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Abstract— We address the problem of multiple local optima
commonly arising in optimization problems for multi-agent
systems, where objective functions are nonlinear and noncon-
vex. For the class of coverage control problems, we propose
a systematic approach for escaping a local optimum, rather
than randomly perturbing controllable variables away from it.
We show that the objective function for these problems can
be decomposed to facilitate the evaluation of the local partial
derivative of each node in the system and to provide insights into
its structure. This structure is exploited by defining “boosting
functions” applied to the aforementioned local partial derivative
at an equilibrium point where its value is zero so as to transform
it in a way that induces nodes to explore poorly covered areas
of the mission space until a new equilibrium point is reached.
The proposed boosting process ensures that, at its conclusion,
the objective function is no worse than its pre-boosting value.
However, the global optima cannot be guaranteed. We define
three families of boosting functions with different properties
and provide simulation results illustrating how this approach
improves the solutions obtained for this class of distributed
optimization problems.

I. INTRODUCTION

Multi-agent systems involve a team of agents (e.g., ve-
hicles, robots, sensor nodes) that cooperatively perform one
or more tasks in a mission space which may contain un-
certainties such as unexpected obstacles or random event
occurrences. The agents communicate, usually wirelessly
and over limited ranges, so there are constraints on the
information they can exchange. Optimization problems are
often formulated in the context of such multi-agent systems
and, more often than not, they involve nonlinear, noncon-
vex objective functions resulting in solutions where global
optimality cannot be easily guaranteed. The structure of the
objective function can sometimes be exploited, as in cases
where it is additive over functions associated with individual
agents; for example, in [1], a sum of local nonconvex
objective functions is minimized over nonconvex constraints
using an approximate dual sub-gradient algorithm. In many
problems of interest, however, such an additive structure is
not appropriate, as in coverage control or active sensing [2]–
[5] where a set of agents (typically, sensor nodes) must be
positioned so as to cooperatively maximize a given objective
function. In the static version of the problem, the optimal
locations can be determined by an off-line algorithm and
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nodes will no longer move. In the dynamic version, nodes
may adjust their positions to adapt to environment changes.
Communication costs and constraints imposed on multi-
agent systems, as well as the need to avoid single-point-
of-failure issues, are major motivating factors for developing
distributed optimization schemes allowing agents to achieve
optimality, each acting autonomously and with as little
information as possible.

Nonconvex environments for coverage control are treated
in [6]–[9]. In [3], [8], [10], algorithms concentrate on
Voronoi partitions of the mission space and the use of Lloyd’s
algorithm. We point out that partition-based algorithms do
not take into account the fact that the coverage performance
can be improved by sharing observations made by several
nodes. This is illustrated by a simple example in Figure.
1 comparing a common objective function when a Voronoi
partition is used to a distributed gradient-based approach
which optimally positions nodes with overlapping sensor
ranges (darker-colored areas indicate better coverage).

The nonconvexity of objective functions motivates us
to seek systematic methods to overcome the presence of
multiple local optima in multi-agent optimization problems.
For off-line centralized solutions, one can resort to global
optimization algorithms that are typically computationally
burdensome and time-consuming. However, for on-line dis-
tributed algorithms, this is infeasible; thus, one normally
seeks methods through which controllable variables escape
from local optima and explore the search space of the
problem aiming at better equilibrium points and, ultimately, a
globally optimal solution. In gradient-based algorithms, this
is usually done by randomly perturbing controllable variables
away from a local optimum, as in, for example, simulated an-
nealing [11], [12] which, under certain conditions, converges
to a global solution in probability. However, in practice, it
is infeasible for agents to perform such a random search
which is notoriously slow and computationally inefficient.
In the same vein, in [13], a “ladybug exploration” strategy
is applied to an adaptive controller which aims at balancing
coverage and exploration. This approach allows only two
movement directions, thus limiting the ability of agents to
explore a larger fraction of the mission space, especially
when obstacles may be blocking the two exploration di-
rections. In [9], a gradient-based algorithm was developed
to maximize the joint detection probability in a mission
space with obstacles. Recognizing the problem of multiple
local optima, a method was proposed to balance coverage
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and exploration by modifying the objective function and
assigning a higher reward to points with lower values of
the joint event detection probability metric.

In this paper, we propose a systematic approach for cov-
erage optimization problems that moves nodes to locations
with potentially better performance, rather than randomly
perturbing them away from their current equilibrium. This
is accomplished by exploiting the structure of the problem
considered. In particular, we focus on the class of optimal
coverage control problems where the objective is to maxi-
mize the joint detection probability of random events taking
place in a mission space with obstacles. Our first contribution
is to show that each node can decompose the objective
function into a local objective function dependent on this
node’s controllable position and a function independent of it.
This facilitates the evaluation of the local partial derivative
and provides insights into its structure which we subse-
quently exploit. The second contribution is the development
of a systematic method to escape local optima through
“boosting functions” applied to the aforementioned local
partial derivative. The main idea is to alter the local objective
function whenever an equilibrium is reached. A boosting
function is a transformation of the associated local partial
derivative which takes place at an equilibrium point, where
its value is zero; the result of the transformation is a non-
zero derivative, which, therefore, forces a node to move in
a direction determined by the boosting function and explore
the mission space. When a new equilibrium point is reached,
we revert to the original objective function and the gradient-
based algorithm converges to a new (potentially better and
never worse) equilibrium point. We define three families of
boosting functions and discuss their properties.

In Section II, we formulate the optimization problem
and review the distributed gradient-based solution method
developed in [9]. In Section III, we derive the local objec-
tive function associated with a node and its derivative. In
Section IV, we introduce the boosting function approach and
three families of boosting functions with different properties.
Section V provides simulation results illustrating how this
approach improves the objective function value and we
conclude with Section VI.

(a) Gradient-based algorithm;
optimal obj.function = 1388.1

(b) Voronoi patition;
optimal obj. function = 1346.5

Fig. 1: Comparison between two methods used in a coverage control problem

II. PROBLEM FORMULATION AND DISTRIBUTED
OPTIMIZATION SOLUTION

We begin by reviewing the general setting for a large num-
ber of multi-agent control and optimization problems and

subsequently concentrate on the optimal coverage control
problem. A mission space Ω ⊂ R2 is modeled as a non-
self-intersecting polygon, i.e., a polygon such that any two
non-consecutive edges do not intersect. For any x ∈ Ω, the
function R(x) : Ω→ R describes some a priori information
associated with Ω. When the problem is to detect random
events that may take place in Ω, this function captures an
a priori estimate of the frequency of such event occurrences
and is referred to as an event density satisfying R(x) ≥ 0
for all x ∈ Ω and

∫
Ω

R(x)dx < ∞. The mission space may
contain obstacles modeled as m non-self-intersecting poly-
gons denoted by M j, j = 1, . . . ,m which block the movement
of agents. The interior of M j is denoted by M̊ j and the
overall feasible space is F = Ω \ (M̊1 ∪ . . .∪ M̊m), i.e., the
space Ω excluding all interior points of the obstacles. There
are N agents in the mission space and their positions at
time t are defined by si(t), i = 1, . . . ,N with an overall
position vector s(t) = (s1(t), . . . ,sN(t)). Figure. 2 shows a
mission space with two obstacles and an agent located at
si. The agents may communicate with each other, but there
is generally a limited communication range so that it is
customary to represent such a system as a network of nodes
with a link (i, j) defined so that nodes i, j can communicate
directly with each other. This limited communication and the
overall cost associated with it are major motivating factors
for developing distributed schemes to allow agents to operate
so as to optimally achieve a given objective with each acting
as autonomously as possible.

In a coverage control problem (e.g., [9], [7], [3]), the
agents are sensor nodes. We assume that each such node
has a bounded sensing range captured by the sensing radius
δi. Thus, the sensing region of node i is Ωi = {x : di(x) ≤
δi} where di(x) = ‖x − si(t)‖. The presence of obstacles
inhibits the sensing ability of a node, which motivates the
definition of a visibility set V (si)⊂ F (we omit the explicit
dependence of si on t for notational simplicity). A point x∈F
is visible from si ∈ F if the line segment defined by x and si
is contained in F , i.e., [λx+(1−λ )si] ∈ F for all λ ∈ [0,1],
and x can be sensed, i.e. x ∈ Ωi. Then, V (si) = Ωi ∩ {x :
[λx+(1−λ )si]∈ F} is a set of points in F which are visible
from si. We also define V̄ (si) = F \V (si) to be the invisibility
set (e.g., the grey area in Fig. 2).

A sensing model for any node i is given by the probability
that i detects an event occurring at x ∈ V (si), denoted by
pi(x,si). We assume that pi(x,si) is expressed as a function
of di(x) = ‖x− si‖ and is monotonically decreasing and
differentiable in di(x). An example of such a function is
pi(x,si) = p0ie−λi‖x−si‖. For points that are invisible by node
i, the detection probability is zero. Thus, the overall sensing
detection probability is denoted as p̂i(x,si) and defined as

p̂i(x,si) =

{
pi(x,si) if x ∈V (si)

0 if x ∈ V̄ (si)
(1)

Note that p̂i(x,si) is not a continuous function of si. We
may now define the joint detection probability that an event
at x ∈ Ω is detected by at least one of the N cooperating



nodes in the network:

P(x,s) = 1−
N

∏
i=1

[1− p̂i(x,si)] (2)

where we have assumed that detection events by nodes are
independent. Finally, assuming that R(x) = 0 for x /∈ F , we
define the optimal coverage control problem to maximize
H(s), where

H(s) =
∫

F
R(x)P(x,s)dx

s.t. si ∈ F, i = 1, . . . ,N
(3)

Thus, we seek to control the node position vector s =
(s1, . . . ,sN) so as to maximize the overall joint detection
probability of events taking place in the environment. Note
that this is a nonlinear, generally nonconvex, optimization
problem and the objective function H(s) cannot be expressed
in an additive form such as ∑

N
i=1 Hi(s).

As already mentioned, it is highly desirable to develop
distributed optimization algorithms to solve (3) so as to (i)
limit costly communication among nodes (especially in wire-
less settings where it is known that communication consumes
most of the energy available at each node relative to sensing
or computation tasks) and (ii) impart robustness to the
system as a whole by avoiding single-point-of-failure issues.
Towards this goal, a distributed gradient-based algorithm was
developed in [9] based on the iterative scheme:

sk+1
i = sk

i +ζk
∂H(s)

∂ sk
i

, k = 0,1, . . . (4)

where the step size sequence {ζk} is appropriately selected
(see [14]) to ensure convergence of the resulting node
trajectories. If nodes are mobile, then (4) can be interpreted
as a motion control scheme for the ith node. In general, a
solution through (4) can only lead to a local maximum and it
is easy to observe that many such local maxima result in poor
performance [9] (we will show such examples in Section V).

Our approach in what follows is to first show that H(s) can
be decomposed into a “local objective function” Hi(s) and a
function independent of si so that node i can locally evaluate
its partial derivative with respect to its own controllable
position through Hi(s) alone. Our idea then is to alter Hi(s)
after a local optimum is attained when ∂Hi(s)

∂ si
= 0, and to

define a new objective function Ĥi(s). By doing so, we force
∂ Ĥi(s)

∂ si
6= 0, therefore, node i can “escape” the local optimum

and explore the rest of the mission space in search of a
potentially better equilibrium point. Because of the structure
of ∂Hi(s)

∂ si
and the insights it provides, however, rather than

explicitly altering Hi(s) we instead alter ∂Hi(s)
∂ si

through what
we refer to in Section IV as a boosting function.

III. LOCAL OBJECTIVE FUNCTIONS FOR DISTRIBUTED
GRADIENT-BASED ALGORITHMS

We begin by defining Bi to be a set of nodes with respect
to i:

Bi = {k : ‖si− sk‖< 2δi, k = 1, . . .N, k 6= i} (5)

Clearly, this set includes all nodes k whose sensing region
Ωk has a nonempty intersection with Ωi, the sensing region
of node i. Accordingly, given that there is a total number of
N nodes, we define a complementary set Ci

Ci = {k : k /∈ Bi, k = 1, . . .N, k 6= i} (6)

In addition, let Φi(x) denote the joint probability that a point
x ∈Ω is not detected by any neighbor node of i, defined as

Φi(x) = ∏
k∈Bi

[1− p̂k(x,sk)] (7)

Similarly, let Φ̄i(x) denote the probability that a point x ∈Ω

is not covered by nodes in Ci:

Φ̄i(x) = ∏
j∈Ci

[1− p̂ j(x,s j)] (8)

The following theorem establishes the decomposition of H(s)
into a function dependent on si, for any i = 1, . . . ,N, and one
dependent on all other node positions except si.

Theorem 1: The objective function H(s) can be written
as:

H(s) = Hi(s)+ H̃(s̄i) (9)

for any i= 1, . . . ,N, where s̄i =(s1, . . . ,si−1,si+1, . . . ,sN), and

Hi(s) =
∫

V (si)
R(x)Φi(x)pi(x,si)dx

H̃(s̄i) =
∫

F
R(x){1−

N

∏
k=1,k 6=i

[1− p̂k(x,sk)]}dx

Proof: Since F =V (si)∪V̄ (si) and V (si)∩V̄ (si) =∅, we
can rewrite H(s) in (3) as the sum of two integrals:

H(s) =
∫

V (si)
R(x)P(x,s)dx+

∫
V̄ (si)

R(x)P(x,s)dx (10)

which we will refer to as H1
i (s) and H2

i (s), respectively.
Using the definitions of Φi(x) and Φ̄i(x), the joint detection
probability P(x,s) in (2) can be written as

P(x,s) = 1−Φi(x)Φ̄i(x)[1− pi(x)] (11)

The integral domain in H1
i (s) is the visible set for si and,

from (1) we have pi(x,si) 6= 0 and p j(x,s j) = 0 for j ∈Ci,
hence, Φ̄i(x) = 1. Thus, H1

i (s) can be written as

H1
i (s) =

∫
V (si)

R(x)[1−Φi(x)(1− pi(x))]dx

=
∫

V (si)
R(x)pi(x,si)Φi(x)dx+

∫
V (si)

R(x)[1−Φi(x)]dx

=
∫

V (si)
R(x)pi(x,si)Φi(x)dx+

∫
V (si)

R(x)[1−Φi(x)Φ̄i(x)]dx

(12)

For the H2
i (s) term, the integral domain is the invisible set

of si, which implies that pi(x,si) = 0 for x∈ V̄ (si). Using the
form of P(x,s) defined in (11), H2

i (s) can be written as

H2
i (s) =

∫
V̄ (si)

R(x)[1−Φi(x)Φ̄i(x)]dx (13)



Combining (12) and (13) and merging the second integral in
(12) with the integral in (13), we obtain:

H(s) =
∫

V (si)
R(x)Φi(x)pi(x,si)dx+

∫
F

R(x)[1−Φi(x)Φ̄i(x)]dx

=
∫

V (si)
R(x)Φi(x)pi(x,si)dx

+
∫

F
R(x)

[
1−

N

∏
k=1,k 6=i

[1− p̂k(x,sk)]
]
dx

The first term is dependent on si, while the second term
is independent of si in both integrand and integral domain.
Using s̄i = (s1, . . . ,si−1,si+1, . . . ,sN) to denote a vector of all
node positions except i, we define Hi(s) and H̃(s̄i) as

Hi(s) =
∫

V (si)
R(x)Φi(x)pi(x,si)dx

H̃(s̄i) =
∫

F
R(x){1−

N

∏
k=1,k 6=i

[1− p̂k(x,sk)]}dx

and the result follows. �
We refer to Hi(s) as the local objective function of node

i and observe that it depends on V (si), pi(x,si), and Φi(x)
which are all available to node i (the latter through some
communication with nodes in Bi). This result enables a
distributed gradient-based optimization solution approach
with each node evaluating ∂Hi(s)

∂ si
. We now proceed to derive

this derivative using the same method as in [15]. Based on
the extension of the Leibnitz rule [16], we get

∂Hi(s)
∂ six

=
∂

∂ six

∫
V (si)

R(x)Φi(x)pi(x,si)dx

=
∫

V (si)
R(x)Φi(x)

∂ pi(x,si)

∂ six
dx

+
∫

∂V (si)
R(x)Φi(x)pi(x,si)(uxdxy−uydxx)

(14)

where (ux,uy) illustrates the “velocity” vector at a boundary
point x = (xx,xy) of V (si). The first term, denoted by Eix, is

Eix =
∫

V (si)
R(x)Φi(x)

∂ pi(x,si)

∂ six
dx

=
∫

V (si)
R(x)Φi(x)

[
−d pi(x,si)

ddi(x)

]
(x− si)x

di(x)
dx

(15)

where (x− si)x is the x component of the vector (x− si).
Similarly, we can obtain an integral Eiy with (x− si)y in
place of (x− si)x.

Let Ei = (Eix,Eiy). The integrand of Ei can be viewed as
a weighted normalized direction vector (x−si)

di(x)
connecting si

to x ∈ F where x is visible by the ith node. This weight is
defined as

w1(x,s) =−R(x)Φi(x)
d pi(x,si)

ddi(x)
(16)

Observe that w1(x,s)≥ 0 because d pi(x,si)
ddi(x)

< 0 since pi(x,si)
is a decreasing function of di.

Next, we evaluate the second term in (14), referred to as
Eb. This evaluation is more elaborate and requires some addi-
tional notation (see Fig. 2). Let v be a reflex vertex(definition

mission  space

Obstacle

Obstacle

Fig. 2: Mission space with two polygonal obstacles

can be found in [9]) of an obstacle and let x ∈ F be a point
visible from v. A set of points I(v,x), which is a ray starting
from v and extending in the direction of v−x, is defined by

I(v,x) = {q ∈V (v) : q = λv+(1−λ )x,λ > 1} (17)

The ray intersects the boundary of F at an impact point. The
line from v to the impact point is a I(v,x).

An anchor of si is a reflex vertex v such that it is visible
from si and I(v,si) defined in (17) is not empty. Denote the
anchors of si by vi j, j = 1, . . . ,Q(si), where Q(si) is the
number of anchors of si. An impact point of vi j, denoted by
Vi j, is the intersection of I(vi j,si) and ∂F . As an example,
in Fig. 2, vi1, vi2, vi3 are anchors of si, and Vi1, Vi2, Vi3
are the corresponding impact points. Let Di j = ‖si − vi j‖
and di j = ‖Vi j− vi j‖. Define θi j to be the angle formed by
si− vi j and the x-axis, which satisfies θi j ∈ [0,π/2], that is,
θi j = arctan |si−vi j |y

|si−vi j |x . Using this notation, a detailed derivation
of the second term in (14) may be found in [15] with the
final result being:

Ebx =

∑
j∈Γi

sgn(n jx)
sinθi j

Di j

∫ zi j

0
R(ρi j(r))Φi(ρi j(r))pi(ρi j(r),si)rdr

(18)

where Γi = { j : Di j < δi, j = 1, . . . ,Q(si)}; zi j = min(di j,δi−
Di j) and ρi j(r) is the Cartesian coordinate of a point on Ii j
which is a distance r from vi j:

ρi j(r) = (Vi j− vi j)
r

di j
+ vi j (19)

In the same way, we can also obtain Eby. Note that Eb =
(Ebx,Eby) is the gradient component in (14) due to points on
the boundary ∂V (si). In particular, for each boundary, this
component attracts node i to move in a direction perpendicu-
lar to the boundary and pointing towards V (si). We can see
in (18) that every point x written as ρi j(r) in the integrand
has an associated weight which we define as w2(x,s):

w2(x,s) = R(x)Φi(x)pi(x,si) (20)

and observe that w2(x,s) ≥ 0, as was the case for w1(x,s).
Combining (15) and (18) we finally obtain the derivative of



Hi(s) with respect to si:

∂Hi(s)
∂ six

=
∫

V (si)
R(x) ∏

k∈Bi

[1− p̂k(x,sk)]
d pi(x,si)

ddi(x)
(si− x)x

di(x)
dx+

∑
j∈Γi

sgn(n jx)
sinθi j

Di j

∫ zi j

0
R(ρi j(r))Φi(ρi j)(r)pi(ρi j(r),si)rdr

(21)

∂Hi(s)
∂ siy

=
∫

V (si)
R(x) ∏

k∈Bi

[1− p̂k(x,sk)]
d pi(x,si)

ddi(x)
(si− x)y

di(x)
dx+

∑
j∈Γi

sgn(n jy)
cosθi j

Di j

∫ zi j

0
R(ρi j(r))Φi(ρi j)(r)pi(ρi j(r),si)rdr

(22)

We observe that ∂Hi(s)
∂ six

, ∂Hi(s)
∂ siy

in (21)-(22) are the same as
∂H(s)
∂ six

, ∂H(s)
∂ siy

, the partial derivatives of the original objective
function H(s) which was derived in [15]. In other words,
∂H(s)

∂ si
= ∂Hi(s)

∂ si
, confirming (as expected) that the local ob-

jective function Hi(s) is sufficient to provide the required
derivative for a distributed gradient-based algorithm using
(4). As pointed out in [15], the derivation of (21)-(22)
excludes pathological cases where si coincides with a reflex
vertex, a polygonal inflection, or a bitangent, where H(s) is
generally not differentiable.

We can now use the weight definitions (16) and (20)
in (21) and (22) to obtain the following form of the local
derivative evaluated by node i:

∂Hi(s)
∂ six

=
∫

V (si)
w1(x,s)

(x− si)x

di(x)
dx

+ ∑
j∈Γi

sgn(n jx)
sinθi j

Di j

∫ zi j

0
w2(ρi j(r),si)rdr

(23)

∂Hi(s)
∂ siy

=
∫

V (si)
w1(x,s)

(x− si)y

di(x)
dx

+ ∑
j∈Γi

sgn(n jy)
cosθi j

Di j

∫ zi j

0
w2(ρi j(r),si)rdr

(24)

We can see that the essence of each derivative is captured
in the weights w1(x,s), w2(x,s). In the first integral, w1(x,s)
controls the mechanism through which node i is attracted
to different points x ∈ V (si) through (x−si)

di(x)
. If obstacles

are present, then w2(x,s) in the second integral controls
the attraction that boundary points exert on node i with
the geometrical features of the mission space contributing
through n jx, n jy, θi j, and Di j in (23)-(24). This viewpoint
motivates the boosting function approach described next.

IV. THE BOOSTING FUNCTION APPROACH

As defined in (3), this nonlinear, generally nonconvex,
optimization problem may have multiple local optima to
which a gradient-based algorithm may converge. When we
apply a distributed optimization algorithm based on ∂Hi(s)

∂ si
as described above, any equilibrium point is characterized
by ∂Hi(s)

∂ si
= 0. Since node i controls its position based on its

local objective function Hi(s), a simple way to “escape” a
local optimum s1 is to alter Hi(s) by replacing it with some

Ĥi(s) 6= Hi(s) thus forcing ∂ Ĥi(s)
∂ si

∣∣∣
s1
i

6= 0 and inducing the

node to explore the rest of the mission space for potentially
better equilibria. Subsequently, when a new equilibrium is
reached with node i at s̃1

i 6= s1
i and ∂ Ĥi(s)

∂ si

∣∣∣
s̃1
i

= 0, we can

revert to Hi(s), which, in turn will force ∂Hi(s)
∂ si

∣∣∣
s̃1
i

6= 0 and

the node will seek a new equilibrium at s2
i .

Selecting the proper Ĥi(s) to temporarily replace Hi(s) is
not a simple process. However, focusing on ∂Hi(s)

∂ si
instead of

Hi(s) is much simpler due to the nature of the derivatives we
derived in (23)-(24). In particular, the effect of altering Hi(s)
can be accomplished by transforming the weights w1(x,s),
w2(x,s) in (23)-(24) by “boosting” them in a way that forces
∂Hi(s)

∂ si
= 0 at a local optimum to become nonzero. The net

effect is that the attraction exerted by some points x ∈ F on
si is “boosted” so as to promote exploration of the mission
space by node i in search of better optima.

In contrast to various techniques which aim at randomly
perturbing controllable variables away from a local optimum
(e.g., simulated annealing), this approach provides a system-
atic mechanism for accomplishing this goal by exploiting
the structure of the specific optimization problem reflected
through the form of the derivatives (23)-(24). Specifically,
it is clear from these expressions that this can be done
by assigning a higher weight (i.e., boosting) to directions
in the mission space that provide greater opportunity for
exploration and, ultimately “better coverage”. To develop
such a systematic approach, we define transformations of
the weights w1(x,si), w2(x,s) for interior points and for
boundary points respectively as follows:

ŵ1(x,s) = gi(w1(x,s)) (25)
ŵ2(x,s) = hi(w2(x,s)) (26)

where gi(·) and hi(·) are functions of the original weights
w1(x,s) and w2(x,s) respectively. We refer to gi(·) and hi(·)
as boosting functions for node i = 1, . . . ,N. Note that these
may be node-dependent and that each node may select the
time at which this boosting is done, independent from other
nodes. In other words, the boosting operation may also be
implemented in distributed fashion, in which case we refer
to this process at node i as self-boosting.

In the remainder of this paper, we concentrate on functions
gi(·) and hi(·) which have the form

ŵ1(x,s) = αi1(x,s)w1(x,s)+βi1(x,s) (27)
ŵ2(x,s) = αi2(x,s)w2(x,s)+βi2(x,s) (28)

where αi1(x,s), βi1(x,s), αi2(x,s), and βi2(x,s) are functions
dependent on the point x and the node position vector s in
general. We point out that although the form of (27)-(28) is
linear, the functions αi j(x,s), βi j(x,s), j = 1,2, i = 1, . . . ,N
are generally nonlinear in their arguments.

To keep notation simple, let us concentrate on a single
node i and omit the subscript i in αi j(x,s), βi j(x,s) above.
By replacing w1(x,s), w2(x,s) with ŵ1(x,si), ŵ2(x,si) re-



spectively, we obtain the boosted derivative ∂ Ĥ(s)
∂ si

as follows

∂ Ĥ(s)
∂ six

=
∫

V (si)
α1(x,s)w1(x,s)

(x− si)x

di(x)
dx

+
∫

V (si)
β1(x,s)

(x− si)x

di(x)
dx

+ ∑
j∈Γi

sgn(n jx)
sinθi j

Di j

∫ zi j

0
α2(x,s)w2(x,s)rdr

+ ∑
j∈Γi

sgn(n jx)
sinθi j

Di j

∫ zi j

0
β2(x,s)rdr

(29)

∂ Ĥ(s)
∂ siy

can be obtained in a similar way. Obviously, the
boosting process (27)-(28) actually changes the objective
function H(s). Thus, when a new equilibrium is reached
in the boosted derivative phase of system operation, it is
necessary to revert to the original objective function by
setting α1(x,s) = α2(x,s) = 1 and β1(x,s) = β2(x,s) = 0.

We summarize the boosting process as follows. Initially,
node i uses (23)-(24) until an equilibrium s1 is reached at
time τ1 and nodes communicate their positions to each other.

1) At t = τ1, evaluate H(s(τ1)) and set s∗ = s1 and
H∗=H(s(τ1)). Then, apply boosting functions (27)-
(28), evaluate (29), and iterate on the controllable
node position using (4). Set BIt = 0. BIt is short for
the Boosted iteration, which is a counter for iteration
needed for a new local optima.

2) Wait until ∂ Ĥ(s)
∂ six

= ∂ Ĥ(s)
∂ siy

= 0 at time τ̂1 > τ1.
3) At t = τ̂1, set α1(x,s) = α2(x,s) = 1 and β1(x,s) =

β2(x,s) = 0 and revert to ∂Hi(s)
∂ si

.

4) Wait until ∂H(s)
∂ six

= ∂H(s)
∂ siy

= 0 at time τ2 > τ̂1 and evaluate
H(s(τ2)), get BIt. If H(s(τ2))>H∗, then set s∗ = s(τ2)
and H∗=H(s(τ2)). Otherwise, s∗, H∗ remain unchanged
(if nodes are mobile and have already been moved to
s(τ2), then return them to s∗).

5) Either STOP, or repeat the process from the current
s∗ with a new boosting function to further explore the
mission space for better equilibrium points.

Note that if s1 is a global optimum, then the boosting
process simply perturbs node locations until Step 4 returns
them to s1. The process will stop if no solution is better than
s1 after trying finite boosting functions. It is also possible
(due to symmetry) that there are multiple global optima,
in which case H(s(τ2)) =H(s(τ1)) and the new equilibrium
point is equivalent to the original one.

The process above assumes that all nodes wait until they
have all reached an equilibrium point s1 before each initiates
its boosting process. However, this may also be done in a
distributed function through a self-boosting process: node i
may apply (27)-(28) as soon as it observes ∂H(s)

∂ six
= ∂H(s)

∂ siy
= 0.

A. Boosting Function Selection

The selection of boosting functions generally depends on
the mission space topology. For instance, it is clear that
if there are no obstacles, then α2(x,s) = 1, β2(x,s) = 0,
since only the first integrals in (23)-(24) are present. In what

follows, we present three families of boosting functions that
we have investigated to date; each has different properties
and has provided promising results.

Before proceeding, we make a few observations which
guide the selection of boosting functions. First, we exclude
cases such that α1(x,si)=α2(x,si)=C independent of x, and
β1(x,si) = β2(x,si) = 0. In such cases, the boosting effect
is null, since it implies that ∂ Ĥ(s)

∂ si
= C ∂H(s)

∂ si
, which has no

effect on ∂H(s)
∂ si

= 0. Second, we observe that if |β1(x,si)|>>

α1(x,si)w1(x,s), then the first integral in (29) is dominated
by the second one, and the net effect is that nodes tend to be
attracted to a single point (their center of mass) instead of
exploring the mission space. The third observation is more
subtle. The first term of (23) contains information on points
of the visible set V (si), which is generally more valuable (i.e.,
more points in V (si)) than the information in the second term
related to the boundary points in Γi (except, possibly, for
unusual obstacle configurations). Thus, a boosting function
should ensure that the first integral in (23) dominates the
second when ∂Hi(s)

∂ six
6= 0. In order to avoid such issues, in

the sequel we limit ourselves to boosting w1(x,s) only and,
therefore, we set α2(x,si) = 1, β2(x,si) = 0.

1) P-Boosting function: In this function, we keep
β1(x,s) = 0 and only concentrate on α1(x,s) which we set:

α1(x,s) = kP(x,s)−γ (30)

where P(x,s) is the joint detection probability defined in (2),
γ is a positive integer parameter and k is a gain parameter.
Thus, the boosted derivative associated with this P-boosting
function is

∂ Ĥ(s)
∂ six

=
∫

V (si)
kP(x,s)−γ w1(x,s)

(x− si)x

di(x)
dx

+ ∑
j∈Γi

sgn(n jx)
sinθi j

Di j

∫ zi j

0
w2(x,s)rdr

(31)

The motivation for this function is similar to a method used
in [9] to assign higher weights for low-coverage interior
points in V (si), in order for nodes to explore such low cover-
age areas. This is consistent with the following properties of
this boosting function: (P(x,s))−γ → ∞ as P(x,s)→ 0, and
(P(x,s))−γ → 1 as P(x,s)→ 1.

2) Neighbor-Boosting function: We set α1(x,s) = 1 and
focus on β1(x,s). Every node applies a repelling force on
each of its neighbors with the effect being monotonically
decreasing with their relative distance. We define:

β1(x,s) = ∑
j∈Bi

δ (x− s j)
k j

‖si− x‖γ
(32)

where k j ≥ 0 is a gain parameter for j, γ is a positive integer
parameter, and δ (x− s j) is the delta function. The boosted



derivative associated with this neighbor-boosting function is

∂ Ĥ(s)
∂ six

=
∫

V (si)
w1(x,s)

(x− si)x

di(x)
dx

+ ∑
j∈Γi

sgn(n jx)
sinθi j

Di j

∫ zi j

0
w2(x,s)rdr

+ ∑
j∈Bi

k j

‖s j− si‖γ+1 (s j− si)x

(33)

Note that k j may vary over different neighbors j. For
instance, if some neighboring node j is such that j /∈V (si),
then we may set k j = 0.

3) Φ-boosting function: This function aims at varying
α1(x,s) by means of Φi(x) defined in (7), which is the
probability that point x is not detected by neighboring nodes
of i. β1(x,s) = 0 as well. Large Φi(x) values imply a lower
coverage by neighbors, therefore higher weights are set. In
particular, we define

α1(x,s) = kΦi(x)γ (34)

where k is a gain parameter and γ is a positive integer
parameter. The boosted derivative here is

∂ Ĥ(s)
∂ six

=
∫

V (si)
kΦi(x)γ w1(x,s)

(x− si)x

di(x)
dx

+ ∑
j∈Γi

sgn(n jx)
sinθi j

Di j

∫ zi j

0
w2(x,s)rdr (35)

Observe that Φi(x) = 0 means that x is well-covered by
neighbors of i, therefore, sensor node i has no incentive to
move closer to this point. On the other hand, Φi(x)= 1 means
that no neighbor covers x, so the boosted weight is the value
of the gain k.

To compare the performance of the boosting function
method to that of a random perturbation method, we propose
a random perturbation method applied in step 1 to get (29)
in the boosting process. Let ξx,ξy be independent random
variables. The perturbed derivatives ∂ Ĥ(s)

∂ six
, ∂ Ĥ(s)

∂ siy
will be

∂ Ĥ(s)
∂ six

=
∂H(s)
∂ six

+ξx (36)

∂ Ĥ(s)
∂ siy

=
∂H(s)
∂ siy

+ξy (37)

Note that ξx and ξy are independently updated for each node
in each iteration. Then, this random perturbation method can
be performed in a distributed way.

V. SIMULATION RESULTS

In this section, we provide simulation examples illustrating
how the objective function value in (3) is improved by using
the boosting function process and how the parameter values
in the boosting functions we have considered can further
affect performance. Moreover, we show how the boosting
method is superior to the random perturbation approach in
terms of the number of iterations to a new local optimum.

Figure. 3 presents four mission spaces with different
obstacle configurations (obstacles shown as blue polygons),
which we refer to as “General Obstacle”, “Room Obstacle”,
“Maze Obstacle” and “Narrow Obstacle” , respectively. The
event density functions are uniform in all cases, i.e., R(x)= 1.
In the first three cases, there are 10 nodes shown as numbered
circles while in the Narrow Obstacle case, there are only 2
nodes. The mission space is colored from dark to lighter as
the joint detection probability decreases (the joint detection
probability is ≥ 0.97 for purple areas, ≥ 0.50 for green areas,
and near zero for white areas). Nodes start from the upper
left corner and reach equilibrium configurations obtained by
the gradient-based algorithm in [9]. The objective function
values at the equilibria are shown in the captions of Figs. 3a-
3d. It is easy to see that these deployments are sub-optimal
due to the obvious imbalanced coverage. For instance, in
Fig. 3b, the upper and lower rightmost “rooms” are poorly
covered while there are 4 nodes clustered together near
the first obstacle on the left side. We expect that boosting
functions can guide nodes towards exploration of poorly
covered areas in the mission space, thus leading to a more
balanced, possibly globally optimal, equilibrium.

First, we discuss how we select parameters for the boosting
functions. For the neighbor-boosting function, we select the
gain parameters k j in two different ways: (i) the same for all
neighboring nodes in a line of sight of si, otherwise, k j = 0:

k j =

{
k if s j ∈V (si), j ∈ Bi

0 otherwise
(38)

and (ii), k j = 0 for all neighboring nodes except for the
closest neighbor of si:

k j =

{
k j = arg mink∈Bi‖si− sk‖
0 otherwise

(39)

We define H(s∗)1 and H(s∗)2 to correspond to the objective
function values after the boosting process for each of these
two choices and have found through extensive experimenta-
tion (shown in Table. I) that H(s∗)2 > H(s∗)1 for almost
cases considered. In the following discussion, the second
definition of k j is used.

We also study the effect of the parameters γ and k and
have found the γ , k that yield the best results for all boosting
functions (shown in the captions). Table I lists results from
some of our experiments. For instance, in the room case, the
neighbor-boosting function with γ = 1 and k = 300 yields
the largest objective value H(s∗)2.

Then, we show the results for all configurations. Figure. 4
illustrates the effects of different methods used in the general
obstacle configuration. The P-boosting and the Φ-boosting
functions attain the best local optima (objective values are
increased by 12%) in the smallest number of iterations.
Figure. 4d shows a snapshot of a typical result using the
random perturbation approach in (36)-(37). It needs about
four times as many iterations as the Φ-boosting function,
yet converges to a worse local optimum.

Next, we consider the ”Room” obstacle case in Fig. 5.
Comparing Fig. 3b with Fig. 5, the clustered nodes in Fig.



(a) General obstacle with
H(s∗0) = 1368.3

(b) Room obstacle with
H(s∗0) = 1183.5

(c) Maze obstacle with
H(s∗0) = 904.0

(d) Narrow obstacle with
H(s∗0) = 246.5

Fig. 3: Initial local optima in all obstacle configurations

(a) P-boost, γ = 4, k = 100,
BIt=161; H(s∗) = 1533.6

(b) Neighbor-boost, γ = 2,
k = 500, BIt=390; H(s∗) =
1533.3

(c) Φ-boost, γ = 2, k = 1000,
BIt=160; H(s∗) = 1533.4

(d) Random Perturbation,
BIt=653; H(s∗) = 1443.9

Fig. 4: General Obstacle Configuration

3b have spread apart and the objective value has increased.
The P-boosting and the Φ-boosting converge to better local
optima (about 20% increase in the objective function value
over the original one) than those resulting from the neighbor-
boosting function. The random perturbation gets stuck at a
worse equilibrium after more iterations than any boosting
function.

Figure. 6 displays the results of boosting functions applied
to the maze configuration. The Φ-boosting function attains
a local optimum with the highest objective function value
(approximately a 44% increase in the objective function
value over the original one) among all methods while the
random-boosting does the worst. Figure. 7 shows results

(a) P-boost, γ = 4, k = 100;
BIt=221, H(s∗) = 1419.5

(b) Neighbor-boost, γ = 1,
k = 300; BIt=364, H(s∗) =
1417.1

(c) Φ-boost, γ = 1, k = 1000;
BIt=208, H(s∗) = 1419.1

(d) Random Perturbation
BIt=850; H(s∗) = 1377.3

Fig. 5: Room Obstacle Configuration

for the narrow obstacle configuration where the P-boosting
function works the best and the objective function value
is increased by 105%, from 245.3 to 502.5. Note that the
neighbor-boosting function fails to escape the local optimum.
This is because the repelling forces between the two nodes
have no components to drive sensor nodes over the obsta-
cle. Although the random perturbation method converges to
similar results as the Φ-boosting function, it requires many
more iterations.

(a) P-boost, γ = 4, k = 100;
BIt=517, H(s∗) = 1180.5

(b) Neighbor-boost,γ = 2,
k = 1000; BIt=600, H(s∗) =
1168.6

(c) Φ-boost, γ = 2, k = 100;
BIt=503, H(s∗) = 1236.1

(d) Random Perturbation
BIt=3439; H(s∗) = 1132.3

Fig. 6: Maze Obstacle Configuration

In summary, we conclude that the boosting function
approach, while still not guaranteeing global optimality,



(a) P-boost, γ = 4, k = 100;
BIt=103, H(s∗) = 502.5

(b) Neighbor-boost, γ = 1,
k = 300; BIt=212; H(s∗) =
246.5

(c) Φ-boost, γ = 2, k = 1000;
BIt=90; H(s∗) = 253.3

(d) Random Perturbation
BIt=1153; H(s∗) = 253.3

Fig. 7: Narrow Obstacle Configuration

provides substantial improvements in the objective function
value, varying from 12% to 105%. In addition, the boosting
function approach converges to an equilibrium faster and
usually with a higher objective function value than the
random perturbation method.

γ k Obstacle Type H(s∗)1 H(s∗)2
1 300 General 1513.7 1470.0
2 300 General 1450.6 1451.0
2 500 General 1505.1 1533.3
2 1000 General 1446.6 1530.7
1 300 Room 1372.9 1417.1
2 300 Room 1380.8 1392.5
2 500 Room 1382.8 1395.2
2 1000 Room 1378 1380.8
1 300 Maze 1051.8 1110.3
2 300 Maze 1051.8 1133.7
2 500 Maze 1109.3 1110.5
2 1000 Maze 1133.9 1168.6
1 300 Narrow 245.3 245.3
2 300 Narrow 245.3 245.3
2 500 Narrow 245.3 245.3
2 1000 Narrow 245.3 245.3

TABLE I: The boosted objective function values by neighbor-boosting

VI. CONCLUSIONS AND FUTURE WORK

We have shown that the objective function H(s) for
the class of optimal coverage control problems in multi-
agent system environments can be decomposed into a local
objective function Hi(s) for each node i and a function
independent of node i’s controllable position si. This leads
to the definition of boosting functions to systematically (as
opposed to randomly) allow nodes to escape from a local
optimum so that the attraction exerted by some points on a
node i is “boosted” to promote exploration of the mission
space by i in search of better optima. We have defined
three families of boosting functions, and provided simulation
results illustrating their effects and relative performance.

Ongoing research aims at combining different boosting func-
tions to create a “hybrid” approach and at studying self-
boosting processes whereby individual nodes autonomously
control their boosting in a distributed manner.
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