists of targets 1, 2. Each of these active
targets would then generate several branches in the tree,
as shown. We calculate the total reward for each path to
find the optimal one. Determining the complete tree for
large K is time consuming. The K-step Lookahead CRH
controller enables us to investigate the tree down to a few
levels and then calculate an estimated reward-to-go for the
rest of the selected path. However, there is no guarantee on
the monotonicity of the results with more lookahead steps
and in some cases the final result degrades with one more
lookahead step.

C. Two-Target, One-Agent Case

The simplest case of the MRCP is the case with one agent
and two targets. Obviously, this is an easy routing problem
whose solution is one of the two possible paths the agent can
take. We prove that the One-step Lookahead algorithm solves
the problem with any linearly decreasing reward function.
Consider a mission with one agent and two targets with
initial rewards and deadlines λ1, D1 and λ2, D2 respectively.
The analytical solution for this case reveals whether path
θ1 = (1, 2) or θ2 = (2, 1) is optimal. Following the previous
analysis, we assume that V1 = 1 and set x1(tk) = x for
the sake of brevity. We also assume the rewards are linearly
decreasing to zero: φi(t) = 1− t

Di
. The two possible rewards

are given by:

R(1,2) = λ1

[
1− d(x,y1)

D1
]+λ2

[
1− d(x,y1) + d(y1 − y2)

D2
]

(27)

R(2,1) = λ2

[
1− d(x,y2)

D2
]+λ1

[
1− d(x,y2) + d(y2 − y1)

D1
]

(28)

Therefore, if R(1,2) > R(2,1), it follows that the following
inequality must hold:

λ1

D1

[
d(x,y1)− d(x,y2) + d(y2,y1)

]
<

λ2

D2

[
d(x,y2)− d(x,y1) + d(y1,y2)

]
(29)

and the optimal path is θ∗ = θ1 . Letting θCRH denote the
path obtained by the One-step Lookahead CRH controller,
we show next that this controller recovers the optimal path
θ∗.

Theorem 2: Consider a two-target, one-agent mission. If
γ = 0 in (14) and target i’s reward at time t is λi(1− t

Di
),

then θCRH = θ∗.
Proof: See Appendix.

D. Monotonicity in the Look Ahead Steps
Questions that come into mind after introducing the mul-

tiple look ahead steps CRH controller are: How many look
ahead steps should we perform? Is it always better to do
more look ahead steps? Or in a simple way, does the more
steps look ahead always gives a better answer than less?

The answer to the first question is that it depends on
the size of the problem and our computation capability. We
can even adjust the number of look ahead steps during the
course of the solution. We can start with more when there
is more targets available and lower the number once there
is only a few targets in the mission space. The answer to
the other two questions is No. As much as one would like
to have a sort of monotonicity effect in this problem, the
complexity of the problem and its significant dependence on
the mission topology causes the non-monotone results with
different number of look ahead steps. Here we are going to
show a case with 10 equally important targets and one agent.
This is a straight forward TSP for which the optimal path can
be obtained through an exhaustive search. For this case the
one and two look ahead steps CRH controllers find the same
path with a reward of 92.6683. However, once we move up to
three look ahead steps, the CRH controller degrade to a worst
path with 92.5253 reward. The path for these controllers is
shown in figures 4(a) and 4(b). The optimal path that is
calculated through the exhaustive search is obtained by the
CRH controllers when we go up to six look ahead steps (Fig.
4(d)). The observation is that the non-monotone results from
higher number of look ahead is a local effect and once we
increase the look ahead steps CRH controller can solve the
problem to the optimality. This obviously is not the case for
all missions and in some cases the optimal path can not be
retrieved by CRH controller with any look ahead steps.

VI. SIMULATION EXAMPLES

We provide several MRCP examples in which the perfor-
mance of the original and new CRH controllers is compared.
In all examples, we use parameters ∆ = 0, Vj = 1, αi = 1,
βi = 1.

TSP Benchmark Comparison: We use the CRH con-
troller as a path planning algorithm for some benchmark TSP
problems. Table I shows the result of the 2-step and 3-step

(a) One Step Look Ahead: [1−9−
7− 4− 3− 10− 2− 6− 5− 8]
- Reward=92.6683 - Time=868

(b) Three Step Look Ahead: [6−
2−10−3−4−7−9−1−8−5]
- Reward=92.5253 - Time=897

(c) Five Step Look Ahead: [5−6−
2− 10− 3− 4− 7− 9− 1− 8] -
Reward=92.6031 - Time=862

(d) Six Step Look Ahead: [9−7−
4− 3− 10− 2− 6− 5− 1− 8] -
Reward=92.7436 - Time=916

Fig. 4. 10 Target mission with different number of look ahead steps

TABLE I
TSP BENCHMARK INSTANCES COMPARISON WITH THE CRH

CONTROLLER ALGORITHM

TSP
Instance

Optimal
Tour
Length

Two
Step
Looka-
head

Three
Step
Looka-
head

Limited
Range
Agent

Minimum
Error
(%)

att48 33522 38011 37492 41112 11.8
eil51 426 547 480 507 12.6
berlin52 7542 8713 8713 8137 7.8
st70 675 840 818 816 20.8
eil76 538 633 635 655 17.6
pr76 108159 146980 131678 146944 21.7
rat99 1211 1451 1470 1591 19.8
rd100 7910 9529 9123 9618 15.3
kroA100 21282 25871 24795 23782 11.7
kroB100 22141 28093 27415 28581 23.8
kroC100 20749 24603 25561 26171 18.5

Lookahead algorithm compared to the optimal results from
[23]. We emphasize that the CRH controller is not designed
for deterministic TSP problems so it is not expected to per-
form as well as highly efficient TSP algorithms. Nonetheless,
as a starting basis of comparison, we note that the errors are
relatively small, ranging from 7.8 to 23.8%.

In an attempt to measure the sensitivity of the results of
the new CRH controller to partial mission information, we
also tested cases where agents have limited sensing range
(see fifth column in table I). In these cases, the agent only
senses a target if it is within its sensing range which we
have assumed to be 20% of the maximum dimension of the
mission space. The results in most cases are comparable
to the full-information cases. The computation time for
the limited range agents is about an order of magnitude
shorter than the other one. These results show the low
sensitivity of the CRH controller performance to non-local
information for each agent. This observation suggests that
CRH controller is likely to provide good performance in a

distributed implementation or in cases where targets are not
known a priori and should be locally sensed by the agents.

Addressing Instabilities: As already mentioned, the orig-
inal CRH controller may give rise to oscillatory trajectories
and fail to complete a mission. This is illustrated in Fig. 5(a)
for a simple mission with three linearly discounted reward
targets. In Fig. 5(b), it is shown that the new CRH controller
can easily determine the optimal path in this simple case.

(a) Original CRH Oscillation (b) New CRH Optimal Solution

Fig. 5. Comparison of the two CRH controllers for a 3 targets mission

Comparison between original and new CRH Con-
troller: A mission with 25 targets distributed uniformly and 2
agents starting at a base is considered as shown in Fig. 6(a),
with uniformly distributed initial rewards: λi ∼ U(10, 20)
and Di ∼ U(300, 600) as in (1). In this case, the original
CRH (Fig. 6(b)) underperforms compared to 3-step and 5-
step Lookahead CRH controller (Figs. 6(c), 6(d)) by a large
margin. We have used a value of γ = 0.3 and I = 25 in (14).
This comes at the price of a slightly longer mission time in
the 3-Step look ahead case, since the original controller never
reaches some targets before their rewards are lost. However,
minimizing time is not an objective of the MRCP considered
here and reward maximization dictates the final length of the
mission.

(a) Complete Mission (b) Original CRH, Reward=62.8,
Time=714

(c) 3-Step Lookahead,
Reward=141.29, Time=753

(d) 5-Step Lookahead,
Reward=143.42, Time=657

Fig. 6. Performance comparison of the original and new CRH algorithms

Randomly Generated Missions: To compare the overall
performance of the new CRH controller, we generated 10

TABLE II
20 TARGET-2 AGENT MISSIONS

Mission #
Original CRH Three Step Lookahead CRH

Reward Travel Time Reward Travel Time
1 33.92 412 45.24 536
2 41.48 439 52.4 426
3 30.93 476 41.19 483
4 32.08 389 37.24 457
5 41.5 444 47.25 537
6 44.61 389 47.91 471
7 23.93 528 35.48 462
8 38.68 415 50.91 489
9 30.92 478 34.08 429
10 36.81 458 44.26 476
Average 35.48 443 43.53 479

TABLE IV
EFFECT OF THE SPARSITY FACTOR ζi IN CLUSTERED MISSIONS

Mission #
γ = 0 γ = 0.3

Reward Travel Time Reward Travel Time
1 40.62 552 61.9 413
2 64.89 447 64.64 420
3 35.24 471 63.8 461
4 63.78 465 64.64 478
5 25.42 493 26.5 449
6 22 454 22 454
7 44.1 458 46.84 449
8 34.26 466 61.21 472
Average 41.29 475 51.44 449

missions, each with 20 targets that are uniformly located in a
300×300 mission space and two agents initially at the base.
We have used λi ∼ U(2, 12) and Di = 300. The results
are shown in Table II where we can see that the average
total reward is increased by 22% while the average mission
time is increased by 8%. In another case 10 missions were
generated, each with 20 targets where 10 targets are only
initially available to the agents. The other 10 targets would
randomly appear during the mission. We use an initial reward
λi ∼ U(2, 12) and the parameter Di ∼ U(300, 600). The
comparison of the original and new CRH controller is shown
in table III. An increase of 31% is seen in the total reward
with a slight 2% increase in the total mission time.

TABLE III
20 TARGET-2 AGENT MISSIONS, WITH RANDOM TARGET APPEARANCE

Mission #
Original CRH Two Step Lookahead CRH

Reward Travel Time Reward Travel Time
1 51.63 704 58.61 736
2 46.53 716 67.57 632
3 37.59 646 54.42 691
4 31.71 929 53.13 941
5 60.05 668 81.31 528
6 58.16 609 67.91 688
7 45.81 739 61.29 760
8 49.71 722 59.47 732
9 42.64 822 47.95 818
10 40.32 648 58.01 868
Average 46.42 720 60.97 739

Sparsity Factor in Clustered Missions: We considered
8 random mission with 20 targets that are located uniformly
in one case and in 9 clusters in a second case. The goal
here is to investigate the contribution of the sparsity factor
ζi in (14). We have again used λi ∼ U(2, 12) and Di = 300.
We consider a case with γ = 0 which eliminates the effect
of ζi and a second case with γ = 0.3 and K = 5 in (14).
The results in table IV indicate that in the clustered missions
rewards are improved by about 24% whereas in the uniform
cases the reward is unaffected on average.

VII. CONCLUSIONS AND FUTURE WORK

In this work a new CRH controller was developed for
solving cooperative multi-agent problems in uncertain en-
vironments using the framework of the previous work in
[20]. We overcame several limitations of the controller
developed in [20], including agent trajectory instabilities
and inaccurate estimation of a reward-to-go function while
improving the overall performance. The event-driven CRH
controller is developed to solve the MRCP, where multiple
agents cooperate to maximize the total reward collected from
a set of stationary targets in the mission space. The mission
environment is uncertain, for example targets can appear at
random times and agents might have a limited sensing range.
The controller sequentially solves optimization problems
over a planning horizon and executes the control for a
shorter action horizon, where both are defined by certain
events associated with new information becoming available.
Unlike the earlier CRH controller, the feasible control set is
finite instead of an infinite dimensional set. In the numerical
comparisons, we showed that the new CRH controller has a
better performance than the original one. In future work, the
same framework will be applied to problems such as data
harvesting where each target is generating data that should
be collected and delivered to the base. Here the base will
act as a target with dynamic reward. Also the new CRH
controller can be extended into a decentralized version where
each agent is responsible for calculating its own control.

APPENDIX

Proof of Lemma 1 From the definition of ηi(x, t) in (15)
and Cl,j(tk, Hk) in (18) we have:

d(Cl,j(tk, Hk),yl) ≤ d(x,yl), ∀x ∈ Fj(tk, Hk) (30)

Dividing both sides by λlD
−1
l and adding ζl(tk + Hk) we

get, for all x ∈ Fj(tk, Hk),
ηl(Cl,j(tk, Hk), tk +Hk) ≤ ηl(x, tk +Hk) (31)

To prove the forward lemma statement, we use a contradic-
tion argument and assume there exists a target r such that
ηl(Cl,j(tk, Hk), tk +Hk) > ηr(Cl,j(tk, Hk), tk +Hk)

Using (31), we get ηr(Cl,j(tk, Hk), tk + Hk) < ηl(x, tk +
Hk) for all x ∈ Fj(tk, Hk). This implies that there exists
no x ∈ Fj(tk, Hk) such that l = argmini ηi(x, tk + Hk).
Therefore, l cannot be an active target, which contradicts the
assumption, hence (19) is true.
To prove the reverse statement, we assume that (19) holds
for any i ∈ Tk, i.e.,

ηl(Cl,j(tk, Hk), tk +Hk) < ηi(Cl,j(tk, Hk), tk +Hk)

By the definition of active targets (16), we then know that l
is an active target for agent j at time tk.
Proof of Lemma 2 The active target set creates a partition of
the set Fj(tk, Hk) where each subset is an arc in a Euclidean
mission space. For an active target l ∈ Sj(tk, Hk), let the
lth arc be F lj(tk, Hk) ⊂ Fj(tk, Hk). For each F lj(tk, Hk),
we prove that the heading v∗ = v(Cl,1(tk, Hk)) satisfies, for

all x ∈ F lj(tk, Hk):

JI(v
∗, tk, Hk)+JA(v∗, tk, Hk) >

JI(v(x), tk, Hk) + JA(v(x), tk, Hk)

There are two possible cases:
Case 1: yl ∈ F1(tk, Hk). This means d(yl,x1(t)) = Hk.
Also, from (18), this guarantees that ∀r ∈ Tk:

qr(Cr,1(tk +Hk)) =

{
1 if r = l
0 otherwise

Setting τ̃r(v∗, tk, Hk)) = τ̃∗r , we have
J(v∗, tk, Hk) =JI(v

∗, tk, Hk) + JA(v∗, tk, Hk)

=λlφl(tk +Hk) +

Mk+1∑
r=1

λrφr(τ̃
∗
r)ql(x1(τ̃∗r))

Here, Mk+1 = |Tk+1| and Tk+1 = Tk − {l} since reward
l will be already collected at time tk + Hk. The estimated
visit time τ̃∗r is determined based on a tour θ that starts
at point yl. Now let us calculate the objective function for
any other heading v(x) where x ∈ F l1(tk, Hk). Setting
τ̃r(v(x), tk, Hk)) = τ̃r,
J(v(x), tk, Hk) =JI(v(x), tk, Hk) + JA(v(x), tk, Hk)

=0 +

M ′k+1∑
r=1

λrφr(τ̃r)ql(x1(τ̃r))

since x 6= Cl,1(tk, Hk) so that qr(x) = 0 for all r ∈ Tk.
The aggregated tour is determined over the set T ′k+1 = Tk
sarting at x ∈ F l1(tk, Hk). By definition, the target with the
least travel cost from point x is the active target l and this
is the first target in the tour. The rest of the tour consists of
targets in Tk+1 − {l} starting at yl. Let us call this tour θ′.
Since in both tours θ and θ′ the starting point and the set
of available targets are the same, the order of targets will be
identical and we have θ′ = {l,θ}. The visit times in θ are
given by

τ̃∗θn
= tk +Hk +

n−1∑
i=1

d(yθi ,yθi+1)

In θ′, the visit time for target θ′1 = l is: τ̃θ′1 = tk + Hk +
d(x,yl). For the rest of the targets, with 1 < n ≤M ′k+1,

τ̃θ′(n),1 = tk +Hk + d(x,yl) +

n−1∑
i=1

d(yθ′i
,yθ′i+1

)

For all 1 < n ≤ Mk+1, we have θ′n+1 = θn and τ̃θ′n+1
>

τ̃θn
. By assumption, for all i ∈ T , φi(t) is non-increasing,

therefore φθ′n+1
(τ̃θ′n+1

) ≤ φθn
(τ̃θn

), and it follows that

λlφl(tk +Hk + d(x,yl)) +

M ′k+1∑
n=2

λθ′nφθ′n(τ̃θ′n)

≤ λlφl(tk +Hk) +

Mk+1∑
n=1

λθnφθn(τ̃θn)

The right-hand-side above is J(v∗, tk, Hk) and the left-hand-
side is J(v(x), tk, Hk), so we have proved that for any x ∈
F l1(tk, Hk), x 6= Cl,1(tk, Hk) we have J(v(x), tk, Hk) ≤
J(v∗, tk, Hk).

Case 2: yl 6∈ F1(tk, Hk). In this case, for any point x ∈
F lj(tk, Hk) we have a zero immediate reward. Thus, only
the rewards-to-go need to be compared. Using (17), for any
x ∈ F lj(tk, Hk) we know the aggregation tour θ for any
point x starts with target l and the rest of it would also be
the same. Similarly, let us assume θ is the tour for v∗ and θ′

is the tour for any other point x. The estimated visit times
for θ are:

τ̃∗θn
= tk +Hk + d(yl, Cl,1(tk, Hk)) +

n−1∑
i=1

d(yθi ,yθi+1)

and for θ′:

τ̃∗θn
= tk +Hk + d(yl,x) +

n−1∑
i=1

d(yθi
,yθi+1

)

By the definition in (18), Cl,1(tk, Hk)) is on the shortest
path from xj(tk) to yl, i.e., τ̃θ′n > τ̃θn

. Again, with φi(t)
being non-increasing we have φθ′n(τ̃θ′n) ≤ φθn

(τ̃θn
), which

implies J(v(x), tk, Hk) ≤ J(v∗, tk, Hk).
We have thus proved the lemma statement that the optimal

heading of the agent is one of the direct headings towards
an active target.
Proof of Theorem 1 In the multi-agent mission, calculating
the immediate reward and reward-to-go in (12) and (23) for
each agent is like a one-agent mission limited to its own
target subset Tk,j . Therefore, the result follows directly from
Lemma 2.
Proof of Theorem 2 We assume WLOG that d(x,y1) <
d(x,y2) so that at time tk we have Hk = d(x,y1). This
implies that target 1 is always an active target (the travel
cost of target 1 at time tk+1 = tk + Hk is equal to
0). Recalling (18) and setting C2,1=C2,1(tk, Hk), we have
d(x,y1) = d(x, C2,1) = Hk. This results in:

d(x,y2) = d(x,y1) + d(y2, C2,1) (32)

From Lemma 1, target 2 is an active target if and only if
η2(C2,1, tk + Hk) ≤ η1(C2,1, tk+1). Therefore, from (15),
target 2 is an active target if and only if:

d(C2,1,y2)

λ2D
−1
2

≤ d(C2,1,y1)

λ1D
−1
1

which is rewritten as:
λ1

D1
d(C2,1,y2) ≤ λ2

D2
d(C2,1,y1)

We now consider two possible cases regarding target 2. First,
assume target 2 is not an active target, i.e.,

λ1

D1
d(C2,1,y2) >

λ2

D2
d(C2,1,y1) (33)

Starting with the trivial inequality:

0 >
−λ1

D1

[
d(C2,1,y2) + d(C2,1,y1)

]
add λ2

D2

[
d(C2,1,y1)

]
to both sides and use (33) to get:

λ1

D1

[
d(C2,1,y2)

]
>
λ2

D2

[
d(C2,1,y1)

]
>

−λ1

D1

[
d(C2,1,y2)

]
+ (

λ2

D2
− λ1

D1
)d(C2,1,y1)

]
Adding the positive quantity of λ2

D2

[
d(C2,1,y2)

]
to both sides

and invoking the triangle inequality:

(
λ1

D1
+
λ2

D2
)
[
d(C2,1,y2)

]
> (

λ2

D2
− λ1

D1
)
[
d(C2,1,y2)

]
+ (

λ2

D2
− λ1

D1
)
[
d(C2,1,y1)

]
> (

λ2

D2
− λ1

D1
)d(y1,y2)

Rearranging the last inequality and using (32) results in:
λ1

D1

[
d(x,y2) + d(y2,y1)

]
+
λ2

D2
d(x,y2)

>
λ1

D1
d(x,y1) +

λ2

D2

[
d(x,y1) + d(y2,y1)

] (34)

which is the same as (29) implying that path θ1 = (1, 2) is
optimal, i.e., the CRH controller finds the optimal path.

Next, assume that target 2 is also an active target along
with target 1. Let u1 and u2 be the headings for target 1 and
2 respectively, i.e., x1(tk+1, u1) = y1 and x1(tk+1, u2) =
C2,1, The objective function of the CRH controller under u1

and u2 is:
J(u1, tk, Hk) = JI(u1, tk, Hk) + JA(u1, tk, Hk)

= λ1φ1(tk+1) + λ2φ2(tk+1 + d(y1,y2))

J(u2, tk, Hk) = JI(u2, tk, Hk) + JA(u2, tk, Hk)

= 0 +
[
λ2φ2

(
tk+1 + d(C2,1,y2)

)
+ λ1φ1

(
tk+1 + d(C2,1,y2) + d(y1,y2)

)
Note that in order to evaluate the objective function for u2

we find a tour starting at point C2,1 which goes to the target
with minimum travel cost. However, for target 2 to be active
at tk it has to have the smallest travel cost at that point,
which results in JA(u2, tk, Hk) to be the reward of going to
target 2 and then target 1. We can see that using the reward
of each path from (27) and (28) we can write:

J(u1, tk, Hk) = R(1,2), J(u2, tk, Hk) = R(2,1)

Thus, the objective function of the CRH controller under u1

and u2 is identical to the corresponding path rewards. Hence,
the CRH controller selects the correct optimal heading at tk.

REFERENCES

[1] J. S. Shamma, Cooperative control of distributed multi-agent systems.
Wiley Online Library, 2007.

[2] R. Murphey and P. M. Pardalos, Cooperative control and optimization,
vol. 66. Springer, 2002.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.
on Automatic Control,, vol. 48, no. 6, pp. 988–1001, 2003.

[4] T. McLain, P. Chandler, S. Rasmussen, , and M. Pachter, “Cooperative
control of UAV rendezvous,” Proc. of American Control Conference,
pp. 2309–2314, 2001.

[5] C. Yao, X. C. Ding, and C. Cassandras, “Cooperative receding
horizon control for multi-agent rendezvous problems in uncertain
environments,” in 49th IEEE Conference on Decision and Control
(CDC), 2010, pp. 4511 –4516, Dec. 2010.

[6] C. Cassandras, X. Lin, and X. Ding, “An optimal control approach to
the multi-agent persistent monitoring problem,” IEEE Transactions on
Automatic Control, vol. 58, pp. 947–961, April 2013.

[7] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” Robotics and Automation, IEEE Transac-
tions on, vol. 20, no. 2, pp. 243–255, 2004.

[8] M. Zhong, , and C. G. Cassandras, “Distributed coverage control and
data collection with mobile sensor networks,” IEEE Transactions on
Automatic Control,, vol. 56, no. 10, pp. 2445–2455, 2011.

[9] D. Panagou, M. Turpin, and V. Kumar, “Decentralized goal assignment
and trajectory generation in multi-robot networks,” 2014.

[10] W. Ren and R. Beard, Distributed consensus in multi-vehicle cooper-
ative control: theory and applications. Springer, 2008.

[11] M. Zhong and C. G. Cassandras, “Asynchronous distributed opti-
mization with event-driven communication,” IEEE Transactions on
Automatic Control,, vol. 55, no. 12, pp. 2735–2750, 2010.

[12] N. P. Salz, “Anon - a theory for traveling salesman problem,” Opera-
tions Research, vol. S 14, 1966.

[13] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The trav-
eling salesman problem: a computational study. Princeton University
Press, 2011.

[14] G. Laporte, “The vehicle routing problem: An overview of exact and
approximate algorithms,” European Journal of Operational Research,
vol. 59, no. 3, pp. 345 – 358, 1992.

[15] A. Ekici and A. Retharekar, “Multiple agents maximum collection
problem with time dependent rewards,” Computers and Industrial
Engineering, vol. 64, no. 4, pp. 1009 – 1018, 2013.

[16] H. Tang, E. Miller-Hooks, and R. Tomastik, “Scheduling technicians
for planned maintenance of geographically distributed equipment,”
Transportation Research Part E: Logistics and Transportation Review,
vol. 43, no. 5, pp. 591 – 609, 2007.

[17] J. S. Bellingham, M. Tillerson, M. Alighanbari, and J. P. How, “Co-
operative path planning for multiple UAVs in dynamic and uncertain
environments,” in IEEE Conference on Decision and Control (CDC),
pp. 2816–2822 vol.3, 10-13 December 2002.

[18] M. G. Earl and R. D’Andrea, “A decomposition approach to multi-
vehicle cooperative control,” Robotics and Autonomous Systems,
vol. 55, pp. 276–291, 2007.

[19] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-
tomatica, vol. 36, no. 6, pp. 789–814, 2000.

[20] W. Li and C. Cassandras, “A cooperative receding horizon controller
for multivehicle uncertain environments,” IEEE Transactions on Au-
tomatic Control, vol. 51, no. 2, 2006.

[21] W. Li and C. G. Cassandras, “Centralized and distributed cooperative
receding horizon control of autonomous vehicle missions,” Mathemat-
ical and computer modelling, vol. 43, no. 9, pp. 1208–1228, 2006.

[22] J. J. Schneider, T. Bukur, and A. Krause, “Traveling salesman problem
with clustering,” Journal of Statistical Physics, vol. 141, no. 5,
pp. 767–784, 2010.

[23] G. Reinelt, “TSPLIB: A traveling salesman problem library,” ORSA
Journal on Computing, vol. 3, no. 4, pp. 376–384, 1991.

	I Introduction
	II Problem Formulation
	III An Event-Driven Optimization View
	IV CRH Control Scheme
	IV-A Original CRH Controller Limitations

	V The New CRH Controller
	V-A Look Ahead and Aggregate Process
	V-B K-Step Lookahead
	V-C Two-Target, One-Agent Case
	V-D Monotonicity in the Look Ahead Steps

	VI Simulation Examples
	VII Conclusions and Future Work
	Appendix
	References

