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A linear time algorithm to verify strong structural control lability

Alexander Weber, Gunther Reissig and Ferdinand Svaricek

Abstract— We prove that strong structural controllability of a
pair of structural matrices (A,B) can be verified in time linear
in n+ r+ ν, whereA is square,n and r denote the number of
columns ofA and B, respectively, andν is the number of non-
zero entries in (A,B). We also present an algorithm realizing
this bound, which depends on a recent, high-level method to
verify strong structural controllability and uses sparse matrix
data structures. Linear time complexity is actually achieved
by separately storing both the structural matrix (A,B) and its
transpose, linking the two data structures through a third one,
and a novel, efficient scheme to update all the data during the
computations. We illustrate the performance of our algorithm
using systems of various sizes and sparsity.

I. I NTRODUCTION

Strong structural controllability of the pair(A,B) of
structural matricesA ∈ {0, ∗}n×n, B ∈ {0, ∗}n×r is, by
definition, equivalent to the linear system

ẋ(t) = Ax(t) +Bu(t) (1)

being controllable forall matricesA andB whose positions
of the non-zero entries (zero entries) coincide with the
positions of the∗-entries(0-entries) of A andB, respectively.
Here,A andB denote matrices with real or complex entries
having the same dimension asA and B, respectively,x
denotes the real or complex valuedn-dimensional state of
(1) andu is a real or complex valuedr-dimensional input
signal. The system given by (1) is controllable if for any
initial state and any terminal state, there exists an input signal
u steering the system from the initial to the terminal state
[1].

Strong structural controllability of linear time-invariant
systems has been extensively studied [2]–[5]. Algorithms
to test strong structural controllability of a pair(A,B) have
been presented in [3] and [5] having complexityO(n3) and
O(n2), respectively. In [6], an algorithm was presented
without an analysis of its complexity.

Recently, the notion of strong structural controllabilityhas
been extended to linear time-varying systems and character-
izations in terms of the zero-nonzero pattern(A,B) have
been established [6]–[9]. While the conditions differ, it turns
out that their verification for a time-varying system can be
reduced to the verification of strong structural controllability
for an auxiliary time-invariant system (1). This implies that
algorithms originally derived to test the strong structural
controllability of time-invariant systems may be also used
for the time-varying case.
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In this paper, we prove that strong structural controllability
can be verified in time linear inn + r + ν, whereν is the
number of non-zero entries in(A,B). We also present an
algorithm realizing this bound, which depends on the recent,
high-level method from [6], [9] and uses sparse matrix data
structures. Linear time complexity is actually achieved by
separately storing both the structural matrix(A,B) and its
transpose, linking the two data structures through a third one,
and a novel, efficient scheme to update all the data during
the computations.

The need for fast algorithms becomes evident by the
following application of strong structural controllability. The
dynamical evolution of complex networks, such as power
grids or gene regulatory networks, is commonly studied in
terms of linear systems of the form (1), where the entries ofx
denote the state of the nodes,A denotes the adjacency matrix
of the underlying graph andB identifies the nodes that can
be controlled from outside the network; see e.g. [10] and
the references therein. In real applications, the entries of the
matrixA are not exactly known, which is why one considers
its zero-nonzero structure, encoded in the structural matrices
A and B, instead. The particular interest with regard to
controllability of networks is then to find a structural matrix
B with the minimum number of columns such that the given
network is strong structurally controllable [5], [11]. This
problem was proved to be NP-hard [5]. One way to avoid
NP-hardness is to consider the special case in whichB is
required to have precisely one∗-entry per column, which
results inO(n3) time-complexity [11]. Another alternative
is to pose the problem in the framework of the so-called
weak structural controllability [10], [12], [13]. However,
both alternatives suffer from severe drawbacks. Firstly,
restricting B to some special structure may result in a
minimum number of columns that is strictly greater than
the number of columns actually required using arbitraryB.
(An example is given in the present paper.) With regard to
economizing the computational effort for input signals that
solution is inappropriate. Secondly, the approach based on
weak structural controllability yields results that are correct
for all pairs of matrices(A,B) of structure(A,B) with the
possible exception of a set of measure zero. The possible
exceptions may very well be a problem, in particular, when
the parameters of the system (1) slowly change over time,
so that the submanifold of exceptional points may be passed
over with certainty. Therefore, there is much interest to
tackle the original NP-hard problem based on strong rather
than weak controllability, and fast algorithms are in demand.

The remainder of this paper is organized as follows.
Having introduced some notation and terminology in Section
II, in Section III we briefly review the method presented
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in [6], [9]. Section IV contains the main result about the
time complexity for verifying strong structural controllability
and an implementable algorithm of such a test. In Section
V, several computational results on the performance of an
implementation on various structural matrices are presented.

II. N OTATION AND TERMINOLOGY

The set{1, 2, 3, . . .} of natural numbers we denote by
N, the set of real and complex numbers byR and C,
respectively, andF denotes eitherR andC. For a, b ∈ N,
a ≤ b, we write [a; b] and [a; b[ for the set{a, a+ 1, . . . , b}
and{a, a+ 1, . . . , b− 1}, respectively. For thei-th entry of
y ∈ Nm we write y(i) (1 ≤ i ≤ m). Moreover, we write
y ∈ [a; b]

m if y(i) ∈ [a; b] for all i.
X stands for astructural matrix, i.e. X ∈ {0, ∗}n×m. We

say that a matrixX ∈ Fn×m has the non-zero structure of
X if Xi,j 6= 0 is equivalent toXi,j = ∗ for any i, j. Here
and subsequently,Xi,j (Xi,j , respectively) denotes the entry
in the i-th row andj-th column ofX (X , respectively).A
and B denote structural matrices of dimensionn × n and
n× r, respectively. The transpose ofX is denoted byX T .
For a structural matrixX we introduce the following sets.
For j ∈ [1;m] we define

NZRX (j) := {i ∈ [1;n] | Xi,j = ∗}.

The above set indicates the rows ofX that have a∗-entry in
the j-th column. For reviewing the results in [6] as outlined
in the introduction, we define for a setV ⊆ [1;n] the set

NZCX (V ) := {j ∈ [1;m] | ∃i∈V : Xi,j = ∗}.

Throughout the paper, however, we will omit the subscript
X as it will be obvious from the context to which matrix the
sets are related.

III. R EVIEW OF THE METHOD TO BE IMPLEMENTED

In this section, we state the method for testing strong
structural controllability as given in [6] for which we will
give an implementable algorithm in the subsequent section.
The test consists of computing the setV as specified in Fig. 1
for bothL = 0 andL = 1. (We adopted the formulation of
the test as presented in [9].) For convenience of the reader,
we will briefly indicate the role of the two runs by stating
the theorem which implies the correctness of the method.

III.1 Definition. The pair (A,B) of structural matrices
is strong structurally controllable for λ ∈ C if the matrix
(λ id−A,B) has full rank for all pairs of matrices(A,B) ∈
Fn×(n+r) that have the non-zero structure of(A,B). Here,
id denotes then× n identity matrix.
A consequence of the well-known Hautus criterion (e.g.
[1, Lemma 3.3.7]) is that the pair(A,B) is strong structurally
controllable if and only if it is strong structurally controllable
for all λ ∈ C. Based on this fact, the following theorem has
been proved in [2].

III.2 Theorem. Consider the following conditions for the
structural matrixX = (A,B):

Input L, (A,B)
Require: L ∈ {0, 1}

1: V := [1;n]
2: while V 6= ∅ do
3: if L = 0 then
4: T := {v ∈ [1;n+ r] | |V ∩ NZR(v)| = 1}
5: else
6: T := {v ∈ [1;n+ r] \ V | |V ∩ NZR(v)| = 1}
7: end if
8: if L = 0 or V ⊆ NZC(V ) then
9: if T = ∅ then

10: break
11: end if
12: Pick v ∈ T .
13: {w} := NZR(v)
14: else
15: Pick w ∈ V \NZC(V ).
16: end if
17: V := V \ {w}
18: end while
Output V

Fig. 1. Method to test if(A,B) is strong structurally controllable [6].

(G0) For every non-empty subsetV ⊆ [1;n] of row
indices ofX there exists a column indexv ∈ [1;n+ r] such
that V ∩NZR(v) is a singleton,

(G1) For every non-empty subsetV ⊆ [1;n] of row
indices ofX that satisfiesV ⊆ NZC(V ) there existsv ∈
[1;n+ r] \ V such thatV ∩NZR(v) is a singleton.

Condition (G0) holds if and only ifX is strong structurally
controllable forλ = 0. Analogously, condition (G1) holds if
and only ifX is strong structurally controllable for everyλ ∈
C \ {0}. In particular, X is strong structurally controllable
if and only if both (G0) and (G1) hold.

The proof of the above theorem as given in [6] proves the
following theorem.

III.3 Theorem. The pair (A,B) is strong structurally con-
trollable

(i) for λ = 0 if and only if the algorithm in Fig. 1 returns
the empty set forL = 0,

(ii) for everyλ 6= 0 if and only if the algorithm in Fig. 1
returns the empty set forL = 1.

In particular, (A,B) is strong structurally controllable if and
only if both runs of the algorithm return the empty set.

It is important to note that although conditions (G0) and (G1)
require verifications for every non-empty subsetV ⊆ [1;n],
Theorem III.3 implies that a test of merelyn such subsets
is sufficient. Nevertheless, a brute-force implementationof
Fig. 1 will not lead to a linear time test since the computation
of the setsT andNZC(V ) is complex.

In the following section, we present an algorithm that
realizes the method given in Fig. 1 in linear time. The key
to linear time complexity is combining sophisticated data
structures and sparse matrix techniques.
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Fig. 2. Data structures for(A,B) in Example IV.2. The usage of the arraỹs is indicated: The positions inz whose entry is column7 are stored in
positions7 and8 of s̃. 7 and8 are the indices of column7. The entries of̃z indicated by the green circles are those that need to be swapped in Example
IV.6.

IV. T HE MAIN RESULT

Our main result, which claims the existence of a linear
time test for strong structural controllability, is given in
Section IV-A. For its proof we give a particular algorithm for
Fig. 1. Specifically, in Section IV-B we discuss the used data
structures and the algorithm is presented in Section IV-C.

A. Main result

IV.1 Theorem. Let the pair of structural matrices
(A,B) ∈ {0, ∗}n×(n+r) have ν ∈ [0;n(n+ r)] ∗-entries.
Strong structural controllability of(A,B) can be verified
with time complexityO(n+ r + ν).

The following Sections IV-B and IV-C are devoted to
the proof of Theorem IV.1. Let us abbreviate the pair of
structural matrices(A,B) by X , and letn, r andν be as in
the statement of Theorem IV.1. Without loss of generality,
let ν > 0.

B. Data structures

To obtain linear complexity in the algorithm that we
present, we introduce the following sophisticated data struc-
tures. To begin with, we will store the matricesX andX T

separately. The format that we use is well-known in the
framework of sparse matrices [14]–[16]. To provide efficient
access between the data, we introduce a third, novel data
structure which links those ofX and X T . Moreover, we
introduce appropriate data structures for the setsT andV as
defined in Fig. 1.

1) Data structure forX : The structural matrixX is
assumed to be available in the compressed column storage
format (CCS) [14]. The CCS-format exists in two versions,
namely for ordinary matrices and for structural matrices. The
latter, suitable for our purposes, consists of two integer arrays
s andis of lengthν andn+r+1, respectively. These arrays
are defined as follows:
· is(j) − 1 equals the number∗-entries in the firstj − 1

columns ofX , and
· Xi,j = ∗ if and only if there existsk ∈ [is(j); is(j + 1)[

such thats(k) = i.
Note thats ∈ [1;n]ν andis ∈ [1; ν + 1]n+r+1. (See Section
II for notation.)

IV.2 Example. Consider the structural matrices

A =















0 0 0 ∗ 0 0
0 ∗ 0 0 0 0
∗ 0 0 0 0 0
0 0 0 0 0 ∗

∗ 0 0 0 0 0
0 0 0 ∗ 0 0















and B =















0 0
∗ 0
∗ 0
0 0
0 0
0 ∗















. (2)

The∗-entries in column1 of (A,B) are in the rows3 and5,
hence(s(1), s(2)) may equal(3, 5) or (5, 3). We emphasize
that both choices are consistent with our definition.s(3)
equals2 since the∗-entry in column2 appears in row2. For
the arrayis we haveis(1) = 1 as the first row index related
to column1 is stored in position1 of s. is(2) = 3 since the
first row index related to column2 is stored in position3 of
s. The subsequent entries ofs andis are obtained similarly.
See also Fig. 2.

2) Data structure forX T : We storeX T in its CCS-
format and we denote the corresponding arrays byz and
iz. Note thatz ∈ [1;n+ r]ν and iz ∈ [1; ν + 1]n+1. This
data structure is also known as the compressed row storage
format ofX [14].

For simplicity of notation we introduce the following
definition.

IV.3 Definition. Let i ∈ [1;n] and j ∈ [1;n+ r]. We say
that k ∈ [1; ν] is an index of the row i if k ∈ [iz(i); iz(i+ 1)[,
and that l ∈ [1; ν] is an index of the column j if l ∈
[is(j); is(j + 1)[.

3) Data structures for linking the data structures ofX and
X T : In the algorithm that we present, we will take advantage
of the non-uniqueness of the arrays as follows. Entries in
s will be swapped during the execution of the algorithm in
order to store additional information in the ordering of the
entries ofs (without violating the properties ofs as a part of
the CCS-format ofX ). The input of a swapping operation
will be a row indexw, and the first step will be to identify
in constant time the positionsl in s such thats(l) = w. The
arraysz, iz provide the column indicesj such thatXw,j = ∗,
which is the set{z(l) | l ∈ [iz(w); iz(w + 1)[}. However,z
and iz do not provide thepositionsin s of the entryw.



In order to avoid a search operation, we introduce an
integer arraỹz of lengthν as follows. We definẽz such that
z̃(l) equals the position ins in whichw is stored among the
row indices of the columnj = z(l).

Analogously, we will introduce an arraỹs to store the
positions of the column indices in the arrayz. The arrays̃
will be required to updatẽz as a swap ins will require an
update ofz̃.

Before we defines̃ and z̃ formally, we identify some
entries ofz̃ for the pair(A,B) as given in (2).

IV.4 Example. We consider the arrayss and z as given in
Fig. 2. Row2 of (A,B) has∗-entries in columns2 = z(2)
and 7 = z(3). Among the row indices of column2 in s,
row 2 appears in position3, hence we set̃z(2) = 3. As for
column7, row 2 appears in position7 in s, hencez̃(3) := 7.

Let us suppose that we had definedz(2) = 7 andz(3) = 2,
so that the pair(z, iz) would still represent the pair(A,B)
given in (2). In this case, we need to definez̃(2) to equal7
since we requirẽz(2) to be an index pointing to row indices
of columnz(2). Similarly, in this case,̃z(3) = 2 since2 is
an index of columnz(3).

The integer arrays̃s ∈ [1; ν]
ν , z̃ ∈ [1; ν]

ν are formally
defined by the following properties:

s̃(k) is an index of the rows(k) for all k, and (3a)

z(s̃(l)) = j if l is an index of the columnj, (3b)

and similarly,

z̃(l) is an index of the columnz(l) for all l, and (4a)

s(z̃(k)) = i if k is an index of the rowi. (4b)

For later purposes, we show the following lemma which may
be used for an alternative definition ofs̃ andz̃. It also shows
the uniqueness of̃s and z̃ for given s andz.

IV.5 Lemma. Let s̃1 ∈ [1; ν]
ν satisfy (3a) in place of̃s, let

z̃1 ∈ [1; ν]
ν satisfy (4a) in place of̃z. Then

z̃1(s̃1(k)) = k, and (5a)

s̃1(z̃1(k)) = k (5b)

for any k ∈ [1; ν] if and only if s̃1 and z̃1 satisfy (3b) and
(4b) in place ofs̃ and z̃, respectively.
Proof: We show (3b) for the arraỹs1. The proof of (4b) for
z̃1 is similar. We first remark that ifl ∈ [1; ν] is an index
of both the columnsj and j0 then j = j0. This follows
immediately from Definition IV.3 and the definition ofis.
Let l be an index of the columnj, hencez̃1(s̃1(l)) is an
index of the columnj. By (4a), z̃1(s̃1(l)) is an index of the
columnz(s̃1(l)). On account of the above remark, we have
z(s̃1(l)) = j.
Conversely, letk ∈ [1; ν] be an index of the columnj. By
(3a) and (4b) we have

s(z̃1(s̃1(k))) = s(k). (6)

Since bothz̃1(s̃1(k)) andk are indices of the columnj by
(3b) and (4a), it follows from (6) and the definition ofs that
z̃1(s̃1(k)) = k. The proof of (5b) is similar.

4) Data structures for sets:Realizing the method given
in Fig. 1 requires the computation of the setT in lines 4 and
6. ComputingT will require accessing the setsV ∩NZR(v)
for all v ∈ [1;n+ r]. For L = 1, we additionally need to
access the set

T0 := {v ∈ V | V ∩ NZR(v) = ∅}

since the testV ⊆ NZC(V ) in line 8 is equivalent to the
testT0 = ∅.

Therefore, we introduce below appropriate data structures
to store the setsV ∩NZR(·), T , T0 andV .

To represent the setV ∩ NZR(v) for any v ∈ [1;n+ r],
we first note that

NZR(v) = {s(k) | k ∈ [is(v); is(v + 1)[ }.

Therefore, we take advantage of the non-uniqueness ofs as
a part of the CCS-format ofX . In particular, we introduce
an integer arrayc of length n + r, and add the following
property to the definition ofs:

V ∩NZR(v) = {s(k) | k ∈ [is(v); is(v) + c(v)[ }. (7)

In other words,c(v) equals the value|V ∩ NZR(v)| and
indicates the last position ins of an element ofV ∩NZR(v).
We remark that ifV = [1;n] then c(v) equals the number
of ∗-entries in thev-th column ofX .

The pair (s, c) stores all information about the setsV ∩
NZR(·). Moreover, the procedure to remove an elementw
from the setV ∩NZR(v) can be easily performed: The entry
w and the entry in positionis(v) + c(v)− 1 are swapped in
s, andc(v) is decremented by1.

The data structures forT andT0 are such that adding, re-
moving and picking of elements can be achieved in constant
time. These requirements can be realized using two integer
arrays (two for each set) with appropriate functionality. The
set V is implemented as a boolean array of lengthn + r
where a ’1’ in the k-entry indicates thatk ∈ V .

C. Algorithm

An algorithm for the method in Fig. 1 is given in Fig. 4.
Before we prove Theorem IV.1, we focus on the two opera-
tions in Fig. 4 that determine the complexity of the algorithm:
The initialization of the data structures and the executionof
line 20 which is part of the computation of the setsT and
T0.

1) Initialization of the data structures:The arraysz and
iz can be obtained in time linear inn+ r+ν by transposing
X whenX is available in the CCS-format [17, Section 2].
Roughly speaking, the main part of the transposing algorithm
in [18] consists of a loop over all indicesk ∈ [1; ν]. In the
body of the loop,z is computed as follows. Ifk is an index
of the columnj one setsz(l) := j for a suitable indexl of
the row s(k). Additionally, one may initializẽs by setting
s̃(k) := l in the same loop. Thus,̃s clearly satisfies (3).
Similarly, z̃ is then obtained by transposingX T . Hence, the
arraysz, iz, z̃, s̃ are initialized with complexityO(n+r+ν).



Input s, s̃, is, z, z̃, iz, c, w, j
Require: Xw,j = ∗ and l ∈ [iz(w); iz(w + 1)[ such that

z(l) = j.
1: j̃ := z̃(l) (Note thats(j̃) = w)
2: k := s̃(is(j) + c(j)− 1)
3: if c(j) > 1 then
4: Swap entries at positions̃j andis(j)+c(j)−1 in each

of the arrayss and s̃.
5: z̃(l) := is(j) + c(j)− 1
6: z̃(k) := j̃
7: end if
8: if c(j) > 0 then
9: Decrementc(j).

10: end if
Output s, s̃, z̃, c

Fig. 3. Procedure to removew from the representation ofV ∩ NZR(j)

It is not hard to see that the initialization of the arrayc
and the data structures forV , T andT0 has time complexity
O(n+ r).

2) Computation ofT and T0: The computation ofT
andT0 in lines 3–7 in Fig. 1 is implemented by iteratively
updating the representation ofT andT0. The update consists
of two operations:
· Removing a row indexw (due to line 17 in Fig. 1) from

the representation of the setsV ∩ NZR(j) for all j, and
· inserting or removingj from T (T0, respectively) depend-

ing on the new value ofc(j) = |V ∩ NZR(j)|.
The algorithm for the first operation is given in Fig. 3: The
array s is updated in line 4 to satisfy (7). Consequently,
an update ofs̃ and z̃ is necessary (lines 4, 5 and 6).
The correctness of the updates in Fig. 3 is formalized in
Lemma IV.7 below. Prior to that, we illustrate the iterative
computation ofT and the use ofz, iz, s̃ andz̃ by an example.

IV.6 Example. Let us perform the first steps in the overall
algorithm in Fig. 4 for the pair(A,B) given by (2) and for
L = 0.
At line 8, the arrayss, z, is, iz are given as in Fig. 2. The
arrayc and the setsV andT are given as follows:

c = (2, 1, 0, 2, 0, 1, 2, 1),

V = {1, 2, 3, 4, 5, 6},

T = {2, 6, 8}.

SinceT 6= ∅ we may pick2 from T in line 13 to obtain
w = s(is(2)) = 2. Therefore, fork ∈ [iz(2), iz(3)[ = {2, 3}
we have to removew = 2 from the setsV ∩NZR(z(k)) as
required in line 20. Note thatz(k) = 2, 7 for k = 2, 3, i.e.,
the ∗-entries in row2 are precisely in columns2 and7.

UpdatingV ∩ NZR(2) andV ∩ NZR(7), respectively, in
constanttime requires the arraỹz for the following reason.
We need to access in constant time those positionsj̃ for
which s(j̃) = w = 2. These indices are required since
we need to swap the entries at positionsj̃ in s to possibly
different positions due to the required property (7) ofs. In
order to avoid a search operation,z̃ is introduced.̃z provides

Input s, is
Require: L ∈ {0, 1}

1: TransposeX , initialize c and setV := [1;n].
2: if L = 0 then
3: T := {v ∈ [1;n+ r] | c(v) = 1}
4: else
5: T := {v ∈ [n+ 1;n+ r] | c(v) = 1}
6: T0 := {v ∈ [1;n] | c(v) = 0}
7: end if
8: while V 6= ∅ do
9: if L = 0 or T0 = ∅ then

10: if T = ∅ then
11: break
12: end if
13: Pick v ∈ T .
14: {w} := V ∩NZR(v) (Note thatw is unique.)
15: else
16: Pick w ∈ T0.
17: end if
18: for all k ∈ [iz(w); iz(w + 1)[ do
19: j := z(k)
20: Execute the algorithm in Fig. 3 forw andj.
21: if c(j) = 0 then
22: T := T \ {j}
23: if L = 1 and j ∈ V then
24: T0 := T0 ∪ {j}
25: end if
26: else if c(j) = 1 then
27: if L = 0 or j /∈ V then
28: T := T ∪ {j}
29: end if
30: end if
31: end for
32: if L = 1 then
33: if c(w) = 1 then
34: T := T ∪ {w}
35: else if c(w) = 0 then
36: T0 := T0 \ {w}
37: end if
38: end if
39: V := V \ {w}.
40: end while
Output V

Fig. 4. Algorithm for the method given in Fig. 1

the required positions̃j = 3 and j̃ = 7 as follows: j̃ =
z̃(k) = 3, 7 for k = 2, 3, so s(3) = s(7) = 2.

Since the entry for column2 in the arrayc equals1, i.e.
c(2) = 1, no swap is necessary for updatingV ∩ NZR(2).
The update is finished by decrementingc(2) to 0. Therefore,
in line 22, we remove2 from T to temporally obtain
T = {6, 8}. In the representation ofV ∩NZR(7), a swap is
necessary asc(7) = 2. So for j̃ = 7 (note that we identified
j̃ previously), positions̃j and is(7) + c(7)− 1 = 8 in s are
swapped, andc(7) is decremented to equal1. Hence,7 is
inserted toT in line 28. Thus, we haveT = {6, 7, 8} and



æ

æ
æ
æ
æ
æ
æ
ææ

æ

æ
æ
æ

æ
æ
ææææ

æ

ææ
ææ

ææ

æ

æ
ææææ

æææ
æææ

ææ
æææ
æ
ææ

ææ
æ
æ

æ
æ

æ
æ

æææ
ææ

ææ

æ
æ

ææ
ææ
æ æ

æ
ææ
æ

æ ææ
æ
æ

æ
ææ

ææ
æ
æ æ

æ
ææ

æ
æ
æ
æ æ

æ
æ
æ

æ

æ

æ

ææ
ææ
æææææ

ææ
ææææææ

æææææææ
ææ
æ
æ

æ
æ
æ
ææææ

ææ
ææ
ææææ

æ

æææææ

æ
æ
æææ

æ
ææ
ææ
æ
æ

æææ
æ
æ
æ
æ
æææææ

ææ
æ

æ
æ
æ
æ
æ
æ
æ

æ
æ
ææ
æææææ

æææ
ææ
æ
æ

æ

PSfrag replacements

0.00.0

0.

0.50.5

1.01.0

1.51.5

500 1000 1500 2000 2500

n = 1000, r = 250 r = 500, ν = 50000cpu in ms cpu in ms

ν n
1·104 3·104 5·104

6·104

7·104

Fig. 5. Run time to verify strong structural controllability for λ = 0 in dependence ofν and n for randomly chosen pairs of structural matrices
(A,B) ∈ {0, ∗}n×(n+r) such that(A,B) is strong structurally controllable forλ = 0. ν denotes the number of∗-entries in(A,B). The run time to
test strong structural controllability forλ 6= 0 is within a factor1.1 of the run time forλ = 0. The underlying implementation of the algorithm in Fig. 4
was executed on a Intel Core CPU i7-3770S (3.10 GHz).

V = {1, 3, 4, 5, 6} at line 39.
As s has changed,̃z ands̃ need to be updated accordingly

by means of swapping entries. The access to the required
positions is indicated in Fig. 2 and is similar to the access
operations as detailed in this example. The updated arrays
are as follows (z remains unchanged, the underlined entries
below are those that have changed):

c = (2, 0, 0, 2, 0, 1, 1, 1),

s = (3, 5, 2, 1, 6, 4, 3, 2, 6),

s̃ = (4, 7, 2, 1, 8, 6, 5, 3, 9),

z̃ = (4, 3, 8, 1, 7, 6, 2, 5, 9).

IV.7 Lemma. Let Xw,j = ∗ and let l be an index of the
row w such thatz(l) = j. Suppose that all inputs in Fig. 3
satisfy their defining properties forV ⊆ [1;n]. After the
termination of the algorithm,s andc satisfy (7) forV \ {w}
in place ofV . Moreover, the arrays̃s and z̃ satisfy (3) and
(4), respectively.
Proof: The only assertion that requires a proof is the correct
update ofz̃ after having changeds in line 4. Denote by
s̃0 and z̃0 the arrayss̃ and z̃ prior to the execution of the
algorithm. Inductively, we may assume thats̃0 andz̃0 satisfy
(3) and (4) in place of̃s andz̃, respectively. By Lemma IV.5
we need to verify (5) for those positionsk of z̃ and s̃ whose
entries have changed after line 6. Indeed, (5) is valid as

s̃(z̃(l)) = s̃0(j̃) = s̃0(z̃0(l)) = l,

s̃(z̃(k)) = s̃(j̃) = s̃0(is(j) + c(j) − 1) = k,

z̃(s̃(j̃)) = z̃(s̃0(is(j) + c(j) − 1)) = z̃(k) = j̃,

z̃(s̃(is(j) + c(j)− 1)) = z̃(s̃0(j̃)) = z̃(l) = is(j) + c(j) − 1,

hence the proof is finished.
Due to the arrays̃s and z̃, the representation of the sets

V ∩NZR(·) can be updated in constant time, which is the key
ingredient to Theorem IV.1 as we will see in the following
subsection.

3) Correctness and complexity:Lines 8–16 of Fig. 1
clearly correspond to lines 9–17 in the algorithm in Fig. 4.
The computation ofT in lines 4 and 6 in Fig. 1 is realized
in lines 18–38 in Fig. 4 as discussed above. We remark that
lines 32–38 in Fig. 4 are required as the setV containsw
during the execution of lines 23 and 27 in contrast to line
6 in Fig. 1. It follows that the outputs of the algorithms in
Fig. 1 and Fig. 4 coincide.

The complexity of the algorithm in Fig. 4 proves Theorem
IV.1. Indeed, lines 1–7 are executed in time linear inn+r+ν
(see Subsection IV-C.1). The while loop in line 8 terminates
after at mostn iterations (see Fig. 1). Together with the for
loop in line 18, it yields an overall complexity ofO(n+ ν)
for the while loop. Finally, the output ofV requires time
linear in n, so that Theorem IV.1 is proved.

V. COMPUTATIONAL RESULTS

In this section, we analyze the performance of the imple-
mentation of the algorithm in Fig. 4 in two aspects: Linearity
and the application of the algorithm to the minimization
problem as discussed in Section I. The programming lan-
guage in which the algorithm is implemented is C including
Fortran routines of [18]. The computations were executed
on a Intel Core CPU i7-3770S (3.10 GHz).

A. Linearity

The linearity in ν and n of the algorithm in Fig. 4 for
L = 0 is illustrated in Fig. 5. The matrices for which the
computational time was recorded are chosen at random such
that each is strong structurally controllable forλ = 0. The
run time forL = 1 and matrices that are strong structurally
controllable for everyλ 6= 0 is within a factor1.1 of the run
time for L = 0 but it is not illustrated in Fig. 5.

B. Minimization

The matrixB given in Example IV.2 is indeed one with
the minimum number of columns such that the pair(A,B)
as defined in (2) is strong structurally controllable. This
is verified in 0.56 milliseconds of cpu time by testing all
possible candidatesB. We emphasize that the number of
columns required in this case is strictly less than3. In



contrast, the minimum number of columns obtained by
the minimization algorithm presented in [11] is3 due to
restrictingB to have precisely one∗-entry per column. As
detailed in the introduction, real applications benefit from a
reduced number of columns required forB such that(A,B)
is strong structurally controllable.

The investigation of structural properties of electrical
networks is quite popular, e.g. [11], [19]–[21]. In [11,
Section IV, p. 418], a 5-bus power system is given in terms
of a structural matrixA ∈ {0, ∗}16×16. An application
of our algorithm in Fig. 4 to find a structural matrixB
with a minimum number of columns such that(A,B) is
strong structurally controllable results in a structural matrix
B having3 columns. It takes437 seconds for this task using
a parallel computation on6 threads.
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