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Abstract— In this paper, stabilization of discrete time bilin-
ear systems is investigated by using Sum of Squares (SOS)
programming methods and a quadratic Lyapunov function.
Starting from the fact that global asymptotic stability cannot
be proven with a quadratic Lyapunov function if the controller
is polynomial in the states, the controller is instead proposed
to be a ratio of two polynomials of the states. First, a simple
one-step optimal controller is designed, and it is found that
it is indeed defined as a ratio of two polynomials. However,
this simple controller design does not result in any stability
guarantees. For stability investigation, the Lyapunov difference
inequality is converted to a SOS problem, and an optimization
problem is proposed to design a controller which maximizes the
region of convergence of the bilinear system. Input constraints
can also be accounted for in the optimization problem.

I. INTRODUCTION

In this paper, bilinear discrete-time systems are considered.
Bilinear systems are a special class of nonlinear systems,
where the nonlinearity consists of products between the states
and inputs. Although bilinear systems may be said to be a
class of nonlinear systems that is ’close’ to linear systems,
linearization results in neglect of the main challenge in
controller design for these systems. They have many practical
applications in various fields (power systems as an example
[1]) and many nonlinear systems could be approximated by
bilinear models.

A substantial number of works have been devoted to
control and analysis of continuous time bilinear systems
over the last fifty years. A representative overview of these
works is beyond the scope of this paper, but some inspiration
from Gutman [2] is acknowledged. In his paper, Gutman
introduces a quadratic stabilizing feedback controller and
applied to a biochemical process. Compared to the amount
of published work on continuous time bilinear systems,
there are relatively few publications on discrete time bilinear
systems. Most works have been devoted to model predictive
control, e.g., [3], [4]. In [5] a nonlinear state feedback
control based on passivity design has been proposed to
asymptotically stabilize a neutrally stable system. References
[6] and [7] investigate the constrained and unconstrained sta-
bilization of discrete time bilinear systems using polyhedral
Lyapunov functions and a systematic method for designing
a stabilizing linear state feedback control is introduced. This
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method is used in [8] to handle a discrete bilinear system
with additive bounded disturbances. In [9], controllers for
discrete time bilinear systems are designed which take the
form of a ratio of two polynomials in the state. The same
functional form of the controller is used in the present paper,
but the design procedure is different (being based on Sum
of Squares programming) and can also handle systems with
multiple inputs.

Sum of Squares (SOS) programming is a technique for
testing non-negativity of polynomial functions, and can be
used in implementation of system analysis tools. In [10]
a general framework for analyzing nonlinear systems is
discussed by using SOS programming method. There are also
a few of papers proposing SOS programming for control of
continuous time bilinear systems, see, e.g., [11], [12] and
references therein. In [6] it is stated that ’It is not surprising
that very few works dealing with the stabilization problem
of discrete-time systems have been reported. This is due to
the fact that quadratic functions which can be viewed as the
”natural” Lyapunov functions for linear systems lead to very
complex computational problems when applied to nonlinear
discrete-time systems.’ Nevertheless, the present paper comes
back to the class of quadratic Lyapunov functions for dis-
crete time bilinear systems. Although the complexity of the
resulting computational problems is undisputable, it is found
that software for SOS programming are now of a quality
that makes this technique useful and relatively accessible.
The software package YALMIP [13], [14] has been used for
all SOS problems in this paper. To the best of the authors’
knowledge, this is the first work specifically addressing the
stabilization of discrete time bilinear systems using SOS
programming.

This paper is organized as follows: in section II, the
problem is defined and preliminary information is provided.
The proposed controller is defined as the ratio of two
polynomials and quadratic Lyapunov function is considered
for stability investigation. In the next section, a direct one-
timestep optimal controller design is considered, optimizing
the one step ahead tracking error and input cost. It is found
that the structure of the controller agrees with the findings
in section II, but no stability guarantee is given. In section
IV, an SOS optimization problem is proposed to design a
controller which maximizes the region of convergence of
the bilinear system. This region is defined as a level set of
the quadratic Lyapunov function, and input constraints may
be accounted for in the problem formulation. In section V,
an optimization problem is developed to improve the rate
of convergence inside a given Lyapunov function level set.



Three illustrative numerical examples are provided in section
VI. Then paper ends with conclusions and discussion on
further work.

II. PROBLEM STATEMENT AND PRELIMIARIES

The dynamic of class of discrete bilinear systems under
interest in this note is described by the following difference
equation:

xk+1 = Axk +
m

∑
i=1

(Bixk +bi)ui,k (1)

where xk ∈ ℜn is the state vector at time k, ui,k is the
ith element of input vector uk ∈ ℜm at time k, and A ∈
ℜn×n,Bi ∈ ℜn×n,bi ∈ ℜn×1 are system matrices. For the
sake of simplicity of notation, the system dynamics may
alternatively be expressed as:

xk+1 = Axk +(Bx +B)uk (2)

where Bx = [ B1xk B2xk · · · Bmxk ] and B= [ b1 b2 · · · bm ].
The problem considered here is the stabilization of the

bilinear system (1) to the origin by designing a controller
which satisfies input constraints. The main tool for analyzing
stability of nonlinear systems is Lyapunov’s direct method.
This is well known in the control community, and the
following theorem is therefore stated without proof:

Theorem 1. Lyapunov uniform asymptotic stability for dis-
crete time systems: If in a neighborhood D of the equilibrium
state x = 0 of the discrete time system xk+1 = f (xk), there
exist a function V (.) : D→ℜ such that:

W1(x)≤V (x)≤W2(x) (3)

where W1 and W2 are time invariant positive definite
functions (with W1(0) =W2(0) = 0) , and the rate of change
∆V (xk) = V (xk+1)−V (xk) is negative definite in D, then
the equilibrium state is uniformly asymptotically stable in D.

A quadratic Lyapunov function Vk = xT
k Pxk is often used

for some given weighting matrix P > 0. The first assumption
in Theorem 1 is satisfied for this function by considering:

λmin(P)‖xk‖2
2 ≤ xT

k Pxk ≤ λmax(P)‖xk‖2
2 (4)

where λmin and λmax are minimum and maximum eigenvalues
of P. Consequently, the closed loop stability is guaranteed
by ensuring that the candidate quadratic Lyapunov function
is decreasing in each time step:

V (xk)−V (xk+1) = xT
k Pxk− xT

k+1Pxk+1 > 0 (5)

The stabilizing controller is considered in the form of ratio
of two polynomials as follows:

ui(x) =
ci(xk)

c0(xk)
(6)

where ci(xk) are polynomials in the state with lowest order
one and highest order nn, and c0(xk) is a polynomial of
lowest order zero and highest order nd . All inputs share

the same denominator polynomial c0(xk). Note that for a
given xk, these polynomials are linear in the polynomial
coefficients (cci), a fact that is important when optimizing
over polynomial coefficients in the controller design.

Definition 2. A system is defined to be globally quadratically
stable if a quadratic Lyapunov function fulfilling Theorem 1
can be found for D = ℜn.

In the following two propositions, a bilinear system is
termed open loop unstable if it is unstable with a zero input,
i.e., if the linear dynamics described by the matrix A is
unstable.

Proposition 3. Global quadratic stability of open loop un-
stable discrete-time bilinear systems requires the controller
(6) to have a denominator polynomial of order at least as
high as the numerator polynomial (nd ≥ nn).

Proof: If the order of numerator would be higher than
denominator, then the second term in the Lyapunov differ-
ence inequality (5) will be of higher order than the first, and
therefore will dominate for large norm of the state vector. �

Proposition 4. Global quadratic stability of open loop un-
stable discrete-time bilinear systems requires the controller
(6) to have a numerator polynomial of order at least as high
as the denominator polynomial (nn ≥ nd).

Proof: If the numerator order is lower than the denomi-
nator order, the norm of the input signal will approach zero
far from the origin and as the result the controller could not
satisfy (5). �

From the propositions above, it is concluded that for open
loop unstable bilinear discrete time systems the highest order
of the controller numerator and denominator polynomials
should be the same.

The controller is obliged to satisfy the control constraints
of the form:

|ui(x)| ≤ ui,max (7)

To design the controller (6) to satisfy (5) and (7), Sum of
Squares (SOS) methods are exploited. The basic idea behind
the SOS approach for checking the positivity of a polynomial
p(x), is to replace the positivity with the condition that the
polynomial can be transformed to SOS terms [15]:

p(x) =
N

∑
i=1

h2
i (x) =

M

∑
i=1

(qT
i v(x))2 = vT (x)Qv(x) (8)

where Q = QT > 0. As the result, if it is possible to find a
vector of monomials v(x) and a positive definite matrix Q,
positivity of p(x) is guaranteed.

Similarly, a symmetric polynomial matrix M(x) is said to
be an SOS matrix if it can be decomposed into

M(x) = HT (x)H(x) (9)

The SOS decomposition can be computed by semi-definite
programming with the help of available software [14].

In the following, conditions will be presented that require
some state-dependent matrix M(x) to be positive definite,



denoted M(x)> 0 (corresponding to zT M(x)z> 0 ∀x, ∀z 6= 0).
In practice, in the resulting optimization problem formula-
tions, such conditions are replaced with the slightly more
restrictive condition that M(x) should be an SOS matrix.

III. DIRECT OPTIMAL CONTROLLER DESIGN

In this section, a controller for the discrete time bilinear
system will be designed, based on the direct minimization of
a cost function over one timestep. The cost function accounts
for the tracking error at the next timestep and cost of control
inputs at the present time:

J(x,u) = xT
k+1Qxk+1 +uT

k Ruk (10)

where Q is a positive semidefinite matrix and R is a positive
definite matrix. Direct minimization of the cost function
results in the controller:

uk =−
[
(Bx +B)T Q(Bx +B)+R

]−1
(Bx +B)T QAxk (11)

While this controller is optimal according to the chosen
cost function, it does not guarantee global stability, so the
region of stability should be assessed by other means - which
will be addressed in subsequent sections. The denominator
term in the controller comes from det((Bx+B)T Q(Bx+B)+
R) which is common for all inputs and is positive definite,
so it is possible to write the optimal controller in the form
of ratio of polynomials as in (6).

Remark 5. It is straight forward to extend (11) to the case
with non-zero references for states and inputs. However, in-
clusion of non-zero references may raise additional questions
about the admissibility of the references with regards to the
system dynamics. This issue is not pursued any further in the
present paper.

IV. MAXIMIZING REGION OF CONVERGENCE

This section addresses controller design, using controllers
on the form (6), to maximize the region of convergence.
The denominator polynomial c0(x) will be assumed to be
an SOS polynomial. However, there exists a possibility of
using excessively large inputs, if all terms c0(x) have roots
near the same point in the state space. To guard against this
situation, the denominator polynomial is specified as c0(x) =
ć0(x)+1, with ć0(x) an SOS polynomial, thus ensuring that
the denominator polynomial cannot be very small anywhere
in ℜn. One may note that the controller in (11) also has
a constant term - that can be set to unity by multiplying
the numerator and denominator polynomials with a common
scaling factor.

Theorem 6. Region of convergence: Given a quadratic
function V (x) = xT

k Pxk, polynomials ci(xk), i∈ [1, . . . ,m], and
SOS polynomials ć0(xk) and s1(xk), a bilinear discrete time
system (1) in closed loop with the control law (6) is stable

∀xk|xT
k Pxk < γ , provided

(ć0(xk)+1)xT
k Pxk− s1(xk)(γ− xT

k Pxk)

P

(ć0(xk)+1)Axk +(Bx +B)

c1(xk)
...

cm(xk)




(ć0(xk)+1)Axk +(Bx +B)

c1(xk)
...

cm(xk)




T

P

(ć0(xk)+1)P

> 0 (12)

Proof: Dividing (12) with the strictly positive (ć0(xk)+1):
xT

k Pxk− s1(xk)
(ć0(xk)+1) (γ− xT

k Pxk)

P

Axk +(Bx +B) 1
c0(xk)

c1(xk)
...

cm(xk)




Axk +(Bx +B) 1
c0(xk)

c1(xk)
...

cm(xk)




T

P

P

> 0 (13)

Considering the controller in (6) and the bilinear system
dynamics in (2), this corresponds to[

xT
k Pxk− s1(xk)

(ć0(xk)+1) (γ− xT
k Pxk) xT

k+1P
Pxk+1 P

]
> 0 (14)

and using the Schur complement one obtains

xT
k Pxk− xT

k+1Pxk+1−
s1(xk)

(ć0(xk)+1)
(γ− xT

k Pxk)> 0 (15)

Noting that s1(xk)
(ć0(xk)+1) > 0 and (γ−xT

k Pxk)> 0∀xT
k Pxk < γ , it

follows from Theorem 1 that

xT
k Pxk−xT

k+1Pxk+1 > 0 ∀ x|xT
k Pxk < γ. �

Theorem 7. Given the polynomial ci(xk), SOS polynomials
ć0(xk) and qi(xk), the input constraint in (7) is satisfied
∀ xk|xT

k Pxk < γ provided[
(ć0(xk)+1)u2

max,i−qi(xk)(γ− xT
k Pxk) ci(xk)

ci(xk) ć0(xk)+1

]
> 0

(16)

Proof: Following the same approach as in the proof of
Theorem 6, it can be shown that (16) is equivalent to

u2
max,i−u2

i −
qi(xk)

(ć0(xk)+1)
(γ− xT

k Pxk)> 0,

and hence u2
max,i−u2

i > 0 ∀ xk ∈ {xk|xT
k Pxk < γ}. �

Observe that the parameters in the polynomials ć0(xk),
ci(xk), s1(xk), and qi(xk) enter linearly in (12) and (16).
One may therefore maximize the region of convergence by
iteratively increasing γ while verifying (12) and (16), with
the polynomial coefficients as free variables. Such problems
can easily be formulated and solved using YALMIP (with an
appropriate semidefinite programming solver). If γ is treated



as a variable, (12) and (16) contain bilinear terms in γ and
the parameters of s1(xk) and qi(xk), respectively. Thus, if
one has access to a solver handling bilinear terms, one may
formulate an optimization problem to directly maximize γ .

V. IMPROVING RATE OF CONVERGENCE

Maximizing the region of convergence may lead to rather
slow control, i.e., the rate of convergence may be poor, in
particular near the boundary of the region in question. To
improve the rate of convergence, the decrease in Lyapunov
function in each step could be increased. This can be
formulated as:

max
α,cc0,cci

α (17)

such that
xT

k Pxk− xT
k+1Pxk+1 − s1(xk)

(ć0(xk)+1) (γ− xT
k Pxk)> αxT

k Pxk

where again the region to be considered is bounded by (γ−
xT

k Pxk)> 0.
This would change (12) to the constraint1:

(1−α)(ć0(xk)+1)xT
k Pxk− s1(xk)(γ− xT

k Pxk)

P

(ć0(xk)+1)Axk +(Bx +B)

c1(xk)
...

cm(xk)




(ć0(xk)+1)Axk +(Bx +B)

c1(xk)
...

cm(xk)




T

P

(ć0(xk)+1)P

> 0 (18)

There are bilinear terms between α and the parameters of
ć0(xk), so the problem has to be solved iteratively, for a
fixed γ iteratively increasing α (within the range 0 < α < 1).
Clearly, one must expect to have to decrease γ from the
maximal value found in Section IV, in order to be able to
increase the rate of convergence.

VI. NUMERICAL EXAMPLES

Example 1: In the following, a second-order bilinear
system, proposed initially in [7], is considered:

A =

[
1 0.01

0.01 1

]
,B1 =

[
0.001 0

0 −0.004

]
,b1 =

[
0.09
0.09

]
The input is constrained to |u| ≤ 2. The problem to be

solved is the determination of the controller which stabilizes
the system in the maximum possible region of xT

k Pxk < γ . P
is considered as identity matrix.

YALMIP [14] is used to solve the SOS problems in
MATLAB environment. First, the region of convergence is
maximized according to Section IV. The highest order input
polynomials considered is np = 2. The maximum region
where YALMIP could find a controller to stabilize the system
is given by γ = 150. The designed controller is as follows:

u(xk) =
−256.1x1−253.9x2 +1.8x2

1 +1.3x1x2−9.5x2
2

498.3+0.6x1 +6.3x2 +39.1x2
1−28.8x1x2 +34.4x2

2

1ć0(xk) and s1(xk) are still assumed to be SOS polynomials.
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Fig. 1. Simulation results for example 1 system controlled by SOS method:
(a) states, (b) input, and (c) cost function

The state evolution in time, input and cost function for
designed controller are shown in Fig. 1 for the initial state
of x0 = [8,9]T . Note that, although (12) cannot be verified
for γ > 150, this does not mean that the system is necessarily
unstable in that region.

In Fig. 2, phase portraits of the closed loop system for
initial states belonging to the x2

1 + x2
2 = 150 is depicted.

Remark 8. The problem formulation in [7] includes the state
constraints |xi| ≤ 4, i ∈ {1,2}, which makes the objective of
the controller design different from the one in the present
paper. Nevertheless, Fig. 2 shows that the controller pre-
sented here practically makes the set {x| |x1| ≤ 4, |x2| ≤ 4}
positively invariant, and thus that the state constraints are
fulfilled for any initial condition within this set.
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Fig. 2. State trajectories for example 1: (a) starting from the border of the
maximum region of stability (b) starting from |xi| ≤ 4 as in [7]

To improve the rate of convergence, (18) is solved in
YALMIP by specifying α = 0.015. Note that by adding α

to the problem, the maximum region of convergence will
decrease. In this example, it decreases to γ = 120. The
designed controller is as follows:

u(xk) =
−137.4x1−148.9x2 +0.6x2

1−0.6x1x2−6.35x2
2

429.2+5.1x1 +11.2x2 +7.5x2
1 +1.4x1x2 +6.3x2

2

The responses of the system for both controllers designed
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Fig. 3. Improvement of the response in example 1 by specifying α = 0.015,
(γ = 120): (a) states, (b) input, and (c) cost function

by (12) and (18) are shown in fig.3, which shows that by
adding the term α , the rate of convergence is increased.

Example 2: Consider the third-order bilinear system with
two inputs found in [7]:

A =

 1.10 −0.2 −0.34
−0.06 0.7 −0.42
0.41 0.41 0.90

 , b1 =

 3.75
1.05
−0.85


b2 =

 0
−1.33
−0.49

 , B1 =

−0.12 −0.22 0.36
−0.32 0.48 0.36
−0.35 0.36 −0.18

 (19)

B2 =

−0.18 0.30 0.07
−0.03 −0.18 −0.38
0.55 −0.74 −0.77


Both control inputs have to respect the linear constraints
−1≤ u≤ 1. The matrix P in the cost function is chosen as:

P =

 2 0.1 0.1
0.1 1.5 0.1
0.1 0.1 1

 (20)

Using SOS programming, a region of stability
parametrized by γ = 4 results. The designed controller
based on (6) is as follows:

c1(xk) =−7.1x1 +0.8x2 +2.7x3 +0.4x2
1 +0.6x1x2−0.8x2

2

−0.6x1x3−0.2x2x3 +1.1x2
3

c2(xk) =−0.9x1 +6.7x2−1.7x3 +2.4x2
1−0.3x1x2 +0.8x2

2

−4.3x1x3 +1.9x2x3 +3.1x2
3

c0(xk) =26.3+0.1x1−0.6x2 +1.6x3 +11.9x2
1−0.2x1x2

+13.2x2
2 +0.3x1x3 +0.9x2x3 +11.6x2

3

The state responses for the calculated controller for the
initial state x0 = [1.1,−0.7,−1]T is depicted in Fig. 4 along
with input and cost function. The region of convergence
(xT

k Pxk < γ) calculated for this example is shown in Fig. 5.
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Fig. 4. Simulation results for example 2 system controlled by SOS method:
(a) states, (b) input, and (c) cost function

Fig. 5. Region of convergence calculated for example 2 by SOS method

Fig. 6. Region of convergence calculated for example 2 using polyhedral
Lyapunov function in [7]

This problem is also solved in [7] using polyhedral Lya-
punov functions and the calculated region of convergence is
depicted in Fig. 6. Comparing Fig. 5 and Fig. 6, it is clear
that the region of convergence calculated using SOS methods
is much larger than the one calculated in [7].

Example 3: Consider the following second order bilinear
system: [6]

A =

[
0.8 0.5
0.4 1.2

]
,B1 =

[
0.45 0.45
0.3 −0.3

]
,b1 =

[
1
2

]
(21)

The input is constrained to |u| ≤ 0.5. The problem to be
solved is the determination of the controller which stabilizes



the system in the maximum possible region of xT
k Pxk < γ .

The matrix P is chosen as

P =

[
1 1
1 2

]
(22)

Solving the problem in YALMIP for maximum γ results in
γ = 6. The designed controller is as follows:

u(xk) =
−6.0x1−9.7x2−0.2x2

1−0.9x1x2−0.3x2
2

27.9+5.1x1−0.48x2 +2.1x2
1 +2.3x1x2 +4.0x2

2

State responses, input and cost function evolution in time is
depicted in Fig. 7. In addition, the calculated region of con-
vergence for SOS method is shown in Fig. 8. This problem
is also solved in [6] using polyhedral Lyapunov functions
and calculated region of convergence is also shown the same
figure. It is clearly shown that region of convergence using
SOS method is much larger than the region of convergence
calculated in [6] using polyhedral Lyapunov functions.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper SOS programming methods are used to
investigate controller design for discrete time bilinear sys-
tems. First, an optimization problem is proposed to design
a controller to maximize the region of convergence. The
input is defined in the form of ratio of two polynomials and
quadratic Lyapunov function is considered. Then the rate of
convergence is improved by increasing the rate of decrease in
the Lyapunov function. Finally the direct optimal controller
is considered and maximum rate of convergence is calculated
for this controller. Numerical examples from literature are
provided and solved using YALMIP software.

In this project, it was assumed that matrix P is given.
The next step would be to consider that input (c0,ci) and
stability region (s1,γ) are available and the problem is to
find a new P which maximizes the volume of the ellipsoid
xT

k Pxk < γ where the system is stable. After finding new P,
the optimization process could be repeated to find new c0,ci
and γ and this process could iterated to find larger ellipsoids
which guarantee stability.
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