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Abstract— We address the problem of Lyapunov function
construction for a class of continuous-time Markov chains
with affine transition rates, typically encountered in stochastic
chemical kinetics. Following an optimization approach, we
take advantage of existing bounds from the Foster-Lyapunov
stability theory to obtain functions that enable us to estimate
the region of high stationary probability, as well as provide
upper bounds on moments of the chain. Our method can be
used to study the stationary behavior of a given chain without
resorting to stochastic simulation, in a fast and efficient manner.

I. INTRODUCTION

A classic result in the theory of continuous-time Markov
chains (CTMCs) states that an irreducible chain on a count-
(\J able space has a unique invariant distribution if and only

if it is positive recurrent [1]. An irreducible and positive
"=~ 'recurrent CTMC is commonly called ergodic. All finite
irreducible Markov chains are automatically ergodic [2],
. however verification of ergodicity becomes much harder
L= when the state space is countably infinite. The most common

approach to this problem is the use of the so-called Foster-

Lyapunov criteria [3] which, among others, provide sufficient
—conditions for positive recurrence. According to one of the
main results of this theory, the uniformly negative drift of
a suitably defined Lyapunov function outside a finite set
of states guarantees that the expected hitting time of this
set is finite for any initial condition of the chain, which
in turn implies that the chain is ergodic [2]. Despite its
elegance, successful application of this result to a given
CTMC depends critically on the computation of a Lyapunov
function, a non-trivial procedure.

Several attempts have been made to provide guidelines for
. . the construction of Lyapunov functions for specific classes of
(discrete-time) Markov chains [4], yet the general problem
of determining a suitable Lyapunov function for a given
system remains unsolved. In this work, we propose an
optimization-based approach to the computation of Lyapunov
functions when the transition rates of a given CTMC are
affine functions of the state and the movement of the chain
is determined by a finite set of transition vectors. Such
characteristics can be found, for example, in models of
stochastic chemical kinetics, as well as models used in ecol-
ogy and epidemiology. Our method relies on the formulation
of a semidefinite optimization program (SDP), which can be
solved efficiently by existing SDP solvers.
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Several classic results in Markov chain theory have
demonstrated how Lyapunov functions can be used to pro-
vide bounds on stationary expectation of a function of the
chain. Our approach enables us to optimize these bounds over
a given class of Lyapunov functions. In this way, approxi-
mations of quantities related to the stationary behavior of the
chain can be obtained fast, without stochastic simulation or
solution of the Kolmogorov equations.

The rest of the paper is organized as follows: Section [II|
provides the necessary mathematical background of Foster-
Lyapunov theory and the associated bounds that can be
obtained using Lyapunov functions. Next, Sections and
present the main idea behind our approach and its
application to Markov chains with affine transition rates.
Several examples are considered in Section[V]to demonstrate
the applicability and effectiveness of our method. The con-
clusions of our study and some current research directions
are finally summarized in Section

II. FOSTER-LYAPUNOV ERGODICITY CRITERION AND
ASSOCIATED BOUNDS

We consider an irreducible CTMC {X (¢), ¢t > 0} with
state space S C Nf (where Ny is the set of nonnegative
integers). The infinitesimal generator of X is denoted by
Q = (¢(x,y))z,yecs, where g(z, y) denotes the transition rate
from state = to state y. We assume that () is conservative
(> esa(z,y) =0, Vo € ) and that each state x leads to
finitely many states y. More specifically, we assume that the
movement of the chain is controlled by a finite set of constant
transition vectors ri, ,T2,...,Tm € N, so that possible
transitions out of x € S lead into states y1 = = + r1, ys =
x4+ 7re,...,Ynm = T + 1. Further, we assume that each
transition rate g(x,y) is affine in .

In the rest of the paper, we will denote gq(z,x + ry)
by qp(x) and >°7" , gi(z) by ¢(x). With this notation,
application of the generator ) to a function V : § — R
yields a new function QV/, called the drift of V, which is
given by

QV(@) = Y a@)V @+ 1) — g@)V (@)
k=1

=D (@) (V(z +ri) = V().
k=1

The following theorem provides sufficient conditions for
a given irreducible CTMC on S to be ergodic.



Theorem 1 ([5]): Suppose there exists a function V :
S — R, and a finite set C' C S such that

QV(z) < -1, Vx e S\ C (1)
QV(z) <+ooVzx el (2)

|z]| = 0o = V(x) — oo, where ||z| = Zmi 3)

i=1

Then the chain is non-explosive and ergodic.

Function V' is commonly called a stochastic Lyapunov
function. Note that nonnegativity of V' could alternatively be
replaced by the condition that V' is lower-bounded over S
[2]. Conditions (1)) and 2)) can be combined in one inequality
of the form

QV(x) < —1+blo(), )
where 1¢(+) denotes the indicator function of C' and

b=sup QV(x)+ 1.
zeC
The following is a simple consequence of ergodicity:
Lemma 1: b>1 in ()

Proof: Since V is bounded from below,
sup,cg @V (xz) < 0 would imply that that V(X (t)) is
a supermartingale that converges to a constant [6], and
the chain could not be ergodic. Hence, it must hold
SUp,eg @V (z) >0, ie. b> 1. [ |

Intuitively, Theorem E] states that for an irreducible CTMC
the process V(X (t)) behaves like a supermartingale outside
a finite set C, i.e. V decreases on average along the trajecto-
ries of the chain until the process hits C, the so-called refuge
set. This interpretation makes an interesting connection with
deterministic Lyapunov theory, and could lead one to think
that C' possesses some special property among all subsets of
S. However, this is not the case. To see this, we need two
hitting time definitions [1]:

Definition 1: Given a set A C S, the first entrance time
to A (or the hitting time of A), denoted by 74, is defined
as

Ta=inf{t:t>0,X(t) € A},

with the infimum over an empty set taken to be co. Using
Tae, the hitting time to A°, we next define the first return
time to A, denoted by 0 4:

oA :inf{t > TAc,X(t) S A}

Given a positive recurrent CTMC, we know that the
expected return time to any state, E,[o,] is finite [1]. In
turn, this implies that E, [7,] is also finite for any x and y
Consequently, the expected hitting time, E,[rg], of any set
B C S as a function of x is also finite. This implies that
Ve (z) := E;[rp] for B finite is a Lyapunov function for the
chain, since we have the following

I'This can be easily seen by defining the taboo transition probability
«P(t,z,y) = PX(t) = y|X(0) = z,X(s) # 2,0 < s < t] and
observing that Ez[o,] > 2 P(t,z,y)(Ey[r] + t). Since the chain is
irreducible and Ez o] < oo, Ey[7] < 0o as well.

Lemma 2: The function Vp(z) is the pointwise minimal
solution to the system

Ve(z)=0, x€B

QVp(z) <1, 2 ¢ B.
Proof: Using a first step decomposition and the defini-
tion of Vg, we see that for x ¢ B

V(ﬂc):mqk(w) i+V(x+7ﬂ) .
5 ;qm(x) " )

a(
Application of the generator on Vp(x) then gives

QVE(z) = ar(@)Vs(e +ri) — a(@)Va(2).
k=1

Substituting the expression for Vp(x) obtained above, we
see that QVp(x) < —1if z ¢ B.

Minimality of Vp follows from Theorem 4.3 of [7]: if
holds for some V and C' = B, then

E.[r5] < V(z), Vx ¢ C.

|
We thus see that any finite set B can serve as refuge
for at least one Lyapunov function. In other words, no set
holds a prominent position in (@), in contrast to deterministic
Lyapunov theory. Consequently, there is a large freedom in
the choice of stochastic Lyapunov functions. This freedom
can be exploited, however, since we know that Lyapunov
functions can provide bounds to stationary expectations of
functions of the chain, as well as bounds on hitting times
of sets (an example of the latter was already used in the
proof of Lemma [2). One can therefore optimize over a class
of candidate Lyapunov functions to obtain such bounds, and
thus gain insight into the stationary behavior of a given chain.
Below we present more analytically the bounds we consider
in this work.

A. Bounds for stationary set probabilities

Consider the problem of finding a set C' that contains a
large portion of the invariant distribution. Such a set defines
a “central” region in the state space of the chain, in which
it is most probable to find the sample paths at stationarity
(notice the similarity of such a set to the equilibrium point
of a nonlinear system). A simple calculation based on (@)
[71, [8] shows that

(C) > % )

where 7 denotes the invariant distribution of the chain. This
is intuitively expected, since b — 1 indicates the average
maximum positive rate of change of V' when X(¢) is in
C, and thus quantifies the tendency of the process to move
out of C. It is no surprise then that b is intimately connected
with 7(C), i.e. the fraction of time the process spends on
average inside C' at stationarity.

For a given Lyapunov function, one can also reverse the
process and find a set C, such that 7(C.) > 1 — e. This will
be some super-level set of QV (x). More concretely, given
a Lyapunov function V' and the associated constant b in (@),



we know that C = {z : QV(z) > —1}. Next, given an
€, we can find a 6 € R such that the new super-level set
Ce = {x : QV(z) > —1 + 0} has probability greater than
1 — e. To do this, we first note that QV(z) <b—1Vx € S
so, using C in place of C' we can write

QV(z) < =145+(b—14+1-06)1¢c, = =145+ (b—9)1¢..
Using Theorem 4.3 of [7], we know that

1-96
Ce) > —
mC) 235
so we can compute the necessary shift 4 from the equation
1-6
l—e=——.
“TVv=s

B. Moment bounds

Lyapunov functions can be also used to obtain moment
bounds: As shown in [7], if @]) is generalized to

QV(z) < —f(z) +blc(x), (6)
where f > 1, it also holds that
m(f) <b. @)

From (6) and (proven in Theorem 4.3 of [7]), the
stationary expectation of a given nonnegative function f can
be upper-bounded using the maximum drift obtained from a
suitably chosen Lyapunov function V.

III. AN OPTIMIZATION APPROACH TO LYAPUNOV
FUNCTION DESIGN

The above observations can serve as starting points to-
wards the construction of appropriate Lyapunov functions for
bounding invariant quantities related to a given CTMC. To
demonstrate the form of the resulting optimization problems,
we consider the case of finding a set that contains a large
fraction of the stationary probability mass of the chain. In
other words, our goal is to obtain a lower bound on the
probability mass of a set C, which is described as the
(supen)level set of the function QV(x). In abstract terms,
this can be posed as the following optimization problem:

Vglvi,nb/ 4
st. QV <V, Vze S
QV < -1, Ve ¢ D CS, D compact
V>0and ||z|| > 00 = V() >

®)

V denotes some class of functions over which the optimum
is sought. The second constraint requires that QV eventually
becomes negative outside a compact set D and is necessary
for V to be a Lyapunov function. We then know that the
set C = {z : QV(z) > —1} will lie inside D. The
intuition behind this formulation is to look for a function
V € V for which the positive drift over D is minimal.
Since the positive drift is directly related to the tendency
of the process trajectories to move out of the refuge C, one
expects that a refuge corresponding to a Lyapunov function

with the minimal drift will be located in the region where
the stationary density of X tends to be higher.

As we shall see, in the case of affine transition rates
can be cast in the form of polynomial optimization, provided
we treat all functions involved as defined on a continuous
space (R'). In particular, (8) becomes a semidefinite pro-
gram (SDP) if we focus our search on quadratic Lyapunov
functions.

IV. QUADRATIC LYAPUNOV FUNCTIONS FOR CTMCSs
WITH AFFINE TRANSITION RATES

In the case of affine transition rates the drift vector d(x) =
> iy qx(x)ry can be written as d(z) = Az + B, for some
A € R"*™ and B € R". For these systems we consider the
class of quadratic Lyapunov functions V = (z —z0)T R(x —
xg), for some R > 0 and zy € R", to be determined via
optimization.

To derive the analytic form of the optimization problem,
we take a closer look at the action of the generator () on
this class of functions:

QV(z) =Y au(x)(V(z +r3) = V(x)) =

k=1
=Y an(@) (@ + )" Rz +ri)—
k=1
—22l R(x + 1) — 2" Re + 228 Rx) =

=2 Z g (z)r R(x — x0) + Z qr(2)rf Ry, =
k=1 =1

=2(Az+ B)'R(x — x0) + Z qr(z)rE Rry,
k=1
=2 (2" ARz — 2" ARz + B* Rz — BT Rao) +

+ Z qr(x)rf Rry, =
k=1
=27 (ATR + RA)x — 227 ARx¢ + 2BT Ra—

—2BT Rz + Z qr(z)rf Rry,.
k=1

The decision variables in this expression are R and zg.
Despite the fact that they appear in a product, we observe
that zy always appears in a product with R. By defining
Yo = Rxp, we can optimize over R and yg, and recover xg
whenever R is invertible. When this condition fails, V' can
be defined without the constant term x] Rxq. This shift has
no effect on our results.

We thus see that QV is a quadratic function of the form
f(x) = 27Tz + 2uTz + B, for which we know that

f(z) >0, Vo & [Z ;

Problem @]) then takes the form of an SDP, which can
compactly be written as

o0



R Y
st. QV <V Va )
QV < -1, Yo ¢ D, D compact
R>0

The second constraint requires that QQV eventually be-
comes negative outside a compact set DD and is necessary
because the third constraint alone is not enough to guarantee
that numerical solvers will not converge to the trivial solution
V = 0. In the case of Lyapunov function optimization for
linear dynamical systems, where the stability of z = 0 is
typically studied, one can ensure non-degeneracy of solutions
by requiring V — €Y7, 2 > 0 for a small positive €. This
would not be a good choice in our case, as V' is not expected
to be homogeneous in = (and thus have a minimum at zero),
and such a constraint could severely affect the result of the
optimization. Our second constraint requires the choice of a
given compact set D, which can be thought of as an initial
guess of where the set C could lie. Provided it is not chosen
too small, the optimization outcome will not be affected by
the particular choice of D.

To maintain the SDP form of the problem, D has to be
defined through a set of linear or quadratic inequalities, in
which case the second constraint can be written in semi-
definite form using the S-procedure [9].

A. Moment bounds

Using the already established theoretical results presented
in Subsection we see that we obtaining upper bounds
on the stationary mean of a given polynomial function f >
1 requires solving a problem very similar to (9). Provided
f has a degree < 2 (i.e., if we seek to bound means and
(co)variances), the resulting problem is still an SDP:

min b
R, b
st. QV+f<V, Vo (10)
R>0

The non-degeneracy constraint involving the set D is no
longer needed: such solutions are no longer possible, thanks
to the presence of f in the inequality.

B. Nonlinear transition rates

When a system contains quadratic or bilinear transition
rates (such as in the case of bimolecular reactions in chemical
kinetics), using a (general) quadratic Lyapunov function will
result in third order polynomials in QV. However, when
only a few transitions have this feature, one could still
search for a quadratic Lyapunonv function by requiring that
Rry, = 0, where r,, b = 1,... are the transition vectors
corresponding to these transitions. There cannot be too many
such transitions (in comparison to the state size, n), otherwise
the only feasible solution will be R = 0. Every constraint
of the form Rr, = O restricts V' to be constant along the
direction 7, a severe restriction on the shape of the function.

Note also that such a V' can no longer be positive definite,
however it can still be lower-bounded on Nj and satisfy

|z]| = 00 = V(z) — oo, when = > 0,

which is enough for Theorem [I] to hold (note that our
chains evolve on Ng). In turn, this is only possible if no
rp has all its components nonnegative (otherwise V' would
be zero along a direction inside the positive orthant). If
the 7,’s arise from chemical reaction stoichiometries, they
automatically have this property due to mass conservation:
a bimolecular reaction must consume some reactants to
generate the products.

V. EXAMPLES
A. A simple gene expression model

Consider the following reaction scheme corresponding to
a simple transcription-translation model:

o 2% mRNA L &

RNA . 0.1
o 0 Protein — &

The numbers of mRNA and protein molecules at time ¢ will
be denoted by M (t) and P(t) respectively. This system can
be modeled as a CTMC [10] {(M(t),P(t)), t > 0} on
NZ. At each state (m,p), four transitions are possible; their
transition vectors are ry = [1 0]7, ro = [-1 0]T, r3 = [0 1]
and r4y = [0 — 1]7, with corresponding transition rates q; =
100, g2 = m, g3 = m and ¢4 = 0.1p.

We are first going to search for a Lyapunov function that
will provide us with the high-stationary density region of the
system. To that end, we solve (9) to obtain &', R and yg, for
D = {(m,p) : (m — 100)> + (p — 1000)> < 10°} P] The
optimal solution turns out to be

_ [0.0381 0.0096] . i [ 99.1
h= {0.0096 0.0155} 107, @0 = {1000.1]’

¥ =13-10"°.

Notice that V = (x — 2¢)T R(z — x0) is centered very close
to the mean of the system ([100 1000]T). Following the
method of Subsection we can compute the level set of
QV which contains more than a% of the stationary mass
of the chain. A few of those sets are displayed on Fig. [I]
below, together with a logarithmic plot of the actual invariant
distribution of the system, obtained from SSA. The innermost
contour (corresponding to a lower bound of 80%) encloses
99% of the invariant probability.

While the lower bounds obtained are certainly conserva-
tive, we are nevertheless able to capture the region of high
stationary density of the system with relatively good accu-
racy. On the other hand, this choice results in a very simple
SDP that can be solved in 0.38 seconds using YALMIP [11]
with the SDPT3 solver in Matlab.

Turning to moment upper bounds, solution of problem (T0)
for various choices of f are presented in Table [I| below.

2Almost identical results are obtained with D = {(m,p) : 0 < m <
104, 0 < p < 10*} and D = {(m,p) : m? + p? < 10%}
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Fig. 1. Contour lines of QV overlayed to the logarithm (base 10) of the
invariant distribution of the system, obtained from stochastic simulation. The
percentages next to each line denote the optimization-based lower bound on
the stationary mass enclosed by it.

TABLE I
UPPER MOMENT BOUNDS OBTAINED FROM OPTIMIZATION PROBLEM
(10), COMPARED AGAINST THEIR TRUE VALUES.

Function Upper bound Actual value
f=m 100+9-10—° 100
f=p» 1000 +1-10~7 1000
f=m? 10100 10100
f=p? 1.002 - 10° 1.0019 - 108

f=m-p 1.002 - 10° 1.0009 - 10°

B. A linear system with three species

The system is described by the following reactions:

%5 e
10 0.1

S1 — Sy — &
20 0.1

Sy — S3 — &

Ss 2% 5,

We denote by X;(t), X2(t) and X5(t) the abundance at
time ¢t of Si, Sy and S5 respectively. The reader should
hopefully be able to “translate” the reactions above into
the corresponding transition vectors and rates, based on the
presentation of the previous example.

Again, we first determine the region where the stationary
density of this system is concentrated. Solution of (@) with
D = {(z1,22,23) : 0 < z1 < 1000,0 < x5 < 1000,0 <
x3 < 1000} provides us with

0.225 0.221 0.222 54.48
R= {0221 0223 0.221|, 20= |259|, b =10"%
0.222 0.221 0.224 17.45

Again, we notice that V. = (z — z9)TR(z — m0)
is centered very close to the mean of the system
([54.7 27.21 18.08] T). The level set of QV which con-
tains more than 90% of the stationary mass of the chain is
the interior of the contour surface shown on Figure [2]

Fig. 2. Contour surface of QV corresponding to a 90% lower bound
probability. The actual stationary mass contained in the set is about 99%.
Blue dots mark the points visited by a long chain sample path at stationarity.

To demonstrate the relation of the level set size to the
actual volume that the chain explores, the points that are
visited by a long sample of the chain are also marked in the
plot, as it is impossible to display graphically the contours of
the stationary distribution in 3-D. We observe that the high-
density region is captured quite well. Optimization took 0.5
sec with YALMIP and SDPTS3.

The upper bounds for first- and second-order moments are
displayed on Table

TABLE II
UPPER MOMENT BOUNDS OBTAINED FROM OPTIMIZATION PROBLEM
(10), COMPARED AGAINST THEIR TRUE VALUES.

Function Upper bound | Actual value
f=x1 54.70 54.70
f=x2 27.21 27.21
f=x3 18.08 18.08
f=2a? 3047.01 3047.01
f=z2p 767.86 767.86
f= :ch -p 345.07 345.07
f=x1 22 1506.85 1488.71
f=21 23 1003.67 989.17

C. A nonlinear system with three species

Our final example is a system described by the following
reaction scheme:

10 1
g—5 >0
10 1
I — S -

Si+5 5 s Lo,

with X, Y and Z denoting the abundance of S;, S and
S3 respectively. Due to the presence of the bimolecular
reaction, candidate quadratic Lyapunov functions for this
system must satisfy R - [—1 -1 1] " = 0 for the resulting
optimization problem to remain in SDP form. Under this
constraint, the Lyapunov function that optimally determines



the region of maximum stationary density is given by V =
zT Rx — 22T Rz, where

0.26 -0.09 0.17 0.016
R={-0.09 026 0.17|-10"2% Rxo= |0.016
0.17 017 0.34 0.033

Because R is singular, x¢ cannot be determined separately.
This poses no problem for our approach, as we explained in
Section The level set of QV corresponding to a lower
bound of 90% is displayed on Figure 3] Optimization took
0.4 seconds in YALMIP with the SDPT3 solver.

Fig. 3. Contour surface of QV corresponding to a 90% lower bound
probability. The actual stationary mass contained in the set is about 99.9%.
Blue dots mark the points visited by a long chain sample path.

VI. DISCUSSION & OUTLOOK

Apart from proving stability, Lyapunov functions for de-
terministic systems are useful in many different ways, for
example in estimating the region of attraction of a given
equilibrium point or providing convergence rates. In a similar
fashion, the well-established theory of stochastic Lyapunov
functions for Markov chains has turned them into useful
tools for probing the stationary system behavior, besides
determining ergodicity. In this work, we have presented an
optimization-based approach to Lyapunov function design
for locating regions of high stationary probability and bound-
ing moments of CTMCs.

We have shown that even simple quadratic Lyapunov
functions can capture a lot about the stationary behavior of a
CTMC, and thus provide information about a system without
the need for stochastic simulation. The results of this anal-
ysis can be used, for example, to determine suitably small
truncations of the state space, on which approximate solution
methods such as the Finite State Projection algorithm [12]
can be applied.

Previous work has employed linear Lyapunov functions
to determine exponential ergodicity of CTMCs, and shown
that the search of such functions can often be reduced to
the solution of a linear program [13]. When the main goal
is to determine system stability, linear Lyapunov functions
can provide the simplest and most efficiently computable
certificates. However, when additional system properties are

of interest, linear functions are not sufficiently flexible to pro-
vide useful answers. For example, estimates of high-density
regions cannot be tight enough using a linear Lyapunov
function V, as the level sets of V' over the positive orthant are
polyhedra with n + 1 faces, n of which lie on the coordinate
axes. On the other hand, the level sets of quadratic function
can be centered away from the origin, and thus provide much
tighter estimates of this type.

Due to space limitations, we chose to present the main
ideas of our approach only for chains with affine transition
rates. One could argue that such systems can be easily
studied using moment equations or even the closed form of
their probability density, which is available in several — but
not all — cases. We believe that one can take advantage of
this simplicity to check the soundness of a new approach,
before moving on to more complex systems with general
polynomial transition rates. The presence of such rates leads
to general polynomial optimization problems, that can be
solved using sum-of-squares (SOS) relaxations [14], in the
same spirit that polynomial Lyapunov functions are used to
study the stability of polynomial dynamical systems [15].
While the main ideas of our approach remain the same in
that case as well, the optimization problem setup becomes a
bit more intricate, and will therefore be the topic of a future
publication.
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