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Semi-definite programming and functional inequalities for
Distributed Parameter Systems

G. Valmorbida M. Ahmadi A. Papachristodoulou

Abstract— We study one-dimensional integral inequal-
ities, with quadratic integrands, on bounded domains.
Conditions for these inequalities to hold are formulated
in terms of function matrix inequalities which must
hold in the domain of integration. For the case of
polynomial function matrices, sufficient conditions for
positivity of the matrix inequality and, therefore, for the
integral inequalities are cast as semi-definite programs.
The inequalities are used to study stability of linear
partial differential equations.

Keywords: Sum of Squares, Stability Analysis, Dis-
tributed Parameter Systems, PDEs,

I. I NTRODUCTION

Emerging applications [1]–[5] (Magnetohydrody-
namics, fluids, population dynamics) and stringent
performance requirements have recently driven con-
trol engineering researchers interest towards systems
described by partial differential equations (PDEs), that
is, equations involving derivatives with respect to more
than a single independent variable. Usually the set of
independent variables are time and spatial variables,
and the solution to the PED solution is assumed to
be forward complete, meaning that the domain is un-
bounded for the temporal variable. On the other hand,
solutions to equations representing physical systems
are often defined in a boundedspatial domain.

Several numerical approaches for the analysis and
control design of PDE systems rely on ODEs, ob-
tained by spectral truncation or spatial discretization,
approximating the PDE model with a finite number of
states [6], [7]. As for ODEs, conditions for stability
of the zero solution can be formulated from spectral
analysis when the PDE system is defined by a linear
operator. Moreover it is possible to infer stability
from the semi-group generated by linear or nonlin-
ear operators and this parallels the ODE approach
of obtaining a solution to establish stability of a
particular solution [8]. An alternative approach is to
rely on the Lyapunov method, extended to infinite
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dimensional systems in [9] and [10], which does
not require the semi-groups to be calculated. The
energy of the state, which for PDEs takes values in
a function space instead of an Euclidean one, is a
frequent choice for the Lyapunov functional (LF) since
it simplifies the analysis of a large class of nonlinear
PDE systems whenever the nonlinearities are energy-
preserving [11]. However, using fixed LFs may be
conservative and is preferable to consider a family of
parameterised functionals. The choice for the class of
parameterised functionals should be supported by a
Lyapunov converse theorem.

Even for one-dimensional spatial domain PDEs, the
current development of Lyapunov analysis rely on
analytical steps [11]. These steps present increasing
complexity for systems of several dependent vari-
ables, for systems with spatially varying properties
(anisotropic systems) and for LF integrands depending
on the spatial variable.

Semi-definite programming (SDP) has recently been
successfully applied to control problems with poly-
nomial data being formulated as convex optimization
problems. Among those, one can cite stability of time-
delay systems [12], synthesis of polynomial control
laws [13] [14], robustness analysis of polynomial
systems [15] giving SOS programs (SOSP), while
the primal formulation of the SOSP, the generalised
problem of moments [16], has been applied to optimal
control problems [17] and system analysis [18].

While the connection of polynomial inequalities
to semi-definite constraints was possible thanks to
the non-uniqueness of quadratic-like representation of
polynomials (parametrised by Gram matrices [19]) the
non-uniqueness of integral expressions with integrands
being quadratic expressions on the dependent variables
has not yet been explored. A hint on this direction for
integral operators was reported in [20], where the use
of integration by parts associated to Dirichlet boundary
condition was instrumental to formulate the stability
test for a PDE with dissipation and reaction terms as
an SOSP.

With the purpose of formulating numerical tests for
the analysis of PDE systems, this paper studies one-
dimensional integral inequalities whose integrands are
functions of the independent spatial variables, of the
dependent variables and their spatial derivatives. The
integrand is assumed to bequadraticon the dependent
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variable andpolynomialon the spatial variable.
The fundamental theorem of calculus (FTC) is the

key step to relate the dependent variables and their
derivatives in an integral expression. This step allows
us to obtain a set of quadratic expressions which do
not affect the positivity of the integral. The matrices
on these quadratic expressions depend on the spatial
variables and their entries relate to the values the
dependent variables assume on the boundaries. The
positivity check of the integral on the domain is then
performed by a check of the positivity of the matrix
inequalities, involving the quadratic expression on the
original inequality and the ones obtained with the
FTC. For polynomial matrices on the independent
variables, we rely on the Positivstellensatz [21] in
order to generate SOS programs yielding, therefore,
a problem to be solved numerically.

The above results are then applied to study the sta-
bility of the L2 norm of systems of anisotropic PDEs
with weightedL2 norm as LF candidates. Several
numerical examples illustrate the results: bounds for
the Poincaré inequalities are derived numerically, the
stability of the heat equation with spatially varying
coefficients is studied, the transport equation, and a set
of reaction-diffusion equation [11], leading to integral
inequalities whose integrand is a quadratic expressions
on the dependent variable.

NotationLet R,R≥0,R>0 andRn denote the field
of reals, non-negative reals, positive reals and then-
dimensional Euclidean space respectively. The sets
of natural numbers and positive natural numbers are
denotedNn, Nn

0 . The closure of setΩ is denotedΩ.
The boundary∂Ω of set Ω is defined asΩ \ Ω
with “\” denoting set substraction. The ring of poly-
nomials, the ring of positive polynomials, and the
ring of sum-of-squares polynomials on real variable
x ∈ R are respectively denotedR[x], P [x] andΣ[x].
The ring of Sum-of-squares matrices of dimensions
n is denotedΣn×n[x]. The set of functions in a
Hilbert spaceH on Ω are denotedH(Ω). We denote
the the space of measurable functions defined onΩ
as u ∈ L2

Ω we denote the spatialL2
Ω-norm by

‖u(t)‖2,Ω =
(∫

Ω uT (t, x)u(t, x)dx
)

1

2 we useL2
P,Ω

to denote the weightedL2 norm ‖u(t)‖(2,P ),Ω =
(∫

Ω
uT (t, x)P (x)u(t, x)dx

)
1

2 . The set of continuous
functions mappingΩ into R

n, k-times differentiable
and with continuous derivatives is denotedCk(Ω). For
p ∈ C1(Ω), the derivative ofp with respect to variable
x is denoted∂p

∂x
= ∂xp = px. For u ∈ Ck, α ∈ N

n
0 ,

define

D
α
u :=

(

u1,
∂u1

∂x
, . . . ,

∂α1u1

∂xα1

, . . . ,
∂un

∂x
, . . . ,

∂αnun

∂xαn

)

.

Define theorder of Dαu asord(Dαu) := maxj αj .
We useHe(·) to denote the linear operatorHe(A) =
A + AT . For a symmetric matrixA denoteA ≥ 0
(A > 0) if A is positive definite (semi-definite).
The set of eigenvalues of a matrixP is denoted
λ(P )Elementwise product of two vectorsa, b is

denoteda⊙b while elementwise inequality is denoted
a � b.

Considerαθ = θ1n, θ ∈ N, define

vθ(u(x)) := Dαθu. (1)

The vectorvθ contains all derivatives of variableu
with respect to variablex up to orderθ. Variable
u is the dependent variableand x ∈ Ω ⊂ R the
independent variable.

II. POSITIVE FUNCTIONALS AND POLYNOMIAL

INTEGRANDS

In this paper integral inequalities of the form
∫

Ω

f̄(x, vθ(u))dx ≥ 0, (2)

are studied, withΩ = [0, 1]. It is assumed that
f̄(·, vθ) ∈ R[vθ], i.e. f̄ is quadratic on the second
argument for any value the first argument assumes,
therefore it is possible to write

f̄(x, vθ(u)) = vTθ (u)Fα(x)vθ(u). (3)

It is further assumed thatF (x) ∈ C0(Ω). At the
boundary, the dependent variableu(x) takes values
satisfying the following linear equation.

B

[

vθ−1(1)
vθ−1(0)

]

= 0, (4)

with B ∈ R
nb×2n(θ−1).

The remaining of this section aims to derive condi-
tions for (2) to hold in terms of expressions involving
only the integrand̄f(x, vθ). To this aim, the following
result is fundamental

Lemma 1:Considerr : Ω → R
nr , r ∈ C1. If

there exists a vector functionh : Ω → R
nr , h ∈ C1

satisfyinghT (x)r(u(x)) ≤ 0 for x ∈ ∂Ω, then
∫

Ω

[hx(x)r (x) + h(x)rx (x)] dx ≤ 0 (5)

Proof: From the fundamental theorem of calcu-
lus, one has

h(x)r(x)|∂Ω =

∫

Ω

[

d

dx
(h(x)r(x))

]

dx

=

∫

Ω

[hx(x)r (x) + h(x)rx (x)] dx

sinceh(x)r(x) ≤ 0 for x ∈ ∂Ω one obtains (5).
Wheneverr(x) is a vector of monomials on the

elements ofvθ(u), the integrand in (5) relates the
monomialsexplicitly accounting for the dependence
of u on variablex as follows:

Corollary 1: Considerv{2}θ−1(u), the vector contain-
ing all monomials of degree2 on vθ−1, and the set

H(k, θ)

:=
{

h ∈ C1(Ω) : h(x)⊙ v
{2}
θ−1(u)|∂Ω � 0

}

. (6)



If h(x) ∈ H, then

∫

Ω

h̄(x, vθ(u))dx

:=

∫

Ω

[

hx(x) ⊙ v
{2}
θ−1(u) + h(x)⊙ Cv

{2}
θ (u)

]

dx � 0

(7)

where C is the matrix satisfying
∂v

{2}
θ−1

(u)

∂x
=

Cv
{2}
θ (u).
The corollary is straightforwardly proven by con-

sideringr(x) = v
{2}
θ in (5).

Example 1 ConsiderΩ = [0, 1], u = u1, that is,
n = 1 and takeθ = 2. The set in (6), is defined with
v
{2}
θ = (u(x)2, u(x)ux(x), u

2
x(x)). Consideru(0) =

u(1) = 0. The hypothesis of Corollary 1 holds with
h(x) = (h1(x), h2(x), h3(x)) satisfying h3(0) ≤ 0
andh3(1) ≤ 0 and arbitrary values forh1 andh2 at
the boundaries sinceu(1)2 = u(0)2 = u(1)ux(1) =
u(0)ux(0) = 0. If the values at the boundaries are
given byu(0) = u(1), ux(0) = ux(1), the hypothesis
is satisfied withh1(1)−h1(0) ≤ 0, h2(1)−h2(0) = 0
andh3(1)− h3(0) ≤ 0.

Remark 1:The parametrization (6) is defined in
terms of the valuesh assumes at the boundaries of
the domain. Thus the integrand̄h in (7), which is a
vector ofnr elements, can be instrumental to verify (2)
since if

∫

Ω

f̄(x, vθ(u)) +

nr
∑

i

h̄i(x, vθ(u))dx ≥ 0

holds then, clearly,
∫

Ω f̄(x, vθ(u))dx ≥ 0. ⋆

Since (3) and̄h(h, vθ(u)) in (7) are quadratic func-
tions on the dependent variablesvθ, one can write

f̄(x, vθ(u)) = vTθ F (x)vθ
∑nr

i h̄(x, vθ(u)) = vTθ H(x)vθ
(8)

with k̄ =
⌈

k
2

⌉

.

Example 2 Considerh(x) and v
{2}
θ as in Exam-

ple 1, then matrixH(x) in (8) is given by

H(x) =





∂xh1 h1 +
1
2∂xh2

1
2h2

h1 +
1
2∂xh2 h2 + ∂xh3 h3

1
2h2 h3 0



 .

Remark 2:Recall that, from the definition of
H(k, θ), information about the values of the dependent
variables at the boundaries define the values at the
boundary of the entries ofH(x) . ⋆

Proposition 1: If ∃h ∈ H (as in (6)), such that

T (x) := F (x) +H(x) ≥ 0 ∀x ∈ Ω (9)

with F (x) and H(x) as in (8), then inequality (2)
holds.

Proof: Considerh ∈ H such thatT (x) ≥ 0 then

0 ≤
∫

Ω

vTθ T (x)vθdx

=
∫

Ω
vTθ [F (x) +H(x)] vθdx

=
∫

Ω vTθ F (x)vθdx+
∫

Ω vTθ H(x)vθdx
=

∫

Ω
f̄(x, vθ(u))dx+

∫

Ω

∑nr

i h̄i(x, vθ(u))dx
≤

∫

Ω
f̄(x, vθ(u))dx

(10)

Remark 3:Since the elements ofH(x) involve
continuously differentiable functions and their deriva-
tives, (9) is a differential matrix inequality. If we fur-
ther assume that the functionsh andf are polynomials
on x it is possible to formulate convex feasibility
problem to solve (9) as presented in the next section.

⋆

III. POSITIVITY IN THE DOMAIN

The case ofT (x) in (9) being a polynomial on
variablex is addressed in this section. For this class
of functions it is possible to formulate the positivity
of the matrix in the prescribed domain as a convex
optimization problem in the form of SDPs using
Positivstellensatz. The following result is a straight-
forward application of the Putinar’s Positivstellensatz
(see Theorem 2 in the appendix) to (9), to hold in the
setΩ = [0, 1], characterized as the semi-algebraic set
{x|x(1 − x) ≥ 0}.

Corollary 2: If there existsN(x) ∈ ΣnM×nM [x]
such that

T (x)−N(x)(x)(1 − x) ∈ ΣnM×nM [x] (11)

then (9) holds.
Remark 4: If T (x) is affine in the decision vari-

ables, which are the parametersf̄ andh, the above test
can be formulated as a SDP whose dimension depends
on the degree of the polynomials in variablesx. ⋆

Remark 5:Although the Positivstellensatz gives
necessary and sufficient conditions for set contain-
ment, in order to make these conditions computa-
tionally tractable the degree of the sum-of-squares
polynomialN(x) in (11) must be fixed. ⋆

IV. STABILITY ANALYSIS FOR DISTRIBUTED

PARAMETER SYSTEMS

Consider the following PDE system

ut = Au, u(x, 0) = u0(x) ∈ M ⊂ H(Ω) (12)

wherein, H(Ω) is an infinite-dimensional Hilbert
space andA is a linear operator defined onM, a
closed subset ofH(Ω). It is assumed thatA generates
a linear semi-group of contractions, i.e., continuous
solutions to the PDE exist inM and are unique. The
interested reader can refer to [8] for details.



In this section we study convergence inL2-norm
of PDEs in one spatial variable and one temporal
variable.

Consider candidate Lyapunov functions of the form

V (u) =
1

2

∫

Ω

uT (x)P (x)u(x)dx, P (x) > 0 ∀x ∈ Ω

(13)
That isV (u) = 1

2‖u‖22,P , the squaredP (x)-weighted
L2-norm. Recall that convergence to zero solution and
boundedness in a given norm imply convergence and
boundedness for an equivalent norm but not for all
norms in an infinite dimensional space. The following
lemma states the equivalence of the weighted norm
and theL2-norm.

Lemma 2: If P (x) > 0 ∀x ∈ Ω̄ then the norms
‖u‖2,P (x) and‖u‖2 are equivalent.

Proof: Let λM (P,Ω) := maxΩ̄(λ(P (x))),
λm(P,Ω) = minΩ̄(λ(P (x))). One has

‖u‖22,P (x) =

[
∫

Ω

uT (x)P (x)u(x)dx

]

≤ λM (P,Ω)

[
∫

Ω

uT (x)u(x)dx

]

= λM‖u‖22 (14)

‖u‖22,P (x) =

[
∫

Ω

uT (x)P (x)u(x)dx

]

≥ λm(P,Ω)

[
∫

Ω

uT (x)u(x)dx

]

= λm‖u‖22. (15)

Therefore
√

λm(P,Ω)‖u‖2 ≤ ‖u‖2,P (x) ≤
√

λM (P,Ω)‖u‖2.
(16)

The following proposition is a Lyapunov result for
the exponential convergence of theL2 norm of the
solutions to (12) :

Theorem 1:Suppose there exists a functionV is a
functional V (0) = 0, and scalarsc1, c2, c3 ∈ R>0

such that

c1‖u‖2,Ω ≤ V (u) ≤ c2‖u‖2,Ω (17)

Vt(u) ≤ −c3‖u‖2,Ω (18)

then theL2 norm of the trajectories of (12) satisfy

‖u(t)‖2,Ω ≤ c2

c1
‖u(t0)‖2,Ωe−

c3

c1
(t−t0) (19)

whereu(t0) = u(t0, x).
Proof: From (17)-(18) one obtains

Vt(u)

V (u)
≤ −c3

c1

since Vt(u)
V (u) = (ln(V (u)))t, the integral of the above

expression over[t0, t], gives
∫

[t0,t]
(ln(V (u(τ))))τ dτ ≤ −c3

c1
(t− t0)

ln(V (u(t))) − ln(V (u(t0))) ≤ −c3

c1
(t− t0)

V (u(t))

V (u(t0))
≤ e

−
c3

c1
(t−t0)

V (u(t)) ≤ V (u(t0))e
−
c3

c1
(t−t0)

finally (19) is obtained by applying the bounds of (17)
on the above inequality.

Corollary 3: If there exists a functionP (x) and
positive scalarsǫ1, ǫ2 such that

1

2

∫

Ω

uT (x)P (x)u(x) − ǫ1u
T (x)u(x)dx ≥ 0 (20)

−
∫

Ω

uT (x)P (x)Au(x) + ǫ2u
T (x)u(x)dx ≥ 0 (21)

Then theL2 norm of solutions to (12) satisfy (19).
Remark 6: Integration-by-parts is a key step to

prove stability for PDE systems [11], [22]. It allows
to incorporate the boundary conditions when devel-
oping the LF time-derivative along the trajectories of
the system.1 Since the relation among the dependent
variables and the boundary conditions are embedded
in the polynomialsh(x) in (7), it is possible to directly
treat the derivative condition by studying the integral
inequality (21). ⋆

V. EXAMPLES

In this section we obtain solutions to the integral
inequalities corresponding to Lyapunov stability con-
ditions derived in the previous section. Notice that
we can considerΩ = [0, 1] since different one-
dimensional domains can be mapped into the unit in-
terval by means of an appropriate change of variables.

A. Poincaŕe inequality

The Poincaré inequality [23, p.163]
∫

Ω

u2dx ≤ κ(Ω)

∫

Ω

u2
xdx (22)

whereΩ is a bounded domain andκ is a constant
depending on the domain, holds for allu ∈ H

1,2
0 (Ω)

and establishes bounds for‖u‖22 in terms of‖ux‖22.
By rewriting the above inequality as

∫

Ω

κu2
x − u2dx ≥ 0 (23)

one obtains an integral constraint of the form (2).
Notice that the integrand is affine onκ. One may wish

1One example of the application of integration by parts to develop
the LF time-derivative is given in the Appendix C.



to obtain a tight bound for (22),i.e. find a solution to
the following problem

minimizeκ

subject to
∫

Ω
κu2

x − u2dx ≥ 0
(24)

The steps described in Section II are followed by
first noticing that the integrand of the integral in
involves onlyu and its spatial derivativeux, therefore
let θ = 1 in (7) and vθ−1(u) = u2. Following
Proposition 1 the problem (24) becomes

minimizeκ

subject toHe

(

1

2

[

−1 + hx(x) h(x)
0 κ

])

≥ 0

∀x ∈ Ω. (25)

Assumingh(x) to be of polynomial form,Ω = [0, 1]
and applying Positivstellensatz as described in Sec-
tion III, (25) becomes the following SOSP

minimizeκ

subject to He

(

1

2

[

−1 + hx(x) h(x)
0 κ

])

+N(x)x(x − 1) ∈ Σ2×2[x],
N(x) ∈ Σ2×2[x].

(26)
The problem (26) is formulated and solved using SOS-
TOOLS considering different degrees for polynomial
h(x) andN(x). Figure 1 depicts the optimal valueκ∗

as a function of the degree ofh(x) (the curve was
computed settingdeg(N(x)) = deg(h(x)) + 2). The
figure also presents the optimal boundπ−2 for the
studied domain [24].
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Fig. 1. Optimal values for problem (26) as a function of the degree
of h(x).

B. The transport equation

Consider the following PDE

ut = −ux x ∈ [0, 1], t > 0 u(0) = 0.

Let Ep =
1

2

∫

Ω
e−λxu2(x)dx be the candidate

function to certify−λEp −Ept ≥ 0 that is, to certify

exponential stability with exponential rateλ > 0. One
has

− λEp − Ept =

∫

Ω

−λ

2
e−λxu2 + e−λxuuxdx ≥ 0,

(27)
which is an inequality as (2). Considerη2(v1(u)) = u2

andh(x) = − 1
2e

−λx. Sinceh(1) = − 1
2e

−λ < 0, one
hash(1)u2(1) − h(0)u2(0) = h(1)u2(1) < 0, hence
h(x) ∈ H(2, 1) and

h(x)η2(v1(u))|∂Ω = h(1)u2(1)

=

∫

Ω

(

hxu
2 + huux

)

dx

=

∫

Ω

1

2
λe−λxu2 − e−λxuuxdx ≤ 0

where equality holds only ifu(1) = 0. Adding up
−λEp − Ept andh(1)u2(1) one obtains

− λEp − Ept + h(1)u2(1)

=

∫

Ω

−λ

2
e−λxu2 + e−λxuuxdx

+

∫

Ω

λ

2
e−λxu2 − e−λxuuxdx = 0

therefore

−λEp − Ept = −h(1)u2(1) ≥ 0,

proving the exponential stability of the zero solution
for anyconvergence rateλ > 0. This result should be
expected as, for a compact and bounded domain, the
transport equation isfinite-timestable. In Appendix C
the time-derivative ofEp along the trajectories of (27)
is developed with steps using integration by parts
to also prove the exponential stability of the zero
solution.

By considering inequalities (20)-(21) with a poly-
nomial weighting function and considering polyno-
mial h(x) ∈ H(2, 1), the Positivstellensatz is applied
to formulate the following feasibility SOSP

find p(x), h(x), N(x)
subject to

He

(

1

2

[

−λp(x) + hx(x) −p(x) + h(x)
0 0

])

+N(x)x(x − 1) ∈ Σ2×2[x], N(x) ∈ Σ2×2[x].
(28)

With a polynomialp(x) degree30 stability of the
zero solution to (27) was certified forλ ∈ (0, 10]. The
results are depicted in Figure 2.

C. Heat Equation with Reaction Term

Consider the following anisotropic PDE

ut = uxx+λ(x)u, x ∈ [0, 1], u(0) = u(1) = 0 (29)

where,λ : [0, 1] → R. Whenλ(x) = λc, the Lyapunov
functional

∫ 1

0 u2 dx, proves asymptotic stability for
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Fig. 2. Weighting functions proving exponential stabilityfor
convergence ratesλ ∈ {2, 10}. The red dotted curves depict the
analytical result1

2
e−λx while the solid blue lines are correspond

to the polynomials obtained by solving (28).

λc ∈ (−∞, π2) (see Appendix B). In order to study
the exponential stability of (29) consider a weighted
L2 function as (13).

In [20] the system was studied withλ(x) = λc and
employing anad hocintegration by parts construction
to obtain a tight estimate for the stability interval. Here
λ(x) is considered asλ(x) = λc − 24x+ 24x2 and a
line search was performed maximize the coefficientλc

for which the system is stable. We obtained the value
λ∗
c = 14.1 by solving (20)-(21) with a polynomial

weighting function. Figure 3 depictsλ(x) with the
obtained value. The stability bound for a constant
coefficient λ, π2, is also depicted. Notice that for
someλ(x) > π2 for some values ofx. The obtained
weighting functionp(x), a polynomial of degree10 is
illustrated in Figure 4
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Fig. 3. The spatially varying coefficientsλ = π2 (dashed black)
λ(x) = λc − 24x+ 24x2 (solid red).

D. System of PDEs coupled via reaction term

Consider the following system of PDEs inspired
by [11, p 38]

{

ut = 1
R
uxx + αu+ γv

vt = 1
R
vxx + δu+ βv

, (30)

x ∈ [0, 1], u(0) = u(1) = v(0) = v(1) = 0
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Fig. 4. The weighting functionp(x) for system (29).

where,α = 1, γ = 1.5, δ = 5 andβ = 0.2. Through
simulation it is observed that forR < 2.7 trajectories
converge to the zero solution.

We consider the energy and functionals (13) of
different degrees. The results are depicted in Table I.
Figure 5 details the solution fordeg(P (x)) = 4,
P =

[

P11 P12

P12 P22

]

showing the values of the entries of
the weighting matrices and its eigenvalues.

TABLE I

STABILITY INTERVALS FOR PARAMETERR ∈ (0, R∗] FOR

DIFFERENT DEGREES OFP (x).

deg(P (x)) 0 (P (x) = I) 0 2 4 6 8
R∗ 0.2 0.3 1.7 2.3 2.4 2.45

0 0.2 0.4 0.6 0.8 1
0

1

2

3

PSfrag replacements

x

λ(P (x))

Fig. 5. Eigenvalues ofP (x) = of degree4. Notice that both
eigenvalues are positive.

VI. CONCLUSION

This paper has formulated conditions for the posi-
tivity of functional inequalities in terms of positivity of
their integrands by characterizing a set of expressions
constructed from the Fundamental Theorem of Calcu-
lus. The main assumption is that the functionals under
study are polynomial on the dependent variables. The
case of polynomial dependence of the integrand on the
independent variable allows for the formulation of a
convex optimization problem given by SDPs.



These formulations were then used to study integral
inequalities arising from Lyapunov stability conditions
for PDEs. Several examples illustrate the effectiveness
of the proposed approach. The examples are instances
of the set of PDEs which are polynomial on the
dependent variable and its derivatives.

Polynomial parametrization of the weighting func-
tions on the Lyapunov functionals is not restrictive
since, according to Weierstrass approximation theo-
rem, any continuous function on a bounded interval
can be approximated by a polynomial. The drawback
is that the degree of the approximating polynomial
may not be knowna priori.

The research leading to the results presented here
was motivated from the fact that integration by parts
is a crucial step on the stability analysis. The lo-
cal checks, which are often provided by embedding
theorems on bounded domains, are also important.
Our scope was to make these steps computationally
tractable by formulating SDPs. However, we believe
the results presented in sections II and III go beyond
the scope of stability analysis of PDEs, providing an
efficient method of formulating a set of optimization
problems with integral constraints in a convex opti-
mization framework.
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APPENDIX

A. Sum-of-Squares Polynomials

A polynomialp(x) is a sum-of-squares polynomial
if ∃pi(x) ∈ R[x], i ∈ {1, . . . , nd} such thatp(x) =
∑

i p
2
i (x). Hencep(x) is clearly non-negative. A set of

polynomialspi is calledSOS decompositionof p(x).
The converse does not hold in general, that is, there
exist non-negative polynomials which do not have an
SOS decomposition [25]. The computation of SOS
decompositions, can be cast as an SDP (see [19],
[25], [26]). The Theorem below proves that, in sets
satisfying a property stronger than compactness, any
positive polynomial can be expressed as a combina-
tion of sum-of-squares polynomials and polynomials
describing the set.

For a set of polynomials̄g = {g1(x), . . . , gm(x)},



m ∈ N, the quadratic modulegenerated bym is

M(ḡ) :=

{

σ0 +

m
∑

i=1

σigi|σi ∈ Σ[x]

}

. (31)

A quadratic moduleM ∈ R[x] is saidarchimedeanif
∃N ∈ N such that

N − ‖x‖22 ∈ M.

An archimedian set is always compact [27]. It is the
possible to state [16, Theorem 2.14]

Theorem 2 (Putinar Positivstellensatz):Suppose
the quadratic moduleM(ḡ) is archimedian. Then for
everyf ∈ R[x],

f > 0 ∀ x ∈ {x|g1(x) ≥ 0, . . . , gm(x) ≥ 0} ⇒ f ∈ (ḡ).
Lemma 3:The setΩ = [0, 1] is Archimedean.

Take any pair(r,N∗), r ∈ R>0 andN∗ ∈ N satisfying

N∗ ≥ 1

4

r2

r − 1
. (32)

The Archimedean property is the satisfied with

θ0(σ) =
(

(√
r − 1

)

σ − 1
2

r√
r−1

)2

+
(

N∗ − 1
4

r2

(r−1)

)

θ1(σ) = r.

B. Stability Bounds for the Heat Equation with Reac-
tion Term

The stability bound on parameterλ is obtained by
constructing the solution to

ut = uxx + λu, ∀x ∈ [0, 1] u(0) = u(1) = 0
(33)

Assuming separation of variables for the solution, a
candidate solution can be written as

u(x, t) = X(x)T (t). (34)

Substituting (34) in (33), one obtainsTtX = XxxT +
λXT , that is,

Tt

T
=

Xxx + λX

X
. (35)

The left hand side of (35) is only a function oft, and
the right hand side, a function ofx. Consequently,

Tt

T
=

Xxx + λX

X
= k (36)

for some constantk. It can be verified, using the
boundary conditions, that the parameterk should be
positive for (33) to have a non-trivial solution, yielding

Xxx + (λ− k)X = 0, (37)

of which the solution isX(x) = c1 sin(
√
λ− kx) +

c2 cos(
√
λ− kx). Employing the boundary conditions

of (33), one obtainsc2 = 0 and

c1 sin(
√
λ− k) = 0 ⇒

√
λ− k = nπ

⇒ k = λ− n2π2, n ∈ N. (38)

Then, it follows that from (36) one has

Tt

T
= λ− n2π2 ⇒ T (t) = e−(n2π2−λ)t, n ∈ N.

Therefore, for the system to be stable, the following
must hold

n2π2 − λ > 0, n ∈ N,

that is,λ < π2.

C. Lyapunov function for the transport equation

Consider the system

ut = −ux Ω = (0, 1) u(0) = 0, (39)

and the candidate Lyapunov function of the form

Ep =
1

2

∫

Ω

e−λxu2(x)dx.

One obtains

Ept =
∫

Ω e−λxuutdx

= −
∫

Ω
e−λxuuxdx

= − 1
2

∫

Ω

[

d
dx

(

e−λxu2
)

+ λe−λxu2
]

dx

= − 1
2

∫

Ω
d
dx

(

e−λxu2
)

dx− λ
2

∫

Ω e−λxu2dx

= − 1
2

[

e−λu2(1)− u2(0)
]

− λ
2

∫

Ω e−λxu2dx

= − 1
2e

−λu2(1)− λ
2

∫

Ω e−λxu2dx

≤ −λ
2

∫

Ω e−λxu2dx.
(40)

That is,Ept ≤ −λEp, which proves the exponential
stability of the zero solution.
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