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Abstract— In this paper, we consider the problem of
model order reduction of stochastic biochemical networks.
In particular, we reduce the order of (the number of equa-
tions in) the Linear Noise Approximation of the Chemical
Master Equation, which is often used to describe biochem-
ical networks. In contrast to other biochemical network
reduction methods, the presented one is projection-based.
Projection-based methods are powerful tools, but the cost
of their use is the loss of physical interpretation of the nodes
in the network. In order alleviate this drawback, we employ
structured projectors, which means that some nodes in the
network will keep their physical interpretation. For many
models in engineering, finding structured projectors is not
always feasible; however, in the context of biochemical
networks it is much more likely as the networks are often
(almost) monotonic. To summarise, the method can serve
as a trade-off between approximation quality and physical
interpretation, which is illustrated on numerical examples.

Index Terms— model order reduction; structured model
order reduction; stochastic averaging principle; linear
noise approximation; chemical master equation

I. INTRODUCTION AND PRELIMINARIES

In mathematical biology, one of the most common
approaches to model reduction of deterministic dynam-
ical systems is to apply Tikhonov’s theorem [1], this is
also referred to as time-scale separation or the quasi-
steady state assumption. The framework based on time-
scale separation has received considerable attention in
the control theory community [2]. However, projection-
based methods (see, e.g. [3], [4]) have now become
the preferred method. This shift occurred because the
latter proved itself more powerful than the former. In
any projection-based method first an appropriate state-
space transformation is computed and only then tools
similar to time-scale separation are applied. Having the
freedom to apply such transformations results in the
following advantages: existence of error bounds (in some
cases), automatic selection of reduced states, higher
approximation quality.
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A technique similar to time-scale separation have been
also developed for Stochastic Differential Equations
(SDEs) and known as the called stochastic averaging
principle [5].In recent work [6] the averaging principle
was derived for linear SDEs, while using a projection
approach [3].

In the context of biochemical networks, we are deal-
ing not with an SDE, but with a partial differential equa-
tion of probability distributions, the so-called Chemical
Master Equation (CME). A solution to this equation is a
continuous-time Markov chain with an infinite number
of states. To the authors’ best knowledge there are
no tractable time-scale separation or averaging methods
applicable to CMEs. Hence reduced order modelling is
typically applied to different approximations of the CME
such as Finite State Projection [7], [8], Linear Noise
Approximation (LNA) [9] or macroscopic deterministic
models of reaction networks [10], [11]. As in [9], we will
compute reduced order models for the LNA, which is a
collection of two systems: a deterministic one describing
macroscopic concentrations and an SDE driven by a
Gaussian noise describing the fluctuations about the
macroscopic concentrations. Our approach to reduction
is a combination of averaging and projection. The focus
of this paper is towards the stochastic averaging meth-
ods, in Part I [12] the details of the structured projectors
are given and proofs included1.

Applying a state-space transformation results in the
states of the reduced order model which are composed
of linear combinations of the states of the full order
model. Hence the new states lack physical interpretation
and sparsity patterns in the network are lost, which
constitutes a major drawback of the projection-based
methods. In order to limit the loss of physical interpreta-
tion, we use structured model order reduction [13]. This
means that the states are partitioned into two groups:
one group of states is left intact, and the other states are
linear combinations of some original states. The trans-
formations are computed according to the partitioning
based on the covariance matrix of fluctuations about the

1Whilst both papers are self contained the first paper is available
on line at http://arxiv.org/abs/1403.3579
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macroscopic concentrations of the model. This covari-
ance matrix approximates the statistics of the solution to
the CME under certain conditions [14]. Therefore, the
reduced order model can potentially capture additional
information about the stochastic nature of the model in
comparison with other approaches.

The idea of using structured transformations in order
to preserve the physical meaning of the states is not
new. Moreover, the class of models, for which such
transformations can be computed, is not rich and not
many necessary conditions for their existence are known.
However, in the context of biochemical networks for
the systems with monotone dynamics (for definition see
[15]) such transformations can always be computed.

In this paper, we notice that the proposed method can
be applied to a more general class of networks. Many
biochemical networks have a tendency to be nearly
monotone [16], that is if a small number of edges are
removed, then the network becomes monotone. (In Part
I [12] we formally define the concept of monotonic-
ity.) Since the monotonicity implies the existence of
structured projectors, one can make a conjecture on the
existence of such projectors for a large class of biochem-
ical networks. To illustrate this observation, we apply
the method to a model of yeast glycolysis [17], which
becomes monotone after removing just three reactions
(out of more than thirty). For this model, structured
projectors exist for any state-space partitioning, which
is a very strong property.

The paper is organised as follows. In the next sub-
sections, we introduce the CME, LNA and stochastic
averaging. In Section II, the proposed model reduction
method is described, which is validated on numerical
examples in Section III.

A. Modelling Biochemical Networks

Biochemical networks are typically modelled by a
continuous time infinite Markov chain, probability dis-
tribution function of which is computed by a Chemical
Master Equation (CME):

∂P(n, t)

∂t
= Ω

R∑
i=1

(f̂(n−Si,Ω)− f̂(n,Ω))P(n, t), (1)

where R is the number of reactions; column vectors Si

form a stoichiometry matrix S; f̂ is a vector containing
the reaction rates f̂i; n is a vector containing the
number of molecules nj of species j; Ω is a volume
of a compartment where reactions are occurring; finally,
P(n, t) is the probability of the vector of the number
of molecules equal to n at time t. This equation cannot
be solved analytically except for a handful of cases and

numerical simulations are extremely expensive. In order
to lower the complexity of simulations, different ap-
proximations of a CME are often derived, for example,
the Linear Noise Approximation (LNA) [18]. The major
assumption in the LNA is as follows:

n

Ω
= x+ Ω−1/2η,

where x is a vector of macroscopic concentrations of
the species, η is a vector of stochastic fluctuations
about x. Additionally, if we assume a large number
of reactions occurring per unit time, it can be shown,
that the fluctuations η and macroscopic concentrations
x obey the following equations:

η̇ = J(x)η + Ω−1/2SF (x)Γ, (2)
ẋ = Sf(x), (3)

where f(x) is approximately equal to f̂(n,Ω) for a
large volume Ω, Γ is a Gaussian noise, J is a Jacobian
of Sf(x), and F = diag(

√
f(x))). Note that the

matrices J , F do not depend on the fluctuations η, but
depend only on the macroscopic concentrations x, which
is computed using deterministic differential equations.
The covariance, X , of η is computed by solving (or
simulating) the Lyapunov differential equation [19]:

JX +XJT + Ω−1SF 2S =
dX

dt
. (4)

As a final remark, note that the solution to (2),(3) is a
vector with elements yi(t), which at every time t are
normally distributed with mean equal to xi(t), variance
equal to Xii(t) and covariances cov(yi(t)yj(t)) equal to
Xij(t) [14].

The macroscopic reaction rates are not affected at
all by the fluctuations dynamics, hence the time-scale
separation can be applied directly to (3). In order to
reduce the order of the fluctuation dynamics, we apply
a version of the averaging principle. The result from [9]
is presented here for completeness. Consider the system:

η̇s = Jssηs + Jsfηf + SsFΓ,

εη̇f = Jfsηs + Jffηf + SfFΓ,
(5)

where

J =

(
Jss Jfs
Jsf Jff

)
S =

(
Ss

Sf

)
Note that the s and f subscripts denote slow and fast
states respectively. Then the reduced order linear noise
approximation of the fluctuations corresponding to the
slow dynamics ηs can be obtained as follows:

η̇s = (Jss−JsfJ−1ff Jfs)ηf +(Ss−JsfJ−1ff Sf )FΓ. (6)



As a final remark, we note that the authors [9] did
not explicitly use a Tikhonov-like theorem, but derived
the (6) using projection operator theory applied to a
corresponding Focker-Plank equation. This can serve as
a justification for the use of time-scale separation tech-
niques in the context of stochastic differential equations
driven by white noise as in (6).

II. MODEL REDUCTION METHODS

In this paper, it is proposed to employ stochastic
averaging coupled with a projection approach in order
to obtain a reduced order model. First, a particular state-
space transformation T will be applied to species n
in CME (1) resulting in the new species m such that
m = Tn. The transformation T is computed based on
the covariance matrix of η. Finally, we simply apply
averaging as described above in order to reduce the fast
species in m and obtain approximate dynamics of the
macroscopic concentration of species and fluctuations
about the macroscopic concentrations. Additionally, we
assume that the fast species in m converge to a unique
stationary distribution, otherwise we need to consider so
called double averaging [20].

A. CME under a State-Space Transformation

First, we show that based on the solution of the CME
in the species m, it is possible to reconstruct the solution
in the species n.

Lemma 1: Assume the variable n satisfies the Master
equation:

∂P(n, t)

∂t
= Ω

R∑
j=1

(f̂(n− Si,Ω)− f̂(n,Ω))P(n, t).

Then the variable m = Tn satisfies the following
equation:

∂P(m, t)

∂t
= Ω

R∑
j=1

(f̃(m− S̃i,Ω)− f̃(m,Ω))P(m, t),

where T is an invertible constant matrix, S̃ = TS,
f̃(m,Ω) = f(T−1m,Ω).

Proof: Consider the term (f̂(n−Si,Ω)− f̂(n,Ω))
and make a substitution n = T−1m. Now

f̂(n− Si,Ω)− f̂(n,Ω) = f̂(T−1m− Si,Ω)−
f̂(T−1m,Ω) = f̂(T−1(m− TSi),Ω)−

f̂(T−1m,Ω) = f̃(m− S̃i,Ω)− f̃(m,Ω)

Finally, in order to prove the claim, note that P(n, t) is
equal to P(m, t).
In the next section we derive the structured transforma-
tion matrix T .

B. Structured Transformations

In order to compute a transformation T we require
an output y as a function of x according to classical
methods [3], [4]. The output in our case can be chosen
simply as observations of the states of particular interest.
Assume that we are interested in the behaviour of the
first l species, then define the matrix C :=

(
Il 0l,k

)
,

where l + k is the total number of species. Now the
outputs are chosen as follows: the output of the macro-
scopic concentrations yd is equal to Cx, and the output
for the fluctuations yf is equal to Cη.

We propose to compute a transformation T based on
the covariances in a steady-state xss of (3). Hence, the
obtained approximation will be around the steady-state
xss. One can also employ techniques for linear time-
varying model reduction, such as [21], [22]. Consider a
system

ν̇ = Aν +BΓ

yf = Cν
(7)

where the drift matrix A = J(xss) is asymptotically
stable and B = Ω−1/2SF (xss). Assume also that the
system (7) is partitioned as follows

ν =

(
ν1
ν2

)
A =

(
A11 A12

A21 A22

)
B =

(
B1

B2

)
CT =

(
Il
0k,l

)
,

(8)
where ν1 ∈ Rl, ν2 ∈ Rk, and the matrices A, B and C
are partitioned according to the same dimensions. The
next step is to compute structured Gramians, which are
obtained as solutions to Lyapunov inequalities

AP + PAT +BBT ≤ 0

QA+ATQ+ CTC ≤ 0
(9)

subject to the same partitioning as the states:

P =

(
P11 0l,k
0k,l P22

)
Q =

(
Q11 0l,k
0k,l Q22

)
(10)

Note that P is an approximation of X from (4) around
the steady-state xss. Given our assumption about the
importance of the first l species, the transformation T is
composed as follows:

T =

(
Il 0l,k

0l,k T22

)
where T22 is such that

T−122 P22T
−T
22 = TT

22Q22T22 = Σ22,

and Σ22 is diagonal. According to standard tools [13],
we choose the states to truncate according to the mag-
nitude of the values of the diagonal of Σ22. Assume
r states are to be reduced, let W22 be the first k − r
columns of T22, while W r

22 are the rest r columns of



T22. Let also V22 be the first k−r columns of T−122 , while
V r
22 are the rest r columns of T−122 . Now, the projectors

can be obtained as follows

W =

(
Il 0l,k−r

0k−r,l W22

)
Wr =

(
0l,r
W r

22

)
V =

(
Il 0l,k−r

0k−r,l V22

)
Vr =

(
0l,r
V r
22

) (11)

The existence of block-diagonal solutions to (10)
cannot be guaranteed for general linear systems. It is
known, however, that some classes of systems admit
block-diagonal solutions to the Lyapunov inequalities.
One such class is positive systems, that is systems
with A matrix with non-negative off-diagonal entries
(these matrices are called Metzler), B and C matrices
with non-negative entries. A generalisation of positive
systems to the non-linear case are monotone systems.
This essentially implies that for monotone systems such
Gramians always exist (cf. [23]). We discuss this further
in Part I [12].

C. Reduced Order Model

Let z be a new variable equal to Tx, let also zr be
the species to be removed from the model, and zs the
states of the reduced order model. Now the equations
approximating the full order dynamics (2-3) can be
computed as follows

η̇m = V TJ(Wzm +Wrzr)Wηm+

Ω−1/2V TSF (Wzm +Wrzr)WΓm,

żm = V TSf(Wzm +Wrzr)

0 = V T
r Sf(Wzm +Wrzr)

ydr = C(Wzm +Wrzr)

yfr = CWηm.

(12)

D. Model Comparison

We assume that the full order model is defined as
follows:

ẋ = Sf(x), yd = Cx
η̇ = J(x)η + Ω−1/2SF (x)Γ, yf = Cη
x(0) = x0, η(0) = 0

where yd is “the output” of the macroscopic concen-
trations, yf is “the output” of the fluctuations with a
constant matrix C and x0 is the initial state. The reduced
order models can be written as follows:
żm = Srfr(zm), ydr = Crz +Dr

η̇m = Jr(zm)ηm + Ω−1/2SrFr(zm)Γ, yfr = Crη
zm(0) = V x0, ηm(0) = 0

where Sr = V TS, fr(z) = f(Wz + Wrzr), Fr(z) =
F (Wz +Wrzr), Jr(z) = V TJ(Wz +Wrzr)W , Cr =

s1

s2

s3

s4

(a) Depiction of the net-
work

s1

s2

s3

s4

(b) Configuration for
reduction

Fig. 1. Toy Example. In the left panel, the network is schematically
depicted. In the right panel, the configuration for reduction is depicted.
In this configuration species S1 and S3 are grouped together, while
reducing one state

CW and Dr = CWrzr. Note that [9] fits the framework
in (12) with the identity transformation T , and projectors
W and V reducing particular states. We will take [9] as
a baseline and compare it to the proposed method.

We compare separately the error in the macroscopic
dynamics (mean) and the fluctuations (variance), since
their dynamic models are decoupled. The error yd − ydr
in macroscopic dynamics is computed by perturbing the
initial state x0 from the steady-state xss and measured
in L1, L2 and L∞ norms (which for completeness we
now define):

‖u‖p =

(∫ ∞
−∞
|u(t)|ppdt

) 1
p

for p ∈ {1, 2},

‖u‖∞ = ess supt|u(t)|∞.

A comparison in terms of the fluctuations η is performed
by computing the covariance matrix of the outputs y and
yr. For the full order model this matrix is computed as

covf = cov(yf (yf )T ) = Ccov(ηηT )CT = CXCT

where X satisfies the Lyapunov equation (4). Similarly,
the covariance matrix for the reduced order models covfr
can be computed.

III. EXAMPLES

A. Toy Example.

The first network we consider consists of only four
species, see Figure 1(a). One can interpret the species S1

and S3 as mRNA, and S2 and S4 as the corresponding
proteins. We refer the reader to Part I [12] for a full
interpretation of the model.

ṁi =
ci1

1 + p2j
− ci2mi

ṗi = ci3mi − ci4pi

where ci1 are constants, mi are mRNA concentrations,
pi are protein concentrations and i, j ∈ {1, 2} and i 6=



j. We compare the simulation results for the full order
model, the reduced order model obtained by [9], and the
reduced order model obtained from reduction according
to the configuration in Figure 1(b) with parameters

c1· = c2· =
(
3 4 1 0.2

)
.

The method from [9] and the presented method produce
very similar deterministic models, simulation of which
is depicted in Figure 2(a). But the computation of the
covariance matrix of the fluctuations η paints a different
picture. The presented method provided the fluctuations
with statistics very close the full order model statis-
tics, which is not the case for the statistics of the
model obtained by [9], see Figure 2. The presented
reduction method uses the covariance matrices in order
to compute the reduced order models. Moreover, the
proposed method targets for reduction the species with
small variances in the fluctuations about the macroscopic
species concentrations. This outlines a major advantage
of the proposed method.

B. Kinetic Model of Yeast Glycolysis. Non-Monotone
Dynamics

The model was published in [17] and consists of
twelve metabolites and four boundary fluxes. We model
the network’s response to change of glucose in the
system as in [10]. Again we refer the reader to Part
I [12] for a full model description, we point out that the
Jacobian of the system is not Metzler but by knocking
out one uni-directional and one bi-directional reaction
the network is monotone.

Using this fact, it was not a great surprise that
a linearised model around a steady-state would have
block-diagonal Gramians with a sparsity pattern accord-
ing to some state partitioning. However, the existence
of diagonal Gramians was surprising. This meant that
without any reservation we could approximate any group
of states, while preserving the other states.

The simulation results are presented in Table I for
various reduction configurations. We compare only the
errors in the macroscopic concentrations. We apply [9]
to metabolite concentrations, while using the proposed
method we try to lump those metabolites in one state, so
that the number of reduced states is similar in both cases.
The first three rows of each sub-table in Table I can
be compared directly, and it is clear that the proposed
method performs better in terms of quality than [9].

The proposed method is also more flexible in terms
of reduction choices. In the forth row of Table I-
B, the region {BPG-PEP} contains four metabolites;
however, we reduced only two states after computing
the state-space transformation. In the fifth row, in the
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(d) The variance of fluctuations
in the number of species S3

Fig. 2. The number of species S1 and S3 according to macroscopic
(deterministic) reaction equations and the covariance matrix of these
species. In all figures, the blue lines are obtained by simulating the full
order model, the red lines by simulating the model obtained using [9],
and the green lines by simulating the reduced order model with states
lumped according to the configuration in Figure 1(b). In Figure 2(a)
The dashed lines are the number of species of S1, and the solid
lines are the number of species of S3. Even though macroscopic
concentrations of species are almost the same for all the models, the
covariances of the model obtained by [9] are quite different from the
full order model covariances.

region {GLCi-F6P}, which contains three metabolites,
we reduce just one state and this provides us with the
best model among all the reduction attempts.

IV. CONCLUSION AND DISCUSSION

This paper provides a proof of concept of using
projection-based methods for modelling stochastic bi-
ological systems. We illustrate on numerical examples
that the proposed method is competitive with time-
scale separation in terms of approximation error. In
combination with Part 1 [12] we have shown how to
construct the structured projectors and shown that for
monotone dynamical system we can preserve structure,
and (locally) monotonicity.

An additional inquiry is required into existence of
structured Gramians for the biochemical networks. In
general, diagonal Gramians do not exist for all models;
however, block-diagonal ones may be more common.
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Fig. 3. Kinetic model of yeast glycolysis. In the left panel the
biochemical graph is depicted. In the right panel a graph of dynamic
interactions between metabolites. If the red connections are removed,
the dynamics of the network would become monotone.

TABLE I
REDUCTION OF THE GLYCOLYSIS MODEL. THE ERROR OF THE

OUTPUT IS GIVEN IN DIFFERENT NORMS.

TABLE I-A. APPXOIMATION RESULTS OBTAINED BY USING [9]

States \ Error L1 L2 L∞

F6P, 2PG, PEP 1.21 23.6 0.98
F6P, 3PG, 2PG, PEP 1.56 33.6 1.55

G6P, F6P, 3PG, 2PG, PEP 2.05 36.3 1.59

TABLE I-B. REDUCTION BY {k1, k2} STATES IN EVERY REGION

Lumped Region(s) {k1, k2} L1 L2 L∞

{G6P, F6P}, {2PG-PEP} {1, 2} 1.17 24.8 1.01
{G6P, F6P}, {BPG-PEP} {1, 3} 1.41 22.9 0.86
{GLCi-F6P}, {BPG-PEP} {2, 3} 1.23 18.7 0.64
{G6P, F6P}, {BPG-PEP} {1, 2} 1.40 22.8 0.86
{GLCi-F6P}, {BPG-PEP} {1, 2} 0.03 0.56 0.02

In any case, even the initial intuition provides a great
justification for the proposed reduction method.

Another interesting topic is an extension to non-
constant transformations T (non-linear or time-varying).
A non-linear structured balancing can be potentially
applied to a Chemical Langevin Equation (CLE), which
is a more representative approximation of CME in com-
parison to LNA [14]. A non-linear transformation T can
also potentially address the problem of non-stationary
fast variables and double averaging.

An important topic for the proposed model reduction

method is partitioning of a network. Some intuition
can be gained through biological insights, for example,
one can collapse a whole pathway into a couple of
states. One can also employ tools from metabolic control
analysis [24]. On the other hand, we can employ purely
theoretical tools such as [25]–[27]. Currently, we are not
investigating the problem of partitioning; however, it is
an important future work direction.

Finally, an issue to consider is the definition of
simplicity of the resulting model. In [28], it is pointed
out that many methods, which reduce the order of the
model, actually result in a stiff system, which is harder
to simulate.
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