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Abstract— The inherent probabilistic nature of the biochem-
ical reactions, and low copy number of species can lead to
stochasticity in gene expression across identical cells. As a result,
after induction of gene expression, the time at which a specific
protein count is reached is stochastic as well. Therefore events
taking place at a critical protein level will see stochasticity in
their timing. First–passage time (FPT), the time at which a
stochastic process hits a critical threshold, provides a frame-
work to model such events. Here, we investigate stochasticity
in FPT. Particularly, we consider events for which control-
ling stochasticity is advantageous. As a possible regulatory
mechanism, we also investigate effect of auto–regulation, where
the transcription rate of gene depends on protein count, on
stochasticity of FPT. Specifically, we investigate for an optimal
auto-regulation which minimizes stochasticity in FPT, given
fixed mean FPT and threshold.

For this purpose, we model the gene expression at a single cell
level. We find analytic formulas for statistical moments of the
FPT in terms of model parameters. Moreover, we examine the
gene expression model with auto–regulation. Interestingly, our
results show that the stochasticity in FPT, for a fixed mean, is
minimized when the transcription rate is independent of protein
count. Further, we discuss the results in context of lysis time of
an E. coli cell infected by a λ phage virus. An optimal lysis time
provides evolutionary advantage to the λ phage, suggesting a
possible regulation to minimize its stochasticity. Our results in-
dicate that there is no auto–regulation of the protein responsible
for lysis. Moreover, congruent to experimental evidences, our
analysis predicts that the expression of the lysis protein should
have a small burst size.

I. INTRODUCTION

Gene expression is the process of transcription of genetic
information to mRNAs, and translation of each mRNA to
proteins. As the copy number of species involved in the
process is small, the probabilistic nature of biochemical
reactions reflects as stochastcity in gene expression [1]–[6].

Stochasticity in gene expression has an important role in
several cellular functions. For example, it can lead geneti-
cally identical cells to different cell–fates [7]–[12]. This helps
the cells in responding to the ever–changing environment
[13]–[16]. On the other hand, stochasticity in expression of
housekeeping genes can lead to diseased states [17]–[19],
and needs to be minimized [20], [21]. Accordingly, different
regulatory mechanisms are employed to control stochastic
fluctuations [22]–[29]. Auto–regulation wherein transcription
rate is a function of protein count is an example of one such
mechanism. Its effect on stochascticity in gene expression
has been a subject of several studies [27]–[29].

1Khem Raj Ghusinga is with the Department of Electrical and Com-
puter Engineering, University of Delaware, Newark, DE, USA 19716.
khem@udel.edu

2Abhyudai Singh is with Faculty of Electrical and Computer Engineering,
Biomedical Engineering, Mathematical Sciences, University of Delaware,
Newark, DE, USA 19716. absingh@udel.edu

After onset of gene expression, its stochasticity conse-
quently manifests into stochasticity in the time at which a
certain protein level is reached. This implies that the timing
of a cellular event which triggers at a critical protein level is
stochastic in nature [30], [31]. For instance, lysis time for an
E. coli cell infected by a λ phage virus is stochastic. Lysis
of the cell takes place when holin, the protein responsible
for lysis, reaches a critical threshold [32]–[34].

Further, it has been suggested that optimality in lysis time
provides evolutionary advantage to λ phage virus [35]–[39].
This indicates that there could be some regulation of gene
expression to ensure lysis at the optimal time, with minimum
stochastic fluctuations. In this work, we study stochasticity
in first–passage time (FPT), the time it takes for the protein
count to reach a fixed threshold for the first time [40], at a
single–cell level. We investigate the effect of auto-regulation
of transcription on stochasticity of FPT. In particular we seek
answer to the question: given the mean FPT (corresponding
to optimal lysis time, for example), what auto-regulatory
feedback will lead to minimum stochasticity in the FPT?

We first formulate an unregulated gene expression model
assuming transcription, translation, and mRNA degradation
while considering proteins to be stable. Along the lines of
[34], we find expressions for statistical moments of FPT
for this model, and discuss their implications with respect
to minimizing variance in FPT for given mean FPT. Next,
we introduce auto-regulation in the above model and derive
the moments for FPT. Then, we deduce the expression
for optimal feedback function that minimizes the variance
in FPT for a given mean. We show that a negative or
positive feedback always results into higher variance in first
passage time for a given mean than the case when there
is no feedback. The results are validated by carrying out
simulations. Also, various notations used in this work are
tabulated in Table I.

II. FIRST–PASSAGE TIME FOR GENE EXPRESSION
MODEL WITHOUT REGULATION

In this section, we formulate a stochastic gene expression
model (as shown in Fig. 1). Then, we define the FPT for this
model and derive expressions for its statistical moments. We
also discuss the implications of these expressions in context
of minimizing variance of FPT, for fixed mean and threshold.

A. Model Formulation

In the model under consideration transcription of mRNAs
from the gene occurs at a rate km, translation of proteins from
each mRNA occurs at a rate kp, and each mRNA degrades
at a rate γm. The time interval between two transcription
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TABLE I
DESCRIPTION OF NOTATIONS USED IN THIS WORK

km Transcription rate for unregulated gene expression model.
kp Translation rate for both unregulated, and regulated gene

expression. models
γm mRNA degradation rate for both unregulated, and regu-

lated gene. expression models
Bi Burst size after ith transcriptional event.
µ Parameter of geometric distribution corresponding to.

protein bursts
b Mean of protein burst size.
P(t) Protein count at time t.
Pi Protein count after ith burst.
km(Pi) Transcription rate for auto-regulated gene expression

model after ith transcription event.
X Threshold for protein count.
N Minimum number of transcription events for protein

count to reach the threshold X .
Ti Waiting time for ith transcription event.
Y ∼ exp(α) Y is an Exponential random variable with parameter α .

The probability density function of Y is given by fY (y) =
αe−αy, y≥ 0.

fN(n) Probability mass function for minimum number of tran-
scription events to reach the threshold X .

fPi ( j) Probability mass function for protein count after i tran-
scription events.

〈.〉 Expectation operator.
Var Variance.
kmax Maximum possible transcription rate in model with feed-

back implemented using Hill function .
r Fraction of transcription rate kmax that corresponds to

minimum transcription rate in model with feedback im-
plemented using Hill function.

H Hill coefficient.
c Coefficient proportional to binding efficiency; decides

when half rate concentration is reached.

events is exponentially distributed. We assume proteins to
be stable as the lysis protein in λ phage, i.e. holin, is stable
[41]. To further simplify the model, we assume each mRNA
molecule degrades instantaneously after producing a burst of
random number of protein molecules [42]–[45]. Consistent
with experimental, and theoretical evidences; we assume
that protein burst follows a geometric distribution, and the
mean burst size is given by b = kp/γm [46], [47]. Thus, the
simplified model considers gene expression wherein each
burst event (equivalent to transcription event) occurs at an
exponentially distributed time with parameter km, and size
of burst follows a geometric distribution with mean b.

Let us denote the size of ith burst by random variable Bi
and the parameter of its distribution by µ . The probability
mass function, therefore, can be written as [48]:

Pr(Bi = k) = µ (1−µ)k , µ ∈ (0,1], k ∈ {0,1,2..}. (1)

The mean burst size, b, can be expressed as [48]:

〈Bi〉= b =
1−µ

µ
. (2)

Further, let protein count after n transcription events be
denoted as Pn. It can be expressed as a sum of random
variables Bi:

Pn =
n

∑
i=1

Bi. (3)

mRNA

Protein

ø
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Fig. 1. Model for gene expression without regulation: The figure shows
expression of a gene where mRNAs are transcribed from the gene at a rate
km and proteins are translated from each mRNA at a rate kp. Proteins are
assumed to be stable while each mRNA degrades with a rate γm.

Being sum of independent and identically distributed geo-
metric random variables, Pn has a negative binomial distri-
bution with parameters n and µ [49]. The probability mass
function of Pn, denoted as fPn( j), can be expressed as [49]:

fPn( j) = Pr

(
n

∑
i=1

Bi = j

)
=

(
n+ j−1

n−1

)
µ

n (1−µ) j . (4)

Also, the cumulative distribution function is given by [50]:

Pr

(
n

∑
i=1

Bi ≤ j

)
= 1− I1−µ( j+1,n), (5)

where I1−µ( j+1,n) is regularized incomplete beta function:

I1−µ( j+1,n) =
n+ j

∑
l= j+1

(
n+ j

l

)
(1−µ)l

µ
j+n−l , (6)

and satisfies the following property:

I1−µ( j+1,n) = 1− Iµ(n, j+1). (7)

We have determined the distribution for protein population.
Next, we defined the first–passage time (FPT) for the protein
count to reach a certain threshold.

B. Expression for First Passage Time

For a random process corresponding to protein count, P(t),
with P(0) = 0, the first passage time (FPT), for a threshold
X is defined as:

FPT := inf{t : P(t)≥ X}, X ∈ {1,2,3, ...}. (8)

Because in our model, the protein count changes only when
a burst occurs (or equivalently, a transcription event occurs);
we can calculate the minimum number of transcription
events, N, it takes for the protein count to reach the threshold
X and define the FPT as sum of inter–burst arrival times. This
has been depicted in Fig. 2.

Let the time between i−1th and ith bursts be denoted by
random variable Ti, then:

FPT =
N

∑
i=1

Ti, (9)
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Fig. 2. First–passage time for gene expression in burst limit: The gene
expresses in bursts which arrive at time intervals Ti, i = 1,2, .... The protein
count after ith burst is denoted by Pi. Protein count at time t is denoted
by P(t), and is equal to Pi, where i is number of bursts until time t. The
first–passage time can be expressed as the sum of inter–burst arrival times
till Pi crosses the threshold X for the first time.

where N is given by the following equation:

N = inf(n : Pn ≥ X) , n ∈ {1,2, ...}, X ≥ 1. (10)

Note that in Eq. (9), Ti are independent, and identically dis-
tributed exponential random variables with parameter km. We
denote this by Ti ∼ exp(km). Also, each of Ti is independent
of N.

Using standard results from probability theory, one may
write [51]:

〈FPT 〉= 〈N〉〈Ti〉 , (11a)

Var(FPT ) = 〈N〉 Var (Ti)+ Var (N)〈Ti〉2 . (11b)

It can be noted that to determine statistical moments of FPT
in Eq. (11a)–(11b), we need to derive expressions for first
two moments of Ti, and N.

1) First Two Moments of N: The cumulative distribution
function for N defined in Eq. (10) can be written as:

Pr(N ≤ n) = Pr(Pn ≥ X) , (12a)
= 1−Pr(Pn ≤ X−1) . (12b)

Since Pn is a negative binomial distribution, we have:

Pr(N ≤ n) = 1−
(
1− I1−µ(X ,n)

)
, (13a)

= I1−µ(X ,n). (13b)

Using the property of incomplete beta function mentioned in
Eq. (7), we get:

Pr(N ≤ n) = 1− Iµ(n,X). (14)

Comparing with Eq. (4) and Eq. (5), the probability mass
function corresponding to Eq. (14) can be written as:

fN(n) =
(

n+X−2
n−1

)
(1−µ)n−1

µ
X , n ∈ {1,2, ...}, X ≥ 1. (15)

First two statistical moments of the distribution in Eq. (15)
are given by [49]:

〈N〉= µX
1−µ

+1 =
X
b
+1, (16a)

Var(N) =
〈
N2〉−〈N〉2 = µX

(1−µ)2 =
X
b

1+b
b

. (16b)

2) First Two Moments of Ti: Since Ti ∼ exp(km), its
statistical moments are given by:

〈Ti〉=
1

km
, (17a)

Var(Ti) =
〈
T 2

i
〉
−〈Ti〉2 =

1
k2

m
= 〈Ti〉2 . (17b)

We now have expressions for first two moments of Ti, and
N. The expressions for first two moments of FPT in terms
of model parameters can, therefore, be written as:

〈FPT 〉=
(

X
b
+1
)

1
km
≈ X

bkm
, (18)

Var(FPT ) =
X(2b+1)+b2

b2k2
m

≈ X
b2k2

m
(1+2b), (19)

where the approximations are valid when X � b. It can
be observed a smaller mean burst size b would result in
smaller variance of FPT. The mean FPT can be kept fixed
by a commensurate change in the transcription rate, km.
Therefore, the variance can independently be reduced by a
lower mean burst size b= kp/γm. This means adopting a high
transcription rate km, and a low translation rate kp (and/or
having a higher degradation rate γm for the mRNAs) results
in a lower variance in FPT without affecting its mean.

Further, we note that by using Var(Ti) = 〈Ti〉2 from Eq.
(17b), we can deduce the following relationship between
〈FT P〉 and

〈
FPT 2

〉
from Eq. (11a) and Eq. (11b):

〈
FPT 2〉= 〈FPT 〉2

〈N〉2
〈
N2〉+ 〈FPT 〉2

〈N〉
. (20)

We shall use above relationship in the later part of the paper
while deriving expression of the auto-regulation function that
minimizes variance in FPT, for given mean FPT.

Next, we introduce auto-regulation of transcription rate
by the protein count to investigate how the expressions for
statistical moments of FPT change.

III. INTRODUCING AUTO-REGULATION IN GENE
EXPRESSION MODEL

To investigate the effect of auto-regulation on statistical
moments of FPT, we assume that transcription rate is a func-
tion of protein count, i.e., it changes after each transcription
event. We denote the transcription rate after arrival of ith

burst as km(Pi). Similar to previous section, we need to derive
expression for moments of inter–burst arrival times Ti, and



minimum number of transcription events N in order to derive
the expression for FPT moments defined in Eq. (9).

We note that the translation burst size is independent
of the transcription rate. Therefore, distribution of N to
reach a certain threshold X is same as gene expression
model without any regulation discussed in previous section.
However, distribution of each Ti is different and depends
upon corresponding rate of transcription.

We derive expressions for first two moments of each Ti to
find analytical forms of first two moments of FPT.

A. Inter–burst arrival time for auto-regulatory gene expres-
sion model

It may be noted that if protein count after any burst event
is known, arrival time for the next burst will be exponentially
distributed. Therefore, the distribution of each Ti can be
modelled as a conditional exponential distribution. More
specifically, we can write:

Ti ∼ exp(km(Pi−1)|Pi−1) , (21)

where Ti, and Pi−1 respectively denote the arrival time for
ith burst and protein count after the i−1th burst.

The expressions for mean and variance of Ti can be
calculated as follows.

1) Mean: Before arrival of the first burst, there are no
protein molecules, i.e., Pi−1 = 0 for i = 1. Therefore, we can
write the mean for arrival time for the first burst as:

〈T1〉=
1

km(0)
. (22)

For i ∈ {2,3,4...}, the corresponding arrival times would be
conditionally exponential, implying:

〈Ti|Pi−1 = j〉= 1
km( j)

, (23a)

=⇒ 〈Ti〉=
∞

∑
j=0

1
km( j)

Pr(Pi−1 = j) , (23b)

=
∞

∑
j=0

1
km( j)

fPi−1( j). (23c)

2) Second Order Moments: Adopting similar approach as
above, we derive the expressions for second order moments
of Ti. For i = 1, we have:〈

T 2
1
〉
=

2
k2

m(0)
. (24a)

For i ∈ {2,3,4...}:〈
T 2

i |Pi−1 = j
〉
=

2
k2

m( j)
, (24b)

=⇒
〈
T 2

i
〉
=

∞

∑
j=0

2
k2

m( j)
Pr(Pi−1 = j) , (24c)

=
∞

∑
j=0

2
k2

m( j)
fPi−1( j). (24d)

Therefore the expression for variance of T1:

Var(T1) =
1

k2
m(0)

= 〈T1〉2 . (25)

For i ∈ {2,3,4, ...}, the expression for Var(Ti) will be

Var(Ti) =
∞

∑
j=0

2
k2

m( j)
fPi−1( j)−

[
∞

∑
j=0

1
km( j)

fPi−1( j)

]2

. (26)

Moreover, we have following relationship first two mo-
ments of the random variable 1/km(Pi−1):

∞

∑
j=0

1
k2

m( j)
fPi−1( j)≥

[
∞

∑
j=0

1
km( j)

fPi−1( j)

]2

, (27)

which alongwith Eq. (26), and (25) yields:

Var(Ti)≥ 〈Ti〉2 . (28)

We note that the equality above holds for i = 1. We will use
it in later part of the paper while deducing the expression
for optimal auto-regulation that leads to minimum variance
in the FPT for fixed mean.

Having derived the expressions for moments of inter–
bursts arrival times, we see how the introduction of auto-
regulation influences the expressions for FPT moments.

B. FPT for auto-regulatory gene expression model

We present the expressions for statistical moments of FPT
in theorem–proof format. In developing the proofs, we make
use of the fact that each Ti will be independent of N. Also,
Ti are independent of each other. However, they are not
identically distributed like the unregulated gene expression
case discussed in previous section.

Theorem 1 (Mean of First Passage Time): For the FPT
defined in Eq. (9), the mean FPT is given by following
expression:

〈FPT 〉=
∞

∑
n=1

n

∑
i=1
〈Ti〉 fN(n), (29)

where fN(n) is defined in Eq. (15), 〈Ti〉 is given by Eq. (22),
(23c) and 〈N〉 is given by Eq. (16a).

Proof: To prove the result, we first find conditional
expectation given N = n then we have:

〈FPT |N = n〉=

〈
n

∑
i=1

Ti

〉
, (30a)

=
n

∑
i=1
〈Ti〉 . (30b)

Unconditioning above expression with respect to N:

〈FPT 〉=
∞

∑
n=1

n

∑
i=1
〈Ti〉Pr(N = n), (30c)

=
∞

∑
n=1

n

∑
i=1
〈Ti〉 fN(n). (30d)

This completes the proof.
Theorem 2 (Variance of First Passage Time): For the

FPT defined in Eq. (9), the variance of FPT is given by the
following expression:

∞

∑
n=1

 n

∑
i=1

Var(Ti)+

(
n

∑
i=1
〈Ti〉
)2
 fN(n)−

(
∞

∑
n=1

n

∑
i=1
〈Ti〉 fN(n)

)2

,

(31)



where fN(n) is defined in Eq. (15), 〈N〉 is given by Eq.
(16a),

〈
N2〉 can be deduced from Eq. (16b), 〈Ti〉 is given by

Eq. (22), (23c) and Var(Ti) is given by Eq. (25), (26).
Proof: Since expression for 〈FPT 〉 is known and given

by Eq. (29), we need to find expression for
〈
FPT 2

〉
, in order

to find expression for variance of FPT.
Using the definition of first passage time in Eq. (9), we

have: 〈
FPT 2|N = n

〉
=

〈
n

∑
i=1

n

∑
j=1

TiTj

〉
, (32a)

=

〈
n

∑
i=1

T 2
i +

n

∑
i=1

n

∑
j=16=i

TiTj

〉
(32b)

Since T 2
i are independent of each other, and Tj are

independent of Ti for each j 6= i; we can write:〈
FPT 2|N = n

〉
=

n

∑
i=1

〈
T 2

i
〉
+

n

∑
i=1

n

∑
j=16=i

〈
TiTj

〉
, (32c)

=
n

∑
i=1

〈
T 2

i
〉
+

n

∑
i=1

n

∑
j=16=i

〈Ti〉
〈
Tj
〉
. (32d)

Using Var(Ti) =
〈
T 2

i
〉
−〈Ti〉2, we have:

〈
FPT 2|N = n

〉
=

n

∑
i=1

Var(Ti)+

(
n

∑
i=1
〈Ti〉
)2

. (32e)

Unconditioning with respect to N, expression for
〈
FPT 2

〉
becomes:

〈
FPT 2〉= ∞

∑
n=1

 n

∑
i=1

Var(Ti)+

(
n

∑
i=1
〈Ti〉
)2
 fN(n). (33)

Therefore, using Eq. (29), and Eq. (33); expression for
Var(FPT ) becomes:

∞

∑
n=1

 n

∑
i=1

Var(Ti)+

(
n

∑
i=1
〈Ti〉
)2
 fN(n)−

(
∞

∑
n=1

n

∑
i=1
〈Ti〉 fN(n)

)2

.

(34)
This completes the proof.

So far we have developed analytical expressions for mean
and variance of FPT when there is an auto-regulatory feed-
back to transcription rate from protein count. In the next
section, we make use of these expressions to deduce the
optimal auto-regulation function to minimize the variance of
FPT assuming fixed mean FPT.

IV. MINIMIZING VARIANCE IN FIRST PASSAGE TIME FOR
GIVEN MEAN

In this section, we find expression for the auto-regulatory
feedback function, km(Pi−1), i ∈ {1,2,3, ...} that gives min-
imum variance in FPT, given the mean FPT and event
threshold are fixed. The result is presented in form of a
theorem.

Theorem 3 (Optimal feedback for minimum variance):
Let the first passage time be defined as Eq. (9), and its
mean and variance, respectively, given by Eq. (29) and Eq.
(31). Then, the optimal function to minimize the variance

of FPT for a given mean of FPT will be constant, given by
following expression:

km (Pi−1) =
〈N〉
〈FPT 〉

, ∀i ∈ {1,2,3, ...}, (35)

where 〈N〉 denotes the minimum number of transcription
events required to reach the FPT threshold, and is given by
Eq. (16a).

Proof: We assume that each burst event adds a pertur-
bation to transcription rate, i.e., 1/km(Pi−1) can be written
as:

1
km(Pi−1)

:=
〈FPT 〉
〈N〉

+δi, (36)

where δi is perturbation corresponding to transcription rate
after i−1th burst. To prove the result, we shall prove that the
variance of FPT for given mean will minimize when δi = 0.

Recalling the expression for 〈FPT 〉 from Eq. (29):

〈FPT 〉=
∞

∑
n=1

n

∑
i=1
〈Ti〉 fN(n). (37)

Using expressions in Eqs. (22), (23c), we can deduce the
expressions for 〈Ti〉 as:

〈Ti〉=
〈FPT 〉
〈N〉

+ εi, (38)

where εi is related with δi by following expression:

εi :=
∞

∑
j=1

δi fPi−1( j) = 〈δi〉 . (39)

Substituting expression for 〈Ti〉 from Eq. (38), we have:

〈FPT 〉=
∞

∑
n=1

n

∑
i=1

(
〈FPT 〉
〈N〉

+ εi

)
fN(n), (40a)

=
∞

∑
n=1

(
〈FPT 〉
〈N〉

n+
n

∑
i=1

εi

)
fN(n), (40b)

=
〈FPT 〉
〈N〉

∞

∑
n=1

n fN(n)+
∞

∑
n=1

n

∑
i=1

εi fN(n). (40c)

Since
∞

∑
n=1

n fN(n) = 〈N〉, we have:

∞

∑
n=1

n

∑
i=1

εi fN(n) = 0. (41)

Note that for a fixed mean FPT, minimizing the variance of
FPT and minimizing the second order moment

〈
FPT 2

〉
are

equivalent.
Now, we consider the expression for

〈
FPT 2

〉
, and use

expression in Eq. (41) to deduce the desired optimal function.
From Eq. (31), we have:

〈
FPT 2〉= ∞

∑
n=1

 n

∑
i=1

Var(Ti)+

(
n

∑
i=1
〈Ti〉
)2
 fN(n). (42)



TABLE II
MODEL PARAMETERS USED FOR SIMULATION OF POSITIVE, NEGATIVE, AND NO FEEDBACK CASES.

Parameter Unit Positive feedback Negative feedback No feedback

kmax mRNA produced per minute 19.35 84 10
kp protein produced per mRNA per minute 2.65 2.65 2.65
γm per minute 0.3 0.3 0.3
X molecules 5000 5000 5000
r - 0.05 0.05 -
c per molecule 0.002 0.002 -
H - 2 2 -

Substituting value of 〈Ti〉 from Eq. (36), we get following
expression for

〈
FPT 2〉:

〈
FPT 2

〉
=

∞

∑
n=1

 n

∑
i=1

Var(Ti)+

(
n

∑
i=1

(
〈FPT 〉
〈N〉

+ εi

))2
 fN(n).

(43)
Further simplifying and using relation obtained in Eq. (41)

yields:〈
FPT 2

〉
=
〈FPT 〉2

〈N〉2
〈

N2
〉
+

∞

∑
n=1

 n

∑
i=1

Var(Ti)+

(
n

∑
i=1

εi

)2
 fN(n).

(44)
Using Eq. (28) in Eq. (44):〈

FPT 2〉≥ 〈FPT 〉2

〈N〉2
〈
N2〉

+
∞

∑
n=1

 n

∑
i=1
〈Ti〉2 +

(
n

∑
i=1

εi

)2
 fN(n), (45a)

=⇒
〈
FPT 2〉≥ 〈FPT 〉2

〈N〉2
〈
N2〉+ 〈FPT 〉2

〈N〉

+
∞

∑
n=1

 n

∑
i=1

ε
2
i +

(
n

∑
i=1

εi

)2
 fN(n). (45b)

Further, we note that in above expression if εi = 0 (or
equivalently 〈δi〉= 0), the expression minimizes and reduces
to: 〈

FPT 2〉≥ 〈FPT 〉2

〈N〉2
〈
N2〉+ 〈FPT 〉2

〈N〉
. (46)

Recalling Eq. (20), we observe that equality in above ex-
pression holds for unregulated gene expression case, which
essentially means δi = 0. This proves the desired result.

In this section, we proved that having no auto-regulation of
transcription rate provides minimum stochasticity in the FPT,
if mean FPT and event threshold are kept fixed. However,
since our analysis simplified the gene expression model to
burst–limit, we are interested in validating whether it is true
if we don’t make an approximation. In the next section,
we discuss the computer simulations we carried out for this
purpose.

V. SIMULATION RESULTS

In order to verify the result deduced in previous section,
we carried out Monte Carlo simulations using Gillespie’s al-
gorithm [52]. We did not specifically assume that production

of protein is in geometric bursts with parameter b. Instead,
we assumed a non–zero half–life for mRNA thereby relaxing
the burst approximation.

To simulate, we considered three separate cases: no feed-
back, negative feedback and positive feedback. The positive
feedback is implemented using Hill function as follows:

km( j) = kmax

(
r+(1− r)

( jc)H

1+( jc)H

)
, (47)

where kmax is maximum transcription rate, r represents
minimum transcription rate as the fraction of kmax, H denotes
the Hill coefficient while c is coefficient proportional to the
binding affinity (when j = 1/c, km( j) = kmax/2).

Similarly, the negative feedback is implemented using
following function:

km( j) = kmax

(
r+(1− r)

1
1+( jc)H

)
. (48)

We carried out the simulations for several sets of param-
eters assuming a fixed event threshold. Rest of the model
parameters were chosen to keep the mean FPT approximately
equal. In all of them, we found that no–feedback case has
minimum variance in FPT.

In Table II, we present one set of such parameters. We
assumed the event threshold X = 5000. Other parameters are
chosen in a way that the mean FPT ≈ 60 minutes.

Simulation results for 10000 realizations are shown in
Fig. 3. We note that the variance is minimum in no–
feedback case, validating our theoretical claims for this set
of parameter values.

VI. DISCUSSION

In this work, we studied stochasticity in event timing at a
single cell level. We considered a standard gene expression
model without protein degradation. Next, we formulated the
FPT problem for this model and derived the formulas for
statistical moments of FPT. Further, we introduced auto-
regulation in the gene expression wherein the transcription
rate is a function of protein count. We derived the formulas
for moments of FPT in this case as well, and demonstrated
that for a given mean of FPT, the variance in FPT is mini-
mized when there is no auto-regulation of gene expression.
The result was verified with simulations as well.

The result can be connected to the λ phage lysis time.
Due to existence of optimal lysis time [35], [36], the phage
would possibly like to kill the cell at that time with as much
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Fig. 3. No protein–feedback regulation of transcription rate results in minimum stochasticity in FPT for a given mean and threshold. In each figure, the
dashed line in red represents the FPT threshold (assumed to be 5000 protein molecules here); the trajectories in the lower part depict the time evolution of
protein population (10 sample trajectories); the histogram of on top represents distribution of FPT (10000 simulations); the parameters have been chosen
to keep the mean FPT ≈ 60 min.

precision as possible. Thus, it should resort to a strategy that
would minimize the lysis time variance and hence have no
protein–dependent feedback regulation of transcription rate
in the expression of holin. In expression from late promoter
in λ phage, which produces holin, has no evidence of a
regulation [53], [54].

Recalling that in no auto–regulation case too, the variance
of FPT can be independently decreased by lowering the
mean burst size b. Other studies also reveal that in case
of λ phage, the burst size is indeed small [33], [35]. Also,
antiholin, another protein expressed from the same promoter
that expresses holin, binds to holin to decrease the effective
burst size [34], [55].

In this paper, there is an underlying assumption of protein
being stable. In future work, we plan to use a gene expression
model with protein degradation, and carry out a similar
analysis. This can be further extended to more generalized
gene expression models wherein the promoter can also
switch between on and off states [12], [43].
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