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Abstract

In this paper, we develop a novel unified methodology for grenfince and robustness analysis of
linear dynamical networks. We introduce the notion of systemeasures for the class of first—order linear
consensus networks. We classify two important types ofoperéince and robustness measures according
to their functional properties: convex systemic measums &chur—convex systemic measures. It is
shown that a viable systemic measure should satisfy sefugrddmental properties such as homogeneity,
monotonicity, convexity, and orthogonal invariance. lderto support our proposed unified framework,
we verify functional properties of several existing perfi@nce and robustness measures from the literature
and show that they all belong to the class of systemic meashtereover, we introduce new classes of
systemic measures based on (a version of) the well-knowmd®ia zeta function, input—output system
norms, and etc. Then, it is shown that for a given linear dyinahmetwork one can take several different
strategies to optimize a given performance and robustnegsmic measure via convex optimization.
Finally, we characterized an interesting fundamentaltlomithe best achievable value of a given systemic

measure after adding some certain number of new weightesseéddhe underlying graph of the network.

. INTRODUCTION

arXiv:1409.2201v1l [math.OC] 8 Sep 2014

The interest in control systems society for performancerahdstness analysis of large—scale dynamical
network is rapidly growing [1]-[8]. Improving global perimance as well as robustness to external distur-
bances in large—scale dynamical networks are crucial fstagwability, from engineering infrastructures
to living cells; examples include a group of autonomous eleliin a formation, distributed emergency
response systems, interconnected transportation neweniergy and power networks, metabolic path-

ways and even financial networks. One of the fundamentallgmub in this area is to determine to
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what extent uncertain exogenous inputs can steer the twags of a dynamical network away from its

working equilibrium point. To tackle this issue, the primarhallenge is to introduce meaningful and

viable performance and robustness measures that can eassential characteristics of the network.
A proper measure should be able to encapsulate transieatlyststate, macroscopic, and microscopic
features of the perturbed large-scale dynamical network.

In this paper, we propose a new unified methodology to clagsibper performance and robustness
measures for large—scale dynamical networks subject &rreadtstochastic disturbance inputs. We take
an axiomatic approach to quantify several essential ptiggeof a sensible measure. We introduce the
class ofsystemic measureand show that this class of measure should satisfy mondtgnpositive
homogeneity, convexity, and orthogonal invariance caomalt It is shown that several existing and widely
used performance measures in the literature are in facigdpeses of this class of systemic measures
[3], [6]. [O]-{11].

The performance analysis of linear consensus networkssubp external stochastic disturbances
has been studied inl[1]4[3],_[1L0]=[13], where tA&,—norm of the network was employed as a scalar
performance measure. Inl[1], the authors interpret#ienorm of the system as a macroscopic perfor-
mance measure capturing the notion of coherence. It hasdbeem that if the Laplacian matrix of the
underlying graph of the network is normal, th&—norm is a function of the eigenvalues of the Laplacian
matrix [3]. In [2], the authors consider general linear dyizal networks and show that tight lower and
upper bounds can be obtained for tHe—norm of the network from the exogenous disturbance input to
a performance output, which are functions of the eigengabfdhe state matrix of the network. Besides
the commonHy—norm approach, there are several other performance nesathat have been proposed
in [1], [6], [24].

In this paper, we show that classes of system—norm, speeindl entropy based performance and
robustness measures enjoy similar functional properlieese common properties enable us to identify
and classify such measures under one umbrella, so callednsigsmeasures. Particularly, we explore
new connections betweéi,—norm (for range of exponents< p < oo) of a first-order linear consensus
network with (a version of) the well-known Riemann zeta fiow of the Laplacian matrix of the
underlying graph of the network. We also characterize tlas<clof entropy—based performance and
robustness measures and show that this class of measuresddegosely to the number of spanning
trees in the underlying graph of the network.

The rest of the paper is organized as follows. Notation argicb@otions are defined in Section II.

The problem statement is addressed in Section Ill. By apglgin axiomatic approach in Section IV, we



characterize the class of systemic measures for conseeski®g networks. In Sections V and VI, some
subclasses of systemic measures are studied. In Sectipw&/fbcus on improving systemic performance

and robustness of first-order linear consensus networks.

II. MATHEMATICAL PRELIMINARIES

The sets of all positive and nonnegative real numbers aretddroy R, ; and R,, respectively.
Throughout this paper, it is assumed that all graphs areefisimple, undirected and connected. A
weighted graphg is represented by a triplé = (V(G), E(G),w), whereV(G) is the set of nodes,
E(G) C {{i,j} | i,j € V(G), i #j} is the set of edges, and : E(G) — R, is the weight function.
The degree of each node= V(G) is defined by

d; = Z w(e).

e={i,j}€E(G)
The adjacency matrixd = [a;;] of graph§ is defined by setting;; = w(e) if e = {i,j} € E(G),
otherwisea;; = 0. The Laplacian matrix of is defined byLg £ A — A, where A = diagdy, ..., d,].
The eigenvalues of.g are indexed in ascending ordgyr < Ay < --- < )\, and \; = 0. The Moore-
Penrose pseudo-inverse b§ is denoted bng = [l}i] which is a square, symmetric, doubly-centered
and positive semidefinite matrix.

Definition 1: The centering matrixof sizen is defined by

1

1
M, & I, - 51,115 =In——Ju,

where I, is then x n identity matrix, 1,, the n x 1 vector of all ones, and,, the n x n matrix of all
ones.

We denote the generalized matrix inequality with respedhto positive semidefinite cone by<"".
The beta function is defined by
I'(z)l(y)

T(z+y)’ @)

Blz,y) = /01 L1 — )y Ldt =

where Rz}, Re{y} > 0, andI'(.) is the well-known gamma function.

Definition 2: A real-valued functiory is permutation invariantf and only if f(x) = f(Px) for every
permutation matrixP € R™*",

Definition 3: The real-valued functiorf : R — R is Schur—convex iff(Dxz) < f(x) for every

doubly stochastic matrixD and allz € R}



[1l. PROBLEM STATEMENT
We consider the class of first-order linear consensus nksamrer a weighted grapi. Each node of
the graph with index represents a subsystem with state variable R for i = 1,...,n. The state of
the entire network is denoted hy= [ r1 Ty ... Tn }T. Suppose that the dynamics of this class of
networks are governed by

T = — Lgx
N(Lg:z0) (t) gz(t) +£(1) | @

y(t) = Mnx(t)

whereLg and M,, are the Laplacian and centering matricegpfespectively. The exogenous disturbance
input is denoted by (¢) and the output of the network hy(t). The exogenous disturbance input captures
the effect of the uncertain environment on the dynamicalvoet. One may represent dynamical system
@) by symbolN (Lg;zo), wherex is the initial condition of the network. For a given fixed ialt
condition zp, we can classify the set of all linear consensus netwg¥kd.g; o) and denote it by
N(x). Whenever it is not confusing, for simplicity of our notat®owe use notatioW (Lg) instead of

N (Lg; xo).

The linear dynamical network](2) can be viewed as a systemhas been already stabilized by a
linear state feedback control law and operating in clossap-| The sparsity pattern of the Laplacian
matrix Lg is imposed by the topology of the underlying graptand the corresponding weight function,
which models the coupling structure and strength among tibsystems in the closed-loop system.
The existence of such inherent sparsity—constraints ontdpelogy of the underlying graphs play a
foundational role in emergence of severe theoretical foreddal limits on the global performance and
robustness of this class of dynamical networks. The impacguch fundamental limits usually appear
as fundamental tradeoffs between various measures ofrpefece and robustness in the presence of
external disturbances, time—varying coupling structuessl various modeling uncertainties. Our main
objective is to propose an unified approach to analyze padnce and robustness of linear dynamical
networks subject to stochastic exogenous disturbancetsngod quantify limits of performance and

robustness due to the structure of the underlying graph i setworks.

IV. A UNIFIED FRAMEWORK FORSYSTEMIC MEASURES

We adopt an axiomatic approach to introduce and categorigengral class of performance and
robustness measures that capture our intuition of a mefahimgasure of performance and robustness in

large—scale dynamical networks. Our approach charaegesizveral properties that a sensible performance



and robustness measure should satisfy. Let us first defindasic algebraic operations on the space of

linear consensus network.

Definition 4: For every givenN (Lg, ), N (Lg,) € N(zo), the addition and scalar multiplication oper-

ations ont(z) is defined as follows:
()  N(Lg) + N(Lg,)=N(Lg, + Lg,)
(ii) aN(Lg,) = N(aLg,) for all positive scalars.

The addition operation of two linear consensus networksgisivalent to the edge union operation
on the underlying graphs of the two networks. The scalaripligihtion operation of a linear consensus

network is equivalent to scaling the weight function of thederlying graph.

Definition 5 (Convex Systemic MeasureBpr a given space of linear networf¥z), a convex sys-
temic measure is an operator 9M(z) — R with the following properties for allA/(Lg, ), N (Lg,) €
N(zo):

0] Positive homogeneity of degree —1: for all x>0

p(kN(Lg,)) = v 'p(N(Lg,)),
(i) Monotonicity: If LZH = Lg2 then
PN (Lg)) < p(N(Lg,)),
(iii) Convexity: forall 0 <a <1
pN(aLg, + (1 -a)Lg,)) <

ap(N(Lg,)) + (1 — a)p(N(Lg,))-

The monotonicity property imposes a partial ordering on ghace of network$1(z,) (see [9] for
some related discussions) and implies that a systemic meeass subadditiveover the set of all linear

consensus networks, i.e.,
p(N(Lg,) + N (Lg,)) < p(N(Lg,)) +p(N(Lg,)),

for all N (Lg,), N (Lg,) € M(xp). This property can be interpreted as a fundamental tradestifieen
systemic measures and sparsity of the underlying graphelagdd more edges to an existing graph, the

value of the systemic measure will decrease. For instanddé@orem 2 of[[15], we explicitly show this



relationship between th&;—norm of the system fron§ to y and the sparsity of the underlying graph.
The homogeneity property implies that among all graphs wd#ntical interconnection topologies, the
ones with larger (stronger) coupling weights have smalystesnic measures.

In some applications in dynamical networks, the desirefopmiance measures may not be positively
homogeneous of degreel. In these situations, we can relax Definitidn 5 by removing lemogeneity

property and replacing it by an orthogonal invariance priype

Definition 6 (Schur—Convex Systemic Measuré3)r a given space of linear networb¥z), a schur—
convex systemic measure is an operatofi(xzy) — R that satisfies properties (ii) and (iii) in Definition

and is orthogonally invariant, i.e.,
p(N(Lg)) = p(N(ULgU™)),

for all orthogonal matrice& U” = UTU = I,.

A Schur—convex systemic measure is a permutation invaftiguction of the Laplacian eigenvalues [9]. If
a real-valued function is convex and permutation invayitrgn it is a Schur—convex function [|16]. This
implies that all orthogonally invariant convex systemicasres are Schur—convex systemic measures
[Q], but vice versa is not always true.

Some important examples of convex and Schur—convex syster@asures are summarized in Table
I In the following sections, we will classify general classof such systemic measures and show that
our unified framework provides convex and tractable fortioies to optimize systemic measures for the

class of linear consensus networks.

V. CONVEX SYSTEMIC MEASURES

Our focus will be on two important classes of convex systeméasures. First, we investigate convex
performance and robustness measures that are defined psicigas properties of the underlying graph.
Next, we consider a class of convex systemic measure thadfised based on spatial specifications of
the underlying graph. In the following, we discuss that éhiego seemingly different classes of measures

enjoy similar fundamental properties as described in Didimi5.

A. Spectral-Based Systemic Measures

In this subsection, we classify an important class of corsyestemic measures that are defined using

Laplacian eigenvalues of the underlying graphs. Sever-Hweown and widely used performance and



o(.) | Schur—convex systemic measqretonvex systemic measure

Convergence time of the first—order
consensus networks;:- v v
Laplacian energy of the first—order
consensus network§-' ) 53— v v
Laplacian energy of the second—order
consensus network$:! , == v
Normalized higher order Laplacian energy [of
1

consensus network:{:zzl:2 %) ’ v v
Local error of first-order
consensus dynamicg: >,y (g) - v
‘H,—norms of first-order
consensus networks: for all< p < co v
Entropy of the first—order
consensus networks: > , log \; v

TABLE I: Examples of convex systemic measures and Schur—convesnsgsineasures.

robustness measures for linear consensus networks aedicdavex systemic measures (see Table 1). In
the following, we identify a general subclass of orthoggnaivariant convex systemic measures based

on spectral zeta function.

Definition 7: For a given Laplacian matriXg, the correspondingpectral zeta functiors a complex—

valued function and is defined by

(olp) £ DN,

X0

where \;’s are eigenvalues of the Laplacian matrix gnés a real number.

Theorem 1:For some given parametets< p < co andk > 0, the following spectral-based measure

o=

p(N(Lg)) = k(¢g(p)7, 3)

is an orthogonally invariant convex systemic measure foA&(Lg) € 9(zo).
The spectral-based systemic measlie (3) includes sevetakmown performance and robustness

measures as its special cases. We discuss some of theseWases — oo, we have

o=

p(N(Lg)) = klim (Cop)F = =

p—+o0 Ao



In this case, our proposed spectral-based systemic megetiuees to the rate of convergence of the
consensus process in dynamical netwfKLg). On the other hand, if — —oo, our systemic measure

boils down to

o =
|

pN(Lg)) = k lim (Cop))” = 1

For p = 1, our proposed spectral-based systemic measure is exacty ® the first—order Laplacian
energy ofAV/(Lg) with exogenous white Gaussian noise input with identityas@nce[[15]. In this case,

we have

pN(Le) = D5 = 56l

which is indeed equal to thH,—norm of the system from the exogenous disturbance inpute@titput.
Whenp = 2, our proposed systemic measure is equal to the second-t@pkacian energy of a second-
order linear consensus network. For an extensive disqussidhis case, we refer the readerltd [2], [4],
[15].

VI. SCHUR—CONVEX SYSTEMIC MEASURES

In this section, we turn our attention to two important céssef Schur—convex systemic measures.

Some important examples of such Schur—convex systemicuresaare summarized in Talile I.

A. H,—Based Systemic Measures

This class of systemic measures is defined using the Schattearm of a matrix[[1/7]

||AHP* = (Z Jf) )
=1

whereo;’s are singular values afl and1 < p < co. The Schattep—norms are unitary invariant norms.
Whenp = 2, the Schatten norm reduces to the well-known Frobenius mbmanmatrix. Forp = oo, the

Schatten norm is equivalent to the spectral norm, i.e., ideded2—norm of a matrix.

Theorem 2:For a given linear consensus netwolK(Lg) € 91(z), let us define the input-output

‘H,—norm of the network for every < p < oo by

oo, = (o [ 1661 a)°



whereG(s) is the transfer function of the netwoiki (2) frofiit) to y(¢) and||.||,- is the Schattep-norms.
Then,

p(N(Lg)) = [G(5)lln, (4)

is a Schur—convex systemic measure forlaff p < cc.
The H,—norm based systemic measures captures several impoesdotrpance and robustness features
of large—scale dynamical networks. For exponent 2, the systemic measurgl (4) is equivalent to the

input-outputH,—norm of the network

G = (X o) ®

i=2
where \;’s are the eigenvalues adfg. This systemic measure quantifies to what extend the effect o
exogenous stochastic disturbance inputs propagate thootighe network![6],[[15]. It can also capture
a notion of coherence in linear consensus netwarks [1]. Atather end of the spectrum when= oo,

the systemic measurgl (4) is equivalent to the input-outpyt-norm of the network

GG = 5o ©)
where ), is the second largest eigenvaluelgf, i.e., the algebraic connectivity of gragh This measure
can be viewed as the maximum system gain when inputs are talezrall measurable signals with finite
energy, i.e., input signals id?([0,00); R™). In this case, the corresponding systemic measure carries
important information about the worst—case input that cateribrate the performance of the network
significantly. Moreover, this systemic measure has imfibes for disturbance rejection and can be
viewed as a measure of robust stability. The following reshbws that there is a close relationship
between?{,—norm based systemic measures and the spectral-basex systemic measures.

Theorem 3:For a given linear consensus netwosk(Lg) € 91(zo), we have

-1
GO, = 57T
T BGD

for everyl < p < oo, where(g(.) is the zeta function of the underlying graphand 3(., .) is the Beta

Cg(p—1) ()

function.

The result of Theorerhl 3 asserts that there is an inherertioredaip between the system-theoretic
properties large—scale dynamical networks and the stalcpuoperties of the underlying graph of the
network. The zeta—function of a graph can be related to uaraharacteristics of the graph and it can be

shown that how it scales with the network size. We refer tlaelee to [15] for an extensive discussion.



B. Systemic Measures Generated by Schur—Convex Sums

The second important class of Schur—convex systemic messsrgenerated by sums of convex
decreasing functions (also known as Schur—convex sumsgaplfatian eigenvalues.
Theorem 4:Suppose thaf : R. — R is a decreasing convex function. For eveW{(Lg) € M(zo),

the class of measures that are defined by
p(N(Lg)) = D f(N), @)

are Schur—convex systemic measure.

Several examples of well-known performance and robusimessures that belong to the class of Schur—
convex systemic measures are listed in Table I. The first-sandnd—order Laplacian energies are studied
in detailed in [[15]. In order to show how a systemic measure lxa related to the structural properties

of the underlying graph of the network, we focus on the follmyvSchur—convex systemic measure
p(N(Lg)) = —) log. 9)
=2

This measure is also known as antropy measure for linear consensus networks [9]. The systemic
measure[(9) can be interpreted as the logarithm of minimatoave ellipsoid covering the projection of
steady-state output vectors &f(Lg) alongker(Lg) ontoker(Lg)*. Let us denote the total number of

spanning trees of the underlying gragh= (V' (G), E(G),w) of the network by
TG £ > I wee)
T e€E(T)
where the summation runs over all spanning trgesf G.

Lemma 1:For a given linear consensus netwokk(Lg) € M(xy), the systemic entropy measufé (9)

can be calculated by

PN L)) = tox (s ). (10)

wherer(G) is the total number of spanning trees®fandn is the number of nodes.

VIlI. CONVEX OPTIMIZATION BASED FORMULATIONS TO IMPROVE SYSTEMIC MEASURES

In this section, we formulate several convex optimizatioobtems in order to design network topolo-
gies with minimal systemic measures. Specifically, we agrsihree interesting scenarios for mini-

mization of systemic measures by: adjusting edge weights dynamical network with fixed topology,



rewiring the underlying graph, and adding new edges to thaertlying graph of the network. In the

following subsections, we will discuss these cases in metaild.

A. Adjusting Edge Weights in Dynamical Networks with Fixegologies.

We investigate the problem of allocating new additionalgi#s to some edges of a graph of a network
in order to minimize a given convex or Schur—convex systemé@asure subject to the constraint that
the sum of all allocated weights have to add up to a given eanstThis constant can be normalized to
number one. It is knowri [18] that whenis a permutation invariant closed convex function of Lajgac
eigenvalues, thep can be rewrite as a convex function of edge weights= [w; wsy ... wy,]T. This
implies that for Schur—convex systemic measures our dgsigslem can be cast as a convex optimization
problem and solved efficiently in polynomial time. Suppdsattwe are given a systemic measpurthat
is defined as a real-valued function of the pseudo-inversieof aplacian matrix of the underlying graph.

The problem of adjusting edge weights in a dynamical netwuth fixed topology can be cast as

Minimize p(N(Lg)) = ¢(L})

subject to: w>0, 1lw=1

Let us now consider the following auxiliary Semidefinite graming problem (see [19] for similar
techniques):
Minimize p(N(Lg)) = ¢(Y —1.J,)
subject to: 1w =1, w >0,
Lo+ +Jy In
I, Y

wherew € R andY € R"*" is the slack symmetric matrix. In order to show that these pnablems

are equivalent, we look at the Schur complement of block imatr

Lg+2J, I,
I, Y

which is equivalent td@” — 1/nJ, = Lg. According to the monotonicity property of a systemic measu
one can conclude that minimizing the Semidefinite programgmproblem minimizes the original problem
with cost functionqS(Lg).

There are several important Schur—convex systemic measha¢ can be written as a function of

the pseudo-inverse of the Laplacian matrix of the undeglygnaph. For instance, let us consider the



problem of minimizing the first—order Laplacian energy ofireeér consensus network by adjusting the
edge weights while the topology of the underlying graph igdiXseel[9] for more details). For a total
effective resistance interpretation of this minimizatjmoblem, we refer the reader to [19]. We can cast
this design problem as

Minimize p(N(Lg)) = $TrLf

subject to: w >0, 17w=1.
With our proposed reformulation technique, we can equinthlesolve the following convex optimization

problem to minimize the Laplacian energy
Minimize p(./\/(Lg)) =1iTry — 1
subject to: 1w =1, w>0,
Lg + %Jn I,
I, Y

= 0,
with w € R™ andY € R™*" is the slack symmetric matrix.

B. Rewiring the Underlying Graph of the Network

In the second scenario, we focus on the problem of rewiriegutiderlying graph of a linear consensus
network in order to minimize a given Schur—convex systenmeasure. The total number of edges and their
weights that can participate in rewiring is given and fixedpfose that the set of all simple connected
graphs withn nodes,n edges an@eeE(g)w(e) = o by M, ,,, . Our network design problem can be

cast as

Minimize p(N(Lg))

subject to: G € M, .0 7
wherep is a given Schur—convex systemic measure. It can be showwtien all edge weights are equal,
the resulting graph after removirigdisjoint edges fromiC,, (complete graph witl nodes) minimizes
all Schur—convex measures over all simple connected grafthsn nodes and@ — k edges. For
example, among all linear consensus networks with unwetigtederlying graphs witht nodes andi

edges, those networks with cyclic topologies minimize alh@—convex systemic measures.



C. Adding New Edges to the Graph of the Network

We limit our discussion only to linear consensus netwokk.g) € (o) endowed with the following

class of Schur—convex systemic measures
p(N(Lg)) = D f(N), (11)

where f is a real-valued decreasing convex function &imd,_,., f(x) = 0. We refer to Tablé]l for
some examples of this class of systemic measures. Let useddr® resulting network after adding at
most k£ edges to the underlying graph of the networkM/(Lgew). The following result characterizes
a fundamental limiton the best achievable value for the systemic measure afténgat mostt new

arbitrary weighted edges to the underlying graph of the agkw

Theorem 5:Suppose that linear consensus netwdfkLg) € 91(z() is endowed with the performance
and robustness systemic measlré (11). There is a funddriemitaon the best achievable performance
and robustness systemic measure through adding atAnustv arbitrary weighted edges to the graph

of the network, i.e.,

p(N(LE™) = > F(N), (12)

1=k+2

where \;'s are the Laplacian eigenvalues of the original graph ofrtbvork before adding new edges.

VIIl. CONCLUSION

In this paper, we proposed a new unified mathematical frameteostudy performance and robustness
analysis in linear dynamical networks. Our main focus waghanclass of first—order linear consensus
networks. We introduced the notion of systemic measureshisrclass of networks. Two major classes
of performance and robustness measures were classifiegexcegstemic measures and Schur—convex
systemic measures. Depending on the application, it wasisied that a viable systemic measure should
satisfy several fundamental properties such as homogemadnotonicity, convexity, and orthogonal
invariance. Then, we showed that for a given linear dynahrnieawork one can take several different
strategies to optimize a given performance and robustiyeassrsic measure. Several convex optimization
problems were formulated to minimize a given systemic mesdiy: adjusting edge weights in a
dynamical network with fixed topology, rewiring the undénly graph, and adding new edges to the
underlying graph of the network. Finally, we characteriaedinteresting fundamental limit on the best
achievable value of a given systemic measure after addimg surtain number of new weighted edges

to the underlying graph of the network.
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