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Abstract

We propose efficient techniques for generating independent identically distributed
uniform random samples inside semialgebraic sets. The proposed algorithm lever-
ages recent results on the approximation of indicator functions by polynomials to
develop acceptance/rejection based sample generation algorithms with guaranteed
performance in terms of rejection rate (the number of samples that should be gener-
ated in order to obtain an accepted sample). Moreover, the acceptance rate is shown
to be is asymptotically optimal, in the sense that it tends to one (all samples ac-
cepted) as the degree of the polynomial approximation increases. The performance
of the proposed method is illustrated by a numerical example.

1 Introduction

Generating independent uniformly distributed samples over “simple,” sets such as ℓp
norms, has been thoroughly studied and algorithms are available which efficiently solve
this problem; e.g., see [19]. However, efficient generation of independent uniformly dis-
tributed samples over general sets remains a difficult problem. This especially true
in the case where the set is of low volume, hard to localize and/or nonconvex or even
disconnected.

Although an interesting problem on its own, efficient sample generation can be used for
solving complex analysis and design problems. Examples of these are chance-constrained
optimization, robust optimization and multi-objective controller design, see e.g. [19] and
the many references therein.
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In this paper, we present some preliminary results that aim at solving the sample genera-
tion problem over semialgebraic sets with non-empty interior. More precisely, we leverage
recent results on polynomial approximation of indicator functions of sets defined by poly-
nomial inequalities [7] to develop algorithms that

i) Generate independent uniformly distributed samples over the given semialgebraic set;

ii) Have provable bounds on sample rejection rate;

iii) Have a rejection rate tends to zero as the degree of the polynomial approximation of
the indicator function increases.

The problem of random sample generation has been the subject of active research. Tech-
niques for univariate generation techniques are discussed e.g. in [8]. These methods, how-
ever, are not readily extendable to the sets usually encountered in robust control. Hence,
specific techniques for generating uniform (or radially symmetric) samples in the ℓp vector
norm ball are discussed in [18]. In the papers [3] and [4] methods for random sample gen-
eration in real and complex spectral norm balls are developed; see also [20] for generation
of matrices having a Toeplitz structure. The generation of causal stable dynamic operator
has been the subject of different studies. In [16] various techniques for generating random
samples inside the Schur stability region are discussed, while [17] presents an algorithm
for approximately generating uniform transfer functions in the RH∞ ball.

We remark that the methods discussed in this paper are non-asymptotic, contrary to
the Markov chain Monte Carlo techniques discussed for instance in [2, 14] and references
therein. In these papers, the desired distribution is obtained by simulating a random
walk on a graph. and the independence and uniformity properties are only guaranteed
asymptotically. Therefore, the methods discussed in this paper can be implemented on
parallel and distributed architectures, see e.g. [10].

The paper outline is as follows. Section 2 provides a precise definition of the problem
addressed in this paper and describes some auxiliary results needed for the development
of the proposed approach. The algorithm for sample generation is described in Section 3.
Since this algorithm requires generation of samples from a distribution with polynomial
density, details on how one can do this efficiently are given in Section 4. In Section 5,
we illustrate the performance of the proposed approach with a few academic examples.
Finally, in Section 6, concluding remarks are presented and further research directions are
delineated.

2 Problem statement

Consider a compact basic semialgebraic set described by polynomial inequalities

K := {x ∈ R
n : gi(x) ≥ 0, i = 1, 2, . . . , m} (1)

where gi(x), i = 1, . . . , m are given real multivariate polynomials. The problem we con-
sider is the following:
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Problem 1 Given the semialgebraic set K defined in (1), generate N independent iden-
tically distributed (i.i.d.) random samples x(1), . . . , x(N) uniformly distributed in K.

Note that the considered setup is very general, and encapsulates many problems of interest
to the control community. In particular, the algorithm presented in this paper can be
used to generate uniform samples in the solution set of linear matrix inequalities (LMIs).
Indeed, it is a well-known fact that LMI sets are (convex) basic semialgebraic sets. To
see this, consider the LMI set

{x ∈ R
n : F (x) = F0 + F1x1 + · · ·+ Fnxn � 0}

where � 0 stands for positive semidefinite and the matrix F (x) has size m×m. A vector
x belongs to the LMI set if and only if all the principal minors of F (x) are nonnegative.
This immediately leads to a set of m polynomial inequalities in x.

2.1 Preliminaries

We define by Pd the vector space of multivariate real polynomials in n variables of degree
less than or equal to d. The uniform density over a set K of nonzero volume is defined as

UK(x) :=
IK(x)

vol(K)
, (2)

where IK(x) denotes the indicator function of the set K

IK(x) =

{

1 if x ∈ K

0 otherwise,

and vol(K) is the Lebesgue measure (volume) of K; e.g., see [11] for details on Lebesgue
measures and integration. The idea at the basis of the method we propose is to find a
suitable approximation of the set K, using the framework introduced in [7]. To this end,
let us consider a polynomial of degree d

p(x) =
∑

α∈Nn,|α|≤d

pαπ
α(x)

where the sum ranges over all integer vectors of size n summing up to d or less. Let us
now introduce the polynomial super-level set

U(p) := {x ∈ R
n : p(x) ≥ 1}.

The use of super-level sets as efficient nonconvex approximations of generic semialge-
braic sets has been proposed in [7]. In particular, the following optimization problem is
considered

v∗d := min
p∈Pd

vol U(p)

s.t. K ⊆ U(p).
(3)
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The above problem amounts at finding the super-level set that better approximates, in
terms of minimum volume, the original set K. Since K is compact by assumption, for
problem (3) to have a finite minimum, it was further assumed in [7] that a compact
semialgebraic set B is given such that U(p) ⊂ B and hence

U(p) = {x ∈ B : p(x) ≥ 1}.

In this paper, we additionally assume that the set B is the cartesian product of n one-
dimensional sets, i.e. B = B1 × · · · × Bn. For instance, the set B can be taken as the
n-dimensional hyper-rectangle

B[a,b] := {x ∈ R
n : ai ≤ xi ≤ bi, i = 1, 2, . . . , n}.

As noted in [5, Remark 1], an outer-bounding box B of a given semialgebraic set K can
be found by solving relaxations of the following polynomial optimization problems

ai = arg min
x∈Rn

xi s.t. x ∈ K, i = 1, ..., n,

bi = argmax
x∈Rn

xi s.t. x ∈ K, i = 1, ..., n,

which compute the minimum and maximum value of each component of the vector x

over the semialgebraic set K. Note that arbitrarily tight lower and upper bounds can be
obtained by means of the the techniques discussed e.g. in [13, 6, 15] based on SOS/moment
convex relaxations.

The algorithm presented in this paper leverages some recent results presented in [7], which,
as a side-result, provide an optimal polynomial approximation of indicator functions.
More precisely, it was shown in that paper that problem (3) can be approximated by the
following convex optimization problem

w∗
d := min

p∈Pd

∫

B

p(x)dx

s.t. p ≥ 1 on K
p ≥ 0 on B.

(4)

In particular, the following result holds. see [7, Lemma 1].

Lemma 1 The minimum of problem (4) monotonically converges from above to the min-
imum of problem (3), i.e. w∗

d−1 ≥ w∗
d ≥ v∗d for all d, and limd→∞w∗

d = limd→∞ v∗d.

In particular, the convergence follows from the fact that the optimal polynomial p∗d solution
to problem (4) converges in L1(B), or equivalently almost uniformly in B, to the indicator
function IK(x) as its degree goes to infinity. This crucial property is the one we will exploit
in Section 3 to construct an efficient rejection algorithm for generating uniform samples
in K.
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3 Uniform generation

From the proof of [7, Lemma 1] it can be seen that, for any d, the optimal solution p∗d(x)
to problem (4) has the property of being an upper approximation of the indicator function
IK(x), that is p∗d(x) ≥ IK(x) for all x ∈ B. Moreover, this approximation becomes tight
when d goes to infinity.

Therefore, this polynomial is a “dominating density” of the uniform density UK(x) for all
x ∈ B, that is there exists a value β such that βp∗d(x) ≥ UK(x) for all x ∈ B. Hence, the
rejection method from a dominating density, discussed for instance in [19, Section 14.3.1],
can be applied leading to the random sampling procedure described in the following
algorithm.

Algorithm 1: Uniform Sample Generation in Semialgebraic Set K

1. For a given integer d > 0, compute the solution of

p∗d(x) := arg min
p∈Pd

∫

B

p(x)dx

s.t. p ≥ 1 on K
p ≥ 0 on B.

(5)

2. Generate a random sample ξ(i) with density proportional to p∗d(x) over B.

3. If ξ(i) 6∈ K go to step 1.

4. Generate a sample u uniform on [0, 1].

5. If u p∗d(ξ
i) ≤ 1 return x(i) = y, else go to step 1.

End of Algorithm 1

It must be noticed that problem (5), even though convex and finite-dimensional, can be
very hard to solve. In practice, we solve a tractable LMI problem by strenghtening the
polynomial positivity constraints by polynomial SOS constraints. Convergence results are
however not affected, see [7] for more details.

A graphical interpretation of the algorithm is provided in Figure 1, for the case of a simple
one-dimensional set

K =
{

x ∈ R : (x− 1)2 − 0.5 ≥ 0, x− 3 ≤ 0
}

.

First, problem (4) is solved (for d = 8 and B = [1.5, 4]), yielding the optimal solution

p∗d(x) = 0.069473x8 − 2.0515x7 + 23.434x6 − 139.5x5+

477.92x4 − 961.88x3 + 1090.8x2 − 606.07x+ 107.28.

As it can be seen, p∗d(x) is “dominating” the indicator function IK(x) for all x ∈ B.

Then, uniform random samples are drawn in the hypograph of p∗d. This is done by
generating uniform samples ξi distributed according to a probability density function
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(pdf) proportional to p∗d (step 2), and then selecting its vertical coordinate uniformly in
the interval [0, ξi] (step 3).

Finally, if this sample falls below the indicator function IK(x) (blue dots) it is accepted,
otherwise it is rejected (red dots) and the process starts again.

1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

Figure 1: Illustration of the behavior of Algorithm 1 in the one-dimensional case. Blue
dots are accepted samples, red dots are rejected samples.

It is intuitive that this algorithm should outperform classical rejection from the bounding
set B, since “more importance” is given to the samples inside K, and this importance is
weighted by the function p∗d.

To formally analyze Algorithm 1, we define the acceptance rate (see e.g. [9]) as one over
the expected number of samples that have to be drawn from p∗d(x) in order to find one
“good” sample, that is a sample uniformly distributed in K. The following results, which
is the main theoretical result of the paper, provides the acceptance rate of the proposed
algorithm.

Theorem 1 Algorithm 1 returns a sample uniformly distributed in K. Moreover, the
acceptance rate of the algorithm is given by

γd =
vol(K)

w∗
d

,

where w∗
d is the optimal solution of problem (4), that is

w∗
d :=

∫

B

p∗d(x)dx.

Proof: To prove the statement, we first note that the polynomial p∗d(x) defines a density

fx(x) :=
p∗d(x)

w∗
d
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over K. Moreover, by construction, we have p∗d(x) ≥ IK(x), and hence

1

w∗
dvol(K)

p∗d(x) ≥
1

w∗
dvol(K)

IK(x)

1

vol(K)
fx(x) ≥

1

w∗
d

UK(x)

fx(x) ≥ γdUK(x). (6)

Then, it can be immediately seen that Algorithm 1 is a restatement of the classical Von
Neumann rejection algorithm, see e.g. [19, Algorithm 14.2], whose acceptance rate is given
by the value of γd such that (6) holds, see for instance [8]. �

It follows that the efficiency of the random sample generation increases as d increases,
and becomes optimal as d goes to infinity, as reported in the next corollary.

Corollary 1 Let d be the degree of the polynomial approximation of the indicator function
of the set K. Then, the acceptance rate tends to one as one increases degree d; i.e.,

lim
d→∞

γd = 1.

Hence, the trade-off is between the complexity of computing a good approximation (d
large) on the one hand, and having to wait a long time to get a “good” sample (γ large),
on the other hand. Note, however, that the first step can be computed off-line for a given
set K, and then the corresponding polynomial p∗d can be used for efficient on-line sample
generation.

Finally, we highlight that, in order to apply Algorithm 1 in an efficient way (step 2), a
computationally efficient scheme for generating random samples according to a polynomial
density is required. This is discussed next.

4 Generation from a polynomial density

To generate a random sample according to the multivariate polynomial density fx(x),
one can recur to the conditional density method, see e.g. [8]. This is a recursive method
in which the individual entries of the multivariate samples are generated according to
their conditional probability density. In particular, the joint pdf of the vector of random
variables x = (x1 · · · xn) can be written as

fx(x1, . . . , xn) = fx1
(x1)fx2|x1

(x2|x1) · · ·fxn|x1···xn−1
(xn|x1 · · ·xn−1)

where fxi|x1,...,xi−1
(xi|x1, . . . , xi−1) are the conditional densities. The conditional density

is defined as the ratio of marginal densities

fxi|x1,...,xi−1
(xi|x1, . . . , xi−1) =

fx1,...,xi
(x1, . . . , xi)

fx1,...,xi−1
(x1, . . . , xi−1)

,
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which, in turn, are given by

fx1,...,xi
(x1, . . . , xi) =

∫

· · ·

∫

fx(x1, . . . , xn)dxi+1 · · · dxn.

Hence, a random vector x with density fx(x) can be obtained by generating sequen-
tially the xi, i = 1, . . . , n, where xi is distributed according to the univariate density
fxi|x1,...,xi−1

(xi). The basic idea of this method is to generate the first random variable
according to fx1

(x1), then generate the next one conditional on the first one, and so forth,
thus reducing an n-dimensional generation problem to n one-dimensional problems. Note
that, in the case of polynomial densities, the computation of the marginal densities is
straightforward, thus making this method particularly appealing.

Moreover, to generate a random sample according to a given univariate polynomial den-
sity, the inversion method can be employed, see e.g. [19, Corollary 14.1]. This is summa-
rized in the following algorithm for the sake of completeness.

Algorithm 2: Generation from a univariate polynomial density

1. Generate a random variable w uniform on [p(ai), p(bi)].

2. Compute the unique root y in [ai, bi] of the polynomial

y 7→

n
∑

k=0

ak

k + 1
yk+1 − x.

3. Return y.

End of Algorithm 2

This algorithm returns a random variable x distributed according to the univariate density
proportional to the polynomial px(x) =

∑n

k=0 akx
k with support [ai, bi].

In step 2, the numerical computation of the root can be performed, up to a given accuracy,
using some standard method such as bisection or Newton–Raphson. We also remark that
more efficient methods for generating samples from polynomial densities exist, see for
instance the method in [1], based on finite mixtures.

5 Numerical examples

5.1 Approximation of stability region

As a first illustration of the ideas described in this paper, we consider the outer approx-
imations by polynomial super-level sets of the third-degree discrete-time stability region
obtained by solving the convex optimization problem in Step 1 of Algorithm 1. Tight-
ness of these approximations is crucial for a good performance of the sample generation
method.
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A third-degree monic polynomial z ∈ C 7→ x1 + x2z + x3z
2 + z3 with real coefficients is

discrete-time stable (i.e. all its roots lie in the interior of the unit disk of the complex
plane) if and only if its coefficient vector x = (x1, x2, x3) belongs to the interior of the
basic semialgebraic set

K = {x ∈ R3 : g1(x) = 3− 3x1 − x2 + x3 ≥ 0,
g2(x) = 1− x1 + x2 − x3 ≥ 0,
g3(x) = 1− x2 − x2

1 + x1x3 ≥ 0}

which is nonconvex, see e.g. [12, Example 4.3]. Set K in included in the bounding box
B = [−1, 3] × [−3, 3] × [−1, 1]. In Figure 2 we represent the super-level set U(p4) =
{x : p4(x) ≥ 1} of the degree 4 polynomial solving optimization problem (5) with the
polynomial positivity constraints replaced with polynomial SOS constraints. The set
U(p4) is a guaranteed outer approximation of K. In Figure 3 we represent the much
tighter degree 8 outer approximation U(p8) ⊃ K.

Figure 2: Degree 4 outer polynomial ap-
proximation (boundary in red, interior
in light red) of the third degree discrete-
time stability region (inner volume in
white).

Figure 3: Degree 8 outer polynomial ap-
proximation (boundary in red, interior
in light red) of the third degree discrete-
time stability region (inner volume in
white).

5.2 Approximation of stabilizability region

As another control-oriented illustration of the polynomial super-level set approximation
used by our sampling Algorithms 1 and 2, consider [12, Example 4.4] which is a degree 4
discrete-time polynomial z ∈ C 7→ x2 +2x1z− (2x1 + x2)z

3 + z4 to be stabilized with two
real control parameters x1, x2. In other words, we are interested in sampling uniformly in
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the set K of values of (x1, x2) such that this polynomial has its roots with modulus less
than one. An explicit basic semialgebraic description of the sampling set is

K = {x ∈ R
3 : g1(x) = 1 + 2x2 ≥ 0,

g2(x) = 2− 4x1 − 3x2 ≥ 0,
g3(x) = 10− 28x1 − 5x2 − 24x1x2 − 18x22 ≥ 0,
g4(x) = 1− x2 − 8x21 − 2x1x2 − x

2
2 − 8x21x2 − 6x1x

2
2 ≥ 0}.

This set is nonconvex and it is included in the box B = [−1, 1]2. In Figure 4 we represent
the graph of the degree 10 polynomial p10(x) constructed by solving optimization problem
(5) with the polynomial positivity constraints replaced with polynomial SOS constraints.
From this we get the outer approximation K ⊂ U(p10) = {x ∈ R2 : p10(x) ≥ 1} used in
our sampling algorithm.

Figure 4: Degree 10 polynomial approximation (surface in pink) of the indicator function
of the nonconvex planar stabilizability region.

5.3 Sampling in a nonconvex semialgebraic set

To demonstrate the behavior of Algorithms 1 and 2, we revisit a numerical example
originally introduced in [5]. The considered semialgebraic set K is the two-dimensional
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nonconvex region described as:

K :=
{

(x1, x2) ∈ R
2 : (7)

(x1 − 1)2 + (x2 − 1)2 ≤ 1, x2 ≤ 0.5x2
1

}

.

In [5], the outer-bounding box

B =
{

(x1, x2) ∈ R
2 : 0.46 ≤ x1 ≤ 2.02, 0.03 ≤ x2 ≤ 1.64

}

was considered. Figure 5 shows a two-dimensional plot of the indicator function IK(x),
and the corresponding optimal solution p∗d(x) for d = 8. The results of Algorithm 1 are
reported in Figure 6. The red points represent the points which have been discarded.
To this regard, it is important to notice that also some point falling inside K has been
rejected. This is fundamental to guarantee uniformity of the discarded points.

Figure 5: Optimal polynomial approximation of degree 8 of the indicator function.

6 Concluding remarks

In this paper, a numerically efficient procedure for generating “truly” random samples
inside a given (possibly nonconvex) semialgebraic set K has been proposed. The algorithm
is based on an acceptance/rejection scheme constructed upon an optimal polynomial
superlevel set guaranteed to contain K. A key feature of the method is that, for a given
set K and polynomial degree d, this approximation, which is undoubtedly the most time-
consuming step of the sampling scheme, can be constructed a priori and once for all, and
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Figure 6: Uniform random samples generated according to Algorithms 1 and 2. The grey
area is the set K defined in (7), the pink area is the superlevel set U(p∗d). The red dots
are the discarded samples. The remaining samples (blue) are uniformly distributed inside
K.

then be used for online generation. The rejection rate is shown to become asymptotically
optimal when the degree of the polynomial approximation increases. Future work will
concentrate on the application of this to specific fixed-order controller design problems.
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