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Systemic Measures for Performance and Robustness of

Large–Scale Interconnected Dynamical Networks

Milad Siami† and Nader Motee†

Abstract

In this paper, we develop a novel unified methodology for performance and robustness analysis of

linear dynamical networks. We introduce the notion of systemic measures for the class of first–order linear

consensus networks. We classify two important types of performance and robustness measures according

to their functional properties: convex systemic measures and Schur–convex systemic measures. It is

shown that a viable systemic measure should satisfy severalfundamental properties such as homogeneity,

monotonicity, convexity, and orthogonal invariance. In order to support our proposed unified framework,

we verify functional properties of several existing performance and robustness measures from the literature

and show that they all belong to the class of systemic measures. Moreover, we introduce new classes of

systemic measures based on (a version of) the well–known Riemann zeta function, input–output system

norms, and etc. Then, it is shown that for a given linear dynamical network one can take several different

strategies to optimize a given performance and robustness systemic measure via convex optimization.

Finally, we characterized an interesting fundamental limit on the best achievable value of a given systemic

measure after adding some certain number of new weighted edges to the underlying graph of the network.

I. INTRODUCTION

The interest in control systems society for performance androbustness analysis of large–scale dynamical

network is rapidly growing [1]–[8]. Improving global performance as well as robustness to external distur-

bances in large–scale dynamical networks are crucial for sustainability, from engineering infrastructures

to living cells; examples include a group of autonomous vehicles in a formation, distributed emergency

response systems, interconnected transportation networks, energy and power networks, metabolic path-

ways and even financial networks. One of the fundamental problems in this area is to determine to
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what extent uncertain exogenous inputs can steer the trajectories of a dynamical network away from its

working equilibrium point. To tackle this issue, the primary challenge is to introduce meaningful and

viable performance and robustness measures that can capture essential characteristics of the network.

A proper measure should be able to encapsulate transient, steady–state, macroscopic, and microscopic

features of the perturbed large-scale dynamical network.

In this paper, we propose a new unified methodology to classify proper performance and robustness

measures for large–scale dynamical networks subject to external stochastic disturbance inputs. We take

an axiomatic approach to quantify several essential properties of a sensible measure. We introduce the

class ofsystemic measuresand show that this class of measure should satisfy monotonicity, positive

homogeneity, convexity, and orthogonal invariance conditions. It is shown that several existing and widely

used performance measures in the literature are in fact special cases of this class of systemic measures

[3], [6], [9]–[11].

The performance analysis of linear consensus networks subject to external stochastic disturbances

has been studied in [1]–[3], [10]–[13], where theH2–norm of the network was employed as a scalar

performance measure. In [1], the authors interpret theH2–norm of the system as a macroscopic perfor-

mance measure capturing the notion of coherence. It has beenshown that if the Laplacian matrix of the

underlying graph of the network is normal, theH2–norm is a function of the eigenvalues of the Laplacian

matrix [3]. In [2], the authors consider general linear dynamical networks and show that tight lower and

upper bounds can be obtained for theH2–norm of the network from the exogenous disturbance input to

a performance output, which are functions of the eigenvalues of the state matrix of the network. Besides

the commonH2–norm approach, there are several other performance measures that have been proposed

in [1], [6], [14].

In this paper, we show that classes of system–norm, spectral, and entropy based performance and

robustness measures enjoy similar functional properties.These common properties enable us to identify

and classify such measures under one umbrella, so called systemic measures. Particularly, we explore

new connections betweenHp–norm (for range of exponents1 ≤ p ≤ ∞) of a first-order linear consensus

network with (a version of) the well–known Riemann zeta function of the Laplacian matrix of the

underlying graph of the network. We also characterize the class of entropy–based performance and

robustness measures and show that this class of measures depends closely to the number of spanning

trees in the underlying graph of the network.

The rest of the paper is organized as follows. Notation and basic notions are defined in Section II.

The problem statement is addressed in Section III. By applying an axiomatic approach in Section IV, we



characterize the class of systemic measures for consensus seeking networks. In Sections V and VI, some

subclasses of systemic measures are studied. In Section VII, we focus on improving systemic performance

and robustness of first-order linear consensus networks.

II. M ATHEMATICAL PRELIMINARIES

The sets of all positive and nonnegative real numbers are denoted byR++ and R+, respectively.

Throughout this paper, it is assumed that all graphs are finite, simple, undirected and connected. A

weighted graphG is represented by a tripleG = (V (G), E(G), w), whereV (G) is the set of nodes,

E(G) ⊂
{

{i, j}
∣

∣ i, j ∈ V (G), i 6= j
}

is the set of edges, andw : E(G) → R++ is the weight function.

The degree of each nodei ∈ V (G) is defined by

di ,
∑

e={i,j}∈E(G)

w(e).

The adjacency matrixA = [aij] of graphG is defined by settingaij = w(e) if e = {i, j} ∈ E(G),

otherwiseaij = 0. The Laplacian matrix ofG is defined byLG , ∆ −A, where∆ = diag[d1, . . . , dn].

The eigenvalues ofLG are indexed in ascending orderλ1 ≤ λ2 ≤ · · · ≤ λn andλ1 = 0. The Moore-

Penrose pseudo-inverse ofLG is denoted byL†
G = [l†ji] which is a square, symmetric, doubly-centered

and positive semidefinite matrix.

Definition 1: The centering matrixof sizen is defined by

Mn , In −
1

n
1n1

T
n = In −

1

n
Jn,

whereIn is then × n identity matrix,1n the n × 1 vector of all ones, andJn the n × n matrix of all

ones.

We denote the generalized matrix inequality with respect tothe positive semidefinite cone by “� ”.

The beta function is defined by

β(x, y) =

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)
, (1)

where Re{x},Re{y} > 0, andΓ(.) is the well–known gamma function.

Definition 2: A real–valued functionf is permutation invariantif and only if f(x) = f(Px) for every

permutation matrixP ∈ R
n×n.

Definition 3: The real–valued functionf : Rn
+ → R is Schur–convex iff(Dx) ≤ f(x) for every

doubly stochastic matrixD and allx ∈ R
n
+.



III. PROBLEM STATEMENT

We consider the class of first-order linear consensus networks over a weighted graphG. Each node of

the graph with indexi represents a subsystem with state variablexi ∈ R for i = 1, . . . , n. The state of

the entire network is denoted byx =
[

x1 x2 . . . xn

]T

. Suppose that the dynamics of this class of

networks are governed by

N (LG ;x0) :











ẋ(t) = − LGx(t) + ξ(t)

y(t) = Mnx(t)

, (2)

whereLG andMn are the Laplacian and centering matrices ofG, respectively. The exogenous disturbance

input is denoted byξ(t) and the output of the network byy(t). The exogenous disturbance input captures

the effect of the uncertain environment on the dynamical network. One may represent dynamical system

(2) by symbolN (LG ;x0), wherex0 is the initial condition of the network. For a given fixed initial

condition x0, we can classify the set of all linear consensus networksN (LG ;x0) and denote it by

N(x0). Whenever it is not confusing, for simplicity of our notations we use notationN (LG) instead of

N (LG ;x0).

The linear dynamical network (2) can be viewed as a system that has been already stabilized by a

linear state feedback control law and operating in closed–loop. The sparsity pattern of the Laplacian

matrix LG is imposed by the topology of the underlying graphG and the corresponding weight function,

which models the coupling structure and strength among the subsystems in the closed–loop system.

The existence of such inherent sparsity–constraints on thetopology of the underlying graphs play a

foundational role in emergence of severe theoretical fundamental limits on the global performance and

robustness of this class of dynamical networks. The impactsof such fundamental limits usually appear

as fundamental tradeoffs between various measures of performance and robustness in the presence of

external disturbances, time–varying coupling structures, and various modeling uncertainties. Our main

objective is to propose an unified approach to analyze performance and robustness of linear dynamical

networks subject to stochastic exogenous disturbance inputs and quantify limits of performance and

robustness due to the structure of the underlying graph of such networks.

IV. A U NIFIED FRAMEWORK FORSYSTEMIC MEASURES

We adopt an axiomatic approach to introduce and categorize ageneral class of performance and

robustness measures that capture our intuition of a meaningful measure of performance and robustness in

large–scale dynamical networks. Our approach characterizes several properties that a sensible performance



and robustness measure should satisfy. Let us first define twobasic algebraic operations on the space of

linear consensus network.

Definition 4: For every givenN (LG1
),N (LG2

) ∈ N(x0), the addition and scalar multiplication oper-

ations onN(x0) is defined as follows:

(i) N (LG1
) + N (LG2

) = N (LG1
+ LG2

)

(ii) αN (LG1
) = N (αLG1

) for all positive scalarsα.

The addition operation of two linear consensus networks is equivalent to the edge union operation

on the underlying graphs of the two networks. The scalar multiplication operation of a linear consensus

network is equivalent to scaling the weight function of the underlying graph.

Definition 5 (Convex Systemic Measures):For a given space of linear networksN(x0), a convex sys-

temic measure is an operatorρ : N(x0) → R with the following properties for allN (LG1
),N (LG2

) ∈

N(x0):

(i) Positive homogeneity of degree −1: for all κ > 0

ρ
(

κN (LG1
)
)

= κ−1ρ
(

N (LG1
)
)

,

(ii) Monotonicity: If L†
G1

� L†
G2

then

ρ
(

N (LG1
)
)

≤ ρ
(

N (LG2
)
)

,

(iii) Convexity: for all 0 ≤ α ≤ 1

ρ
(

N (αLG1
+ (1− α)LG2

)
)

≤

αρ
(

N (LG1
)
)

+ (1− α)ρ
(

N (LG2
)
)

.

The monotonicity property imposes a partial ordering on thespace of networksN(x0) (see [9] for

some related discussions) and implies that a systemic measure ρ is subadditiveover the set of all linear

consensus networks, i.e.,

ρ
(

N (LG1
) +N (LG2

)
)

≤ ρ
(

N (LG1
)
)

+ ρ
(

N (LG2
)
)

,

for all N (LG1
),N (LG2

) ∈ N(x0). This property can be interpreted as a fundamental tradeoffbetween

systemic measures and sparsity of the underlying graph. If we add more edges to an existing graph, the

value of the systemic measure will decrease. For instance inTheorem 2 of [15], we explicitly show this



relationship between theH2–norm of the system fromξ to y and the sparsity of the underlying graph.

The homogeneity property implies that among all graphs withidentical interconnection topologies, the

ones with larger (stronger) coupling weights have smaller systemic measures.

In some applications in dynamical networks, the desired performance measures may not be positively

homogeneous of degree−1. In these situations, we can relax Definition 5 by removing the homogeneity

property and replacing it by an orthogonal invariance property.

Definition 6 (Schur–Convex Systemic Measures):For a given space of linear networksN(x0), a schur–

convex systemic measure is an operatorρ : N(x0) → R that satisfies properties (ii) and (iii) in Definition

5 and is orthogonally invariant, i.e.,

ρ
(

N (LG)
)

= ρ
(

N (ULGU
T )
)

,

for all orthogonal matricesUUT = UTU = In.

A Schur–convex systemic measure is a permutation invariantfunction of the Laplacian eigenvalues [9]. If

a real–valued function is convex and permutation invariant, then it is a Schur–convex function [16]. This

implies that all orthogonally invariant convex systemic measures are Schur–convex systemic measures

[9], but vice versa is not always true.

Some important examples of convex and Schur–convex systemic measures are summarized in Table

I. In the following sections, we will classify general classes of such systemic measures and show that

our unified framework provides convex and tractable formulations to optimize systemic measures for the

class of linear consensus networks.

V. CONVEX SYSTEMIC MEASURES

Our focus will be on two important classes of convex systemicmeasures. First, we investigate convex

performance and robustness measures that are defined using spectral properties of the underlying graph.

Next, we consider a class of convex systemic measure that is defined based on spatial specifications of

the underlying graph. In the following, we discuss that these two seemingly different classes of measures

enjoy similar fundamental properties as described in Definition 5.

A. Spectral–Based Systemic Measures

In this subsection, we classify an important class of convexsystemic measures that are defined using

Laplacian eigenvalues of the underlying graphs. Several well–known and widely used performance and



ρ(.) Schur–convex systemic measureConvex systemic measure

Convergence time of the first–order
consensus networks:1

λ2

X X

Laplacian energy of the first–order
consensus networks:

∑n

i=2
1

2λi
X X

Laplacian energy of the second–order
consensus networks:

∑n

i=2
1

2λ2

i

X

Normalized higher order Laplacian energy of

consensus networks:
(

∑n

i=2
1
λ
p

i

)
1

p

X X

Local error of first-order
consensus dynamics:12

∑

i∈V (G)
1
di

X

Hp–norms of first-order
consensus networks: for all1 ≤ p ≤ ∞ X

Entropy of the first–order
consensus networks:−

∑n

i=2 logλi X

TABLE I: Examples of convex systemic measures and Schur–convex systemic measures.

robustness measures for linear consensus networks are indeed convex systemic measures (see Table I). In

the following, we identify a general subclass of orthogonally invariant convex systemic measures based

on spectral zeta function.

Definition 7: For a given Laplacian matrixLG, the correspondingspectral zeta functionis a complex–

valued function and is defined by

ζG(p) ,
∑

λi 6=0

λ−p
i ,

whereλi’s are eigenvalues of the Laplacian matrix andp is a real number.

Theorem 1:For some given parameters1 ≤ p ≤ ∞ andk > 0, the following spectral–based measure

ρ
(

N (LG)
)

= k
(

ζG(p)
)

1

p , (3)

is an orthogonally invariant convex systemic measure for all N (LG) ∈ N(x0).

The spectral–based systemic measure (3) includes several well–known performance and robustness

measures as its special cases. We discuss some of these cases. Whenp → ∞, we have

ρ
(

N (LG)
)

= k lim
p→∞

(

ζG(p)
)

1

p =
k

λ2
.



In this case, our proposed spectral–based systemic measurereduces to the rate of convergence of the

consensus process in dynamical networkN (LG). On the other hand, ifp → −∞, our systemic measure

boils down to

ρ
(

N (LG)
)

= k lim
p→−∞

(

ζG(p)
)

1

p =
k

λn

.

For p = 1, our proposed spectral–based systemic measure is exactly equal to the first–order Laplacian

energy ofN (LG) with exogenous white Gaussian noise input with identity covariance [15]. In this case,

we have

ρ
(

N (LG)
)

=

n
∑

i=2

1

2λi

=
1

2
ζG(1),

which is indeed equal to theH2–norm of the system from the exogenous disturbance input to the output.

Whenp = 2, our proposed systemic measure is equal to the second–orderLaplacian energy of a second-

order linear consensus network. For an extensive discussion on this case, we refer the reader to [2], [4],

[15].

VI. SCHUR–CONVEX SYSTEMIC MEASURES

In this section, we turn our attention to two important classes of Schur–convex systemic measures.

Some important examples of such Schur–convex systemic measures are summarized in Table I.

A. Hp–Based Systemic Measures

This class of systemic measures is defined using the Schattenp–norm of a matrix [17]

‖A‖p∗ =

(

n
∑

i=1

σp
i

)
1

p

,

whereσi’s are singular values ofA and1 ≤ p ≤ ∞. The Schattenp–norms are unitary invariant norms.

Whenp = 2, the Schatten norm reduces to the well–known Frobenius normof a matrix. Forp = ∞, the

Schatten norm is equivalent to the spectral norm, i.e., the induced2–norm of a matrix.

Theorem 2:For a given linear consensus networkN (LG) ∈ N(x0), let us define the input-output

Hp–norm of the network for every1 ≤ p ≤ ∞ by

‖G(s)‖Hp
=

(

1

2π

∫ ∞

−∞
‖G(jω)‖pp∗ dω

)
1

p



whereG(s) is the transfer function of the network (2) fromξ(t) to y(t) and‖.‖p∗ is the Schattenp-norms.

Then,

ρ
(

N (LG)
)

= ‖G(s)‖Hp
(4)

is a Schur–convex systemic measure for all1 ≤ p ≤ ∞.

TheHp–norm based systemic measures captures several important performance and robustness features

of large–scale dynamical networks. For exponentp = 2, the systemic measure (4) is equivalent to the

input-outputH2–norm of the network

‖G(s)‖H2
=
(

n
∑

i=2

1

2λi

)
1

2

, (5)

whereλi’s are the eigenvalues ofLG. This systemic measure quantifies to what extend the effect of

exogenous stochastic disturbance inputs propagate throughout the network [6], [15]. It can also capture

a notion of coherence in linear consensus networks [1]. At the other end of the spectrum whenp = ∞,

the systemic measure (4) is equivalent to the input-outputH∞–norm of the network

‖G(s)‖H∞
=

1

λ2
, (6)

whereλ2 is the second largest eigenvalue ofLG, i.e., the algebraic connectivity of graphG. This measure

can be viewed as the maximum system gain when inputs are takenover all measurable signals with finite

energy, i.e., input signals inL2([0,∞);Rn). In this case, the corresponding systemic measure carries

important information about the worst–case input that can deteriorate the performance of the network

significantly. Moreover, this systemic measure has implications for disturbance rejection and can be

viewed as a measure of robust stability. The following result shows that there is a close relationship

betweenHp–norm based systemic measures and the spectral–based convex systemic measures.

Theorem 3:For a given linear consensus networkN (LG) ∈ N(x0), we have

‖G(s)‖pHp
=

−1

β(p2 ,−
1
2 )

ζG(p− 1) (7)

for every1 ≤ p ≤ ∞, whereζG(.) is the zeta function of the underlying graphG andβ(., .) is the Beta

function.

The result of Theorem 3 asserts that there is an inherent relationship between the system-theoretic

properties large–scale dynamical networks and the structural properties of the underlying graph of the

network. The zeta–function of a graph can be related to various characteristics of the graph and it can be

shown that how it scales with the network size. We refer the reader to [15] for an extensive discussion.



B. Systemic Measures Generated by Schur–Convex Sums

The second important class of Schur–convex systemic measures is generated by sums of convex

decreasing functions (also known as Schur–convex sums) of Laplacian eigenvalues.

Theorem 4:Suppose thatf : R+ → R is a decreasing convex function. For everyN (LG) ∈ N(x0),

the class of measures that are defined by

ρ
(

N (LG)
)

=

n
∑

i=2

f(λi), (8)

are Schur–convex systemic measure.

Several examples of well–known performance and robustnessmeasures that belong to the class of Schur–

convex systemic measures are listed in Table I. The first– andsecond–order Laplacian energies are studied

in detailed in [15]. In order to show how a systemic measure can be related to the structural properties

of the underlying graph of the network, we focus on the following Schur–convex systemic measure

ρ
(

N (LG)
)

= −

n
∑

i=2

log λi. (9)

This measure is also known as anentropy measure for linear consensus networks [9]. The systemic

measure (9) can be interpreted as the logarithm of minimum–volume ellipsoid covering the projection of

steady–state output vectors ofN (LG) alongker(LG) onto ker(LG)
⊥. Let us denote the total number of

spanning trees of the underlying graphG = (V (G), E(G), w) of the network by

τ (G) ,
∑

T

∏

e∈E(T )

w(e),

where the summation runs over all spanning treesT of G.

Lemma 1:For a given linear consensus networkN (LG) ∈ N(x0), the systemic entropy measure (9)

can be calculated by

ρ
(

N (LG)
)

= log

(

n

τ (G)

)

, (10)

whereτ (G) is the total number of spanning trees ofG andn is the number of nodes.

VII. C ONVEX OPTIMIZATION BASED FORMULATIONS TO IMPROVE SYSTEMIC MEASURES

In this section, we formulate several convex optimization problems in order to design network topolo-

gies with minimal systemic measures. Specifically, we consider three interesting scenarios for mini-

mization of systemic measures by: adjusting edge weights ina dynamical network with fixed topology,



rewiring the underlying graph, and adding new edges to the underlying graph of the network. In the

following subsections, we will discuss these cases in more details.

A. Adjusting Edge Weights in Dynamical Networks with Fixed Topologies.

We investigate the problem of allocating new additional weights to some edges of a graph of a network

in order to minimize a given convex or Schur–convex systemicmeasure subject to the constraint that

the sum of all allocated weights have to add up to a given constant. This constant can be normalized to

number one. It is known [18] that whenρ is a permutation invariant closed convex function of Laplacian

eigenvalues, thenρ can be rewrite as a convex function of edge weightsw = [w1 w2 . . . wm]T . This

implies that for Schur–convex systemic measures our designproblem can be cast as a convex optimization

problem and solved efficiently in polynomial time. Suppose that we are given a systemic measureρ that

is defined as a real–valued function of the pseudo-inverse ofthe Laplacian matrix of the underlying graph.

The problem of adjusting edge weights in a dynamical networkwith fixed topology can be cast as

Minimize ρ
(

N (LG)
)

= φ(L†
G)

subject to: w ≥ 0, 1
T
mw = 1

.

Let us now consider the following auxiliary Semidefinite programing problem (see [19] for similar

techniques):

Minimize ρ
(

N (LG)
)

= φ(Y − 1
n
Jn)

subject to: 1
T
mw = 1, w ≥ 0,





LG + 1
n
Jn In

In Y



 < 0,

wherew ∈ R
m andY ∈ R

n×n is the slack symmetric matrix. In order to show that these twoproblems

are equivalent, we look at the Schur complement of block matrix




LG + 1
n
Jn In

In Y



 < 0,

which is equivalent toY − 1/nJn < L†
G . According to the monotonicity property of a systemic measure,

one can conclude that minimizing the Semidefinite programming problem minimizes the original problem

with cost functionφ(L†
G).

There are several important Schur–convex systemic measures that can be written as a function of

the pseudo-inverse of the Laplacian matrix of the underlying graph. For instance, let us consider the



problem of minimizing the first–order Laplacian energy of a linear consensus network by adjusting the

edge weights while the topology of the underlying graph is fixed (see [9] for more details). For a total

effective resistance interpretation of this minimizationproblem, we refer the reader to [19]. We can cast

this design problem as

Minimize ρ
(

N (LG)
)

= 1
2TrL

†
G

subject to: w ≥ 0, 1
T
mw = 1.

With our proposed reformulation technique, we can equivalently solve the following convex optimization

problem to minimize the Laplacian energy

Minimize ρ
(

N (LG)
)

= 1
2TrY − 1

2

subject to: 1
T
mw = 1, w ≥ 0,





LG + 1
n
Jn In

In Y



 < 0,

with w ∈ R
m andY ∈ R

n×n is the slack symmetric matrix.

B. Rewiring the Underlying Graph of the Network

In the second scenario, we focus on the problem of rewiring the underlying graph of a linear consensus

network in order to minimize a given Schur–convex systemic measure. The total number of edges and their

weights that can participate in rewiring is given and fixed. Suppose that the set of all simple connected

graphs withn nodes,m edges and
∑

e∈E(G) ω(e) = α by Mn,m,α. Our network design problem can be

cast as

Minimize ρ
(

N (LG)
)

subject to: G ∈ Mn,m,α

,

whereρ is a given Schur–convex systemic measure. It can be shown that when all edge weights are equal,

the resulting graph after removingk disjoint edges fromKn (complete graph withn nodes) minimizes

all Schur–convex measures over all simple connected graphswith n nodes andn(n−1)
2 − k edges. For

example, among all linear consensus networks with unweigted underlying graphs with4 nodes and4

edges, those networks with cyclic topologies minimize all Schur–convex systemic measures.



C. Adding New Edges to the Graph of the Network

We limit our discussion only to linear consensus networksN (LG) ∈ N(x0) endowed with the following

class of Schur–convex systemic measures

ρ
(

N (LG)
)

=

n
∑

i=2

f(λi), (11)

where f is a real–valued decreasing convex function andlimx→∞ f(x) = 0. We refer to Table I for

some examples of this class of systemic measures. Let us denote the resulting network after adding at

most k edges to the underlying graph of the network byN
(

Lnew
G

)

. The following result characterizes

a fundamental limiton the best achievable value for the systemic measure after adding at mostk new

arbitrary weighted edges to the underlying graph of the network.

Theorem 5:Suppose that linear consensus networkN (LG) ∈ N(x0) is endowed with the performance

and robustness systemic measure (11). There is a fundamental limit on the best achievable performance

and robustness systemic measure through adding at mostk new arbitrary weighted edges to the graphG

of the network, i.e.,

ρ
(

N (Lnew
G )

)

≥

n
∑

i=k+2

f(λi), (12)

whereλi’s are the Laplacian eigenvalues of the original graph of thenetwork before adding new edges.

VIII. C ONCLUSION

In this paper, we proposed a new unified mathematical framework to study performance and robustness

analysis in linear dynamical networks. Our main focus was onthe class of first–order linear consensus

networks. We introduced the notion of systemic measures forthis class of networks. Two major classes

of performance and robustness measures were classified: convex systemic measures and Schur–convex

systemic measures. Depending on the application, it was discussed that a viable systemic measure should

satisfy several fundamental properties such as homogeneity, monotonicity, convexity, and orthogonal

invariance. Then, we showed that for a given linear dynamical network one can take several different

strategies to optimize a given performance and robustness systemic measure. Several convex optimization

problems were formulated to minimize a given systemic measure by: adjusting edge weights in a

dynamical network with fixed topology, rewiring the underlying graph, and adding new edges to the

underlying graph of the network. Finally, we characterizedan interesting fundamental limit on the best

achievable value of a given systemic measure after adding some curtain number of new weighted edges

to the underlying graph of the network.
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