
ar
X

iv
:1

40
7.

72
20

v2
 [

m
at

h.
O

C
]

23
 S

ep
 2

01
4

A Parallel Method for Large Scale Convex Regression Problems

NECDET S. AYBAT1 and ZI WANG2

Abstract— Convex regression (CR) problem deals with fitting
a convex function to a finite number of observations. It has
many applications in various disciplines, such as statistics,
economics, operations research, and electrical engineering.
Computing the least squares (LS) estimator via solving a
quadratic program (QP) is the most common technique to fit a
piecewise-linear convex function to the observed data. Since
the number of constraints in the QP formulation increases
quadratically in N , the number of observed data points,
computing the LS estimator is not practical using interior point
methods whenN is very large. The first-order method proposed
in this paper carefully manages the memory usage through
parallelization, and efficiently solves large-scale instances of CR.

I. I NTRODUCTION

Convex regression (CR) problem is concerned with fit-
ting a convex function to a finite number of observations.
In particular, suppose that we are givenN observations
{(xxxℓ, ȳℓ)}Nℓ=1 ⊂ R

n × R such that

ȳℓ = f0(xxxℓ) + εℓ, ℓ = 1, . . . , N, (1)

where f0 : R
n → R is convex,εℓ is a random variable

with E[εℓ] = 0 for all ℓ. The objective is to estimate the
convex functionf0 from the observed data points. CR has
many applications in various disciplines, such as statistics,
economics, operations research, and electrical engineering.
M. Mousavi [1] employed CR to estimate the value func-
tion under infinite-horizon discounted rewards for Markov
chains, which naturally arises in various control problems. In
economics field, CR is used for approximating consumers’
concave utility functions from empirical data [2]. More-
over, in queueing network context, for models where the
expectation of performance measure is convex in model
parameters -see [3], using Monte Carlo methods to compute
the expectation give rise to CR problem [4].

The most well-known method for CR is the least
squares (LS) problem,

f̂N = argmin
f∈C

N
∑

ℓ=1

(

f(xxxℓ)− ȳℓ
)2
, (2)

whereC := {f : Rn → R such thatf is convex}. This infi-
nite dimensional problem is equivalent to a finite dimensional
quadratic problem (QP),

min
yℓ∈R, ξξξℓ∈Rn

N
∑

ℓ=1

∣

∣yℓ − ȳℓ
∣

∣

2
(3)

s.t. yℓ1 ≥ yℓ2 + ξℓ2
T (xxxℓ1 − xxxℓ2) 1 ≤ ℓ1 6= ℓ2 ≤ N.

1Industrial and Manufacturing Engineering Dept., Penn State University,
University Park, PA 16802, USA.email: nsa10@psu.edu

2Industrial and Manufacturing Engineering Dept., Penn State University,
University Park, PA 16802, USA.email: zxw121@psu.edu

Indeed, let{(y∗ℓ , ξ∗ℓ)}Nℓ=1 be an optimal solution to (3), it
is easy to show that whenN ≥ n + 1, {y∗ℓ}Nℓ=1 is unique,
f̂N (xxxℓ) = y∗ℓ and ξ∗ℓ ∈ ∂f̂N(xxxℓ) for all ℓ, where∂ denotes
the subdifferential. Moreover,̂fN → f0 almost surely is
shown in [4]; and the convergence rate is established in
[5] for one-dimensional case, i.e.n = 1. LS estimator
has some significant advantages over many other estimators
proposed in the literature for CR. First, LS estimator is
a non-parametric regression method as discussed in [6],
which does not require any tuning parameters and avoids
the issue of selecting an appropriate estimation structure.
On the other hand, as discussed in [1], methods proposed
by Hannah and Dunson [7], [8], are semi-parametric and
require adjusting several parameters before fitting a convex
function. Second, LS estimator can be computed by solving
the QP in (3). Therefore, at least in theory, it can be solved
very efficiently using interior point methods (IPM). However,
a major drawback of LS estimator in practice is that the
number of shape constraints in (3) isO(N2). Consequently,
the problem quickly becomes massive even for moderate
number of observations: the complexity of each factorization
step in IPM isO(N3(n+1)3), and the memory requirement
of IPM is O

(

N2(n + 1)2
)

assuming Cholesky factors are
stored - see [9], [10].

In this paper, we develop a methodology for parallel
computing the LS estimator on huge-scale CR problems.
The proposed method carefully manages the memory usage
through parallelization, and efficiently solves large-scale in-
stances of (3). Indeed, by regularizing the objective in (3),
we ensure the feasibility of primal iterates in the limit, and
Lipchitz continuity of gradient of the dual function. These
properties lead to the main result, Theorem 2, which provides
error bounds on the distance between the LS estimator and
the optimal solution to the regularized problem. In the rest
of the paper, after examining the dual decomposition for
large-scale CR instances, we briefly discuss a first-order
augmented Lagrangian method for solving QP subproblems.
Finally, we conclude with a number of numerical examples.

II. M ETHODOLOGY

Assume that{εℓ}Nℓ=1 is uniformly bounded by some
Bε > 0, f0 : Rn → R ∪ {+∞} is a convex function, and
{xxxℓ}Nℓ=1 is a set of independent and identically distributed
(i.i.d.) random vectors inRn having a common continuous
distribution supported on then-dimensional hypercubeH :=
[−Bx, Bx]

n ⊂ ri dom(f0) for someBx > 0, where ri

denotes the relative interior.

http://arxiv.org/abs/1407.7220v2

Consider (3) in the following compact form,

min
yyy∈RN , ξξξ∈RNn

1
2 ‖yyy − ȳyy‖22 (4)

s.t. A1 yyy +A2 ξξξ ≥ 0,

whereA1 ∈ R
N(N−1)×N andA2 ∈ R

N(N−1)×Nn are the
matrices corresponding to the constraints in (3). Let

(yyy∗, ξξξ∗) := argmin
yyy, ξξξ

{

1
2

∥

∥yyy
∥

∥

2

2
+ 1

2

∥

∥ξξξ
∥

∥

2

2
: (yyy,ξξξ) ∈ χ∗

}

, (5)

whereχ∗ denotes the set of optimal solutions to (4). Let
Bξ := ‖ξξξ∗‖2. Moreover, since (4) is a convex QP, strong
duality holds, and an optimal dual solutionθθθ∗ ∈ R

N(N−1)

exists. LetBθ > 0 such that‖θθθ∗‖∞ ≤ Bθ for some optimal
dual. The complexity result of the proposed method will be
provided in terms of constantsBξ andBθ.

A. Separability

To reducecurse of dimensionality and develop a first-order
parallel algorithm that can solve (4) for largeN , we use
dual decomposition to induce separability. To this aim, we
partitionN observations intoK subsets. Let{Ci}Ki=1 denote
the collection of indices such that|Ci| ≥ n+ 1 for all i. To
simplify the notation, letN = KN̄ for someN̄ > n+ 1,

Ci :=
{

(i− 1)N̄ + 1, (i− 1)N̄ + 2, . . . , iN̄
}

for 1 ≤ i ≤ K. Throughout the paper,yyyi ∈ R
N̄ and

ξξξi ∈ R
N̄n denote the sub-vectors ofyyy ∈ R

N andξξξ ∈ R
Nn

corresponding to indices inCi, respectively.
For every ordered pair(ℓ1, ℓ2) such that1 ≤ ℓ1 6= ℓ2 ≤ N ,

there corresponds a constraint in (3) represented by a row in
the matricesA1 andA2 of formulation (4). By dualizing all
the constraints in (3) corresponding toℓ1 6= ℓ2 such that they
belong to different sets in the partition, i.e.ℓ1 ∈ Ci, ℓ2 ∈ Cj
and i 6= j, we form the partial Lagrangian,

L (yyy,ξξξ,θθθ) :=
1

2

K
∑

i=1

‖yyyi − ȳyyi‖22

−
∑∑

1≤i6=j≤K

θθθij
T

(

Aij
1

[

yyyi
yyyj

]

+Aij
2

[

ξξξi
ξξξj

])

,

which will lead to the following partial dual function

g(θθθ) := min
yyy∈RN , ξξξ∈RNn

L (yyy,ξξξ,θθθ) (6)

s.t. Aii
1 yyyi +Aii

2 ξξξi ≥ 0, i = 1, . . . ,K,

where for eachi ∈ {1, . . . ,K}, Aii
1 and Aii

2 are formed
by rows of A1 and A2, respectively, corresponding to all
(ℓ1, ℓ2) such thatℓ1 6= ℓ2 and ℓ1, ℓ2 ∈ Ci; similarly, for
each (i, j) such that1 ≤ i 6= j ≤ K, A1

ij and A2
ij

contain the rows ofA1 andA2, respectively, corresponding
to {(ℓ1, ℓ2) : ℓ1 ∈ Ci, ℓ2 ∈ Cj}, andθθθij ∈ R

N̄2

denotes
the associated dual variables.θθθ denotes the vector formed by
vertically concatenatingθθθij for 1 ≤ i 6= j ≤ K.

Note that partial LagrangianL is separable and can be
written asL (yyy,ξξξ,θθθ) =

∑K
i=1 Li (yyyi, ξξξi, θθθ) for some very

simple quadratic functionsLi. Thanks to the separability of

L, computing the partial dual functiong(θθθ), given in (6), is
equivalent to solvingK quadratic subproblems of the form:

min
yyyi∈RN̄ , ξξξi∈RN̄n

Li(yyyi, ξξξi, θθθ) (7)

s.t. Aii
1 yyyi +Aii

2 ξξξi ≥ 0,

for 1 ≤ i ≤ K. Given the dual variablesθθθ, since all
K subproblems can be computed in parallel, one can take
advantage of the computing power of multi-core processors.
In the rest of the paper, we discuss how to compute a solution
to (3) via solving the dual problem:max{g(θθθ) : θθθ ≥ 0}.

B. Projected Subgradient Method for Dual

One of the most well-known methods for solving the dual
problem is the projected subgradient method. Letθθθ0ij = 000 for
all i, j such thati 6= j. Given thek-th dual iterateθθθk, (yyyk, ξξξk)
denotes an optimal solution to the minimization problem in
(6) whenθθθ is set toθθθk, and θθθ∗ii denotes an optimal dual
associated with constraintsAii

1 yyyi + Aii
2 ξξξi ≥ 0 in (6). The

next dual iterateθθθk+1 is computed as follows

θθθk+1
ij =

∏

Sij

(

θθθkij − tk

(

Aij
1

[

yyyki
yyykj

]

+Aij
2

[

ξξξki
ξξξkj

]))

, (8)

whereΠSij
(.) denotes the Euclidean projection on to

Sij =
{

θθθij ≥ 000 : θθθij
TAij

2 +
[

θθθ∗ii
TAii

2 θθθ∗jj
TAjj

2

]

= 000
}

.

SinceL is linear in ξξξ, dom g is non-trivial and is given
by the Cartesian product ofSij ’s. The projected subgradient
method is guaranteed to converge in function value with
a careful selection of step size sequence{tk}∞k=1, and it
requiresO(1/ǫ2) iterations to obtain anǫ-optimal solution -
see [11]. However, due to lack of strong convexity of the
objective function in (4) (not inξξξ), even if the dual variables
converge to an optimal dual solution, the primal feasibility
cannot be guaranteed in the limit.

C. Tikhonov Regularization Approach

In order to ensure feasibility in the limit, which cannot
be guaranteed by the subgradient method discussed above,
we employ Tikhonov regularization, of which convergence
properties were investigated in [12]. Givenγ > 0, consider

(yyy(γ), ξξξ(γ)) = argmin
yyy, ξξξ

1
2 ‖yyy − ȳyy‖22 + γ

2 ‖ξξξ‖22 (9)

s.t. A1yyy +A2ξξξ ≥ 0.

As γ decreases to zero from above, the minimizer
(yyy(γ), ξξξ(γ)) converges to(yyy∗, ξξξ∗) defined in (5).

Lemma 1: The minimizer of (9),yyy(γ) as a function of
regularization parameterγ, is Hölder continuous on[0,∞),

‖yyy(γ)− yyy∗‖2 ≤ Bξ
√
γ. (10)

Proof: Let (yyy(γ), ξξξ(γ)) be the optimal solution to (9)
and (yyy∗, ξξξ∗) be defined as in (5). From the first-order
optimality conditions of (9) and (4), we have

(

yyy(γ)− ȳyy
γ ξξξ(γ)

)T (

yyy∗ − yyy(γ)
ξξξ∗ − ξξξ(γ)

)

≥ 0, (11)

(

yyy∗ − ȳyy
0

)T (

yyy(γ)− yyy∗

ξξξ(γ)− ξξξ∗

)

≥ 0. (12)

Note that both(yyy(γ), ξξξ(γ)) and (yyy∗, ξξξ∗) are feasible to (4)
and (9). This implies‖ξξξ(γ)‖2 ≤ ‖ξξξ∗‖2. Summing up (11)
and (12), and usingBξ = ‖ξξξ∗‖2, it follows that

‖yyy(γ)− yyy∗‖22 ≤ γξξξ(γ)T
(

ξξξ∗ − ξξξ(γ)
)

≤ γB2
ξ .

Since the objective function in (9) is strongly convex in
bothyyy andξξξ, Danskin’s theorem (see [13]) implies that the
Lagrangian dual function of (9) is differentiable; therefore,
one can use gradient type methods to solve the corresponding
dual problem. Moreover, strong convexity ensures that, one
can solve the primal problem by solving the dual problem.
Indeed, letθθθ(γ) be an optimal solution to the dual problem
of (9), we can recover(yyy(γ), ξξξ(γ)) by computing the primal
minimizers in (6) when the dual is set toθθθ(γ). The discussion
above shows that achieving primal feasibility is not an issue
provided that we can solve the dual of (9). This motivates the
next section, where we briefly state a first-order algorithm
that can efficiently solve the dual of (9).

D. Accelerated Proximal Gradient (APG) Algorithm

Let ρ : Rd → R be a concave function such that∇ρ is
Lipschitz continuous onRd with constantL, andQ ⊂ R

d

be a compact convex set. The APG algorithm [14], [15]
displayed in Figure 1 is based on Nesterov’s accelerated
gradient method [11], [16] and solvesρ∗ = max{ρ(η) :
η ∈ Q}. Corollary 3 in [15], and Theorem 4.4 in [14] show
that for all ℓ ≥ 1 the error bound is given by

0 ≤ ρ∗ − ρ(ηℓ) ≤
2L

(ℓ+ 1)2
‖η0 − η∗‖22,

where η0 is the initial APG iterate and η∗ ∈
argminη∈Q ρ(η). Hence, using APG one can compute an
δ-optimal solution within at mostO(

√

L/δ) APG iterations.

Algorithm APG
(

η0
)

Iteration 0: Takeη(1)
0 = η

(2)
1 = η0, t1 = 1

Iterationℓ: (ℓ ≥ 1) Compute

1) ηℓ
(1) = ΠQ

(

η
(2)
ℓ +

∇ρ(η
(2)
ℓ

)

L

)

2) tℓ+1 = (1 +
√

1 + 4t2ℓ)/2

3) η
(2)
ℓ+1 = η

(1)
ℓ + tℓ−1

tℓ+1

(

η
(1)
ℓ − η

(1)
ℓ−1

)

Fig. 1: Accelerated Proximal Gradient Algorithm

In this paper, we will use APG algorithm on a slightly
different but equivalent problem to (9). LetA3 andA4 denote
the matrices formed by vertically concatenatingAij

1 andAij
2 ,

respectively, for1 ≤ i 6= j ≤ K; and define

C =

[

A3 A4

I 0

]

, (13)

where I ∈ R
N×N identity matrix. For notational conve-

nience, letηηηT =
[

yyyT ξξξT
]

, and consider

min
ηηη∈Q1

1
2‖yyy − ȳyy‖22 + γ

2 ‖ξξξ‖22 , s.t. C ηηη ≥ 0, (14)

whereQ1 :=
{

(yyy,ξξξ) : Aii
1 yyyi + Aii

2 ξξξi ≥ 0, 1 ≤ i ≤ K
}

.
Note that (14) is different from (9) only in constraintsyyy ≥ 0.
Via possibly shifting all the observations{yyyℓ}Nℓ=1 up by a
sufficiently large quantity, we can assume without loss of
generality thatyyy∗(γ) ≥ 0 under bounded error assumption,
i.e. |εℓ| ≤ Bε for all ℓ. Therefore, (9) and (14) are indeed
equivalent problems. Consider the dual problem of (14),

max
θθθ

gγ(θθθ) s.t. θθθ ∈ Q2, (15)

whereQ2 :=
{

θθθ : ‖θθθ‖2 ≤ Bθ, θθθ ≥ 0
}

, and

gγ(θθθ) = min
(yyy,ξξξ)∈Q1

{

1
2

∥

∥yyy − ȳyy
∥

∥

2

2
+ γ

2 ‖ξξξ‖
2
2 − θθθTCηηη

}

. (16)

Let ηηη(θθθ) be the minimizer in (16). Theorem 7.1 in [17] and
Danskin’s theorem imply that

∇gγ(θθθ) = −Cηηη(θθθ) (17)

is Lipschitz continuous with constant

Lg = 1
γ σ2

max(C). (18)

Parallel APG algorithm (P-APG), displayed in Fig. 2, is the
customized version of APG algorithm in Fig. 1 to solve (15).
Note that at each iteration computation in Step 1) can be done
in parallel usingK processors, each solving a smaller QP.

Algorithm P-APG
(

γ
)

Iteration 0: Takeθθθ(1)0 = θθθ
(2)
1 = 000, t1 = 1

Iterationℓ: (ℓ ≥ 1) Compute

1) ηηηℓ = argmin
(yyy,ξξξ)∈Q1

{

1
2

∥

∥yyy − ȳyy
∥

∥

2

2
+ γ

2
‖ξξξ‖22 −

(

θθθ
(2)
ℓ

)T

Cηηη

}

2) θθθℓ
(1) = ΠQ2

(

θθθ
(2)
ℓ − 1

Lg
Cηηηℓ

)

3) tℓ+1 = (1 +
√

1 + 4t2ℓ)/2

4) θθθ
(2)
ℓ+1 = θθθ

(1)
ℓ + tℓ−1

tℓ+1

(

θθθ
(1)
ℓ − θθθ

(1)
ℓ−1

)

Fig. 2: Parallel APG Algorithm

Note that the iteration complexity of gradient ascent
method on (15) isO(Lg/δ) = O(B2

θ (γδ)
−1). On the other

hand, P-APG in Fig. 2 can compute aδ-optimal solution
to (15) within O(

√

Lg/δ) iterations. More precisely, (18)
impliesO(Bθ(γδ)

−1/2) complexity for P-APG on (15).
Let θθθδ be aδ-optimal solution to (15), and(yyyδ, ξξξδ) be the

optimal solution to the minimization problem in (6) when
θθθ is set toθθθδ. In Theorem 2, which is the main result of
this paper, we establish an error bounds on suboptimality
‖yyyδ −yyy∗‖2, and on infeasibility‖(A1yyyδ +A2ξξξδ)−‖2, where
(xxx)− := max{−xxx,000}.

Theorem 2: Let (yyy(γ), ξξξ(γ)) and θθθ∗ denote the optimal
solutions to (9) and (15), respectively. Letθθθδ be aδ-optimal
solution to (15), and(yyyδ, ξξξδ) be the minimizer in (16) when
θθθ is set toθθθδ. For all δ > 0, the following bounds hold:

‖yyyδ − yyy∗‖2 ≤ Bξ
√
γ +

√

2δ
γ σmax(C), (19)

‖(A1yyyδ +A2ξξξδ)−‖2 ≤
√

2δ
γ σmax(C). (20)

Proof: Sincegγ is Lipschitz continuous with constant
Lg given in (18), we have

‖∇gγ(θθθ1)−∇gγ(θθθ2)‖2 ≤ σ2
max(C)

γ
‖θθθ1 − θθθ2‖2 .

Moreover, first order optimality conditions for (15) imply

−〈∇g(θθθ∗), θθθ − θθθ∗〉 ≥ 0, ∀θθθ ∈ Q2. (21)

From (2.1.7) in [11], it follows that

−∇gγ(θθθ
∗)T(θθθδ − θθθ∗) +

γ

2σ2
max(C)

‖∇gγ(θθθδ)−∇gγ(θθθ
∗)‖22

≤ −gγ(θθθδ) + g(θθθ∗) ≤ δ.

Using (13), (17) and (21), we have
∥

∥

∥

∥

[

A3(yyy(γ)− yyyδ) +A4(ξξξ(γ)− ξξξδ)
yyy(γ)− yyyδ

]∥

∥

∥

∥

2

2

≤ 2δ
γ σ2

max(C).

(22)

Hence, together with (10), it implies (19). Moreover, since
‖xxx− yyy‖2 ≥ ‖(xxx)− − (yyy)−‖2 for anyxxx andyyy, we also have

‖(A3yyyδ +A4ξξξδ)− − (A3yyy(γ) +A4ξξξ(γ))−‖2 ≤
√

2δ
γ σmax(C).

Since (yyy(γ), ξξξ(γ)) is feasible to (9), and(yyyδ, ξξξδ) ∈ Q1,
above inequality implies (20).

Next, we prove an important technical lemma that will be
used later in Theorem 4 to show that‖ξξξδ − ξξξ∗‖2 is small.

Lemma 3: Assuming that{xxxi}Ni=1 are uniformly sampled
at random from setφ = {xxx ∈ R

n : ‖xxx‖∞ ≤ Bx}, the matrix
A4 in (13) has linearly independent columns (LIC).

Proof: RememberA4 ∈ R
N(N−N̄)×Nn denotes the

matrix formed by vertically concatenating allAij
2 for 1 ≤

i 6= j ≤ K. Note that rows of[Aij
1 Aij

2] correspond to
constraintsyℓ1 − yℓ2 + ξξξTℓ2(xxxℓ2 − xxxℓ1) ≥ 0, whereℓ1 ∈ Ci,
ℓ2 ∈ Cj and i 6= j. For the sake of simplifying the
discussion below, without loss of generality, we fixi = 2
and j = 1, and focus on the structure ofA21

2 . Let Â21
2

denote the submatrix ofA21
2 formed by selecting the rows

corresponding to(ℓ1, ℓ2) ∈ C2 × C1 such thatℓ1 = N̄ + 1
andℓ2 ∈ C1. Hence, we have

Â21
2 =

[

X 0
]

(23)

where0 is the matrix of zeros andX ∈ R
N̄×N̄n such that

X =

x̄̄x̄x1
T 000T 000T . . . 000T

000T x̄̄x̄x2
T 000T . . . 000T

000T 000T x̄̄x̄x3
T . . . 000T

...
...

...
. . .

...
000T . . . 000T . . . x̄̄x̄xN̄

T

(24)

and x̄̄x̄xℓ := xxxℓ − xxxN̄+1 for 1 ≤ ℓ ≤ N̄ .
Fix 1 ≤ j ≤ K. Note that for eachℓ ∈ Cj, there

correspondsn columns in A4; and the zero structure in
(23) implies that each column ofA4 corresponding toCj is
linearly independent with̄Nn columns inA4 corresponding
to Ck with probability 1 (w.p. 1) for allk 6= j. Moreover,

when we focus on (24), we also see that any one of the
n columns inA4 corresponding tōℓ ∈ Cj is also linearly
independent withn columns inA4 corresponding toℓ ∈ Cj
with probability 1 for all ℓ 6= ℓ̄. Therefore, to show thatA4

has linearly independent columns, it is sufficient to show that
for any given1 ≤ j ≤ K and ℓ ∈ Cj , the correspondingn
columns ofA4 are linearly independent w.p. 1.

Let D ∈ R
N(N−N̄)×n be the submatrix ofA4 ∈

R
N(N−N̄)×Nn corresponding to columns̄ℓ ∈ Cj for some

1 ≤ j ≤ K; anddddTℓ1ℓ2 denote the row ofD corresponding
to (ℓ1, ℓ2) such thatℓ1 andℓ2 belong to different sets in the
partition. Clearly,

dddTℓ1ℓ2 =

{
(

xxxℓ̄ − xxxℓ1

)T

, if ℓ1 6∈ Cj andℓ2 = ℓ̄;
000T, o.w.

(25)

Without loss of generality, we fixj > 1 and considerD̄ ∈
R

N̄×n which denotes the submatrix ofD corresponding to
the rowsdddTℓ1ℓ2 such thatℓ1 ∈ C1 and ℓ2 = ℓ̄ ∈ Cj . The
following discussion is true for anyCk such thatk 6= j, but
settingk = 1 simplifies the notation in̄D.

D̄ =

xxxT

ℓ̄
− xxxT

1
...

xxxT

ℓ̄
− xxxT

ℓ
...

xxxT

ℓ̄
− xxxT

N̄

It suffices to show that̄D has LIC. SinceN̄ ≥ n + 1 and
{xxxℓ}Nℓ=1 is a set of i.i.d. random vectors inRn having a
commoncontinuous distribution, it can be shown that there
existsn linearly independent rows of̄D w.p. 1. Thus,A4

has LIC.
Theorem 4: There existsK1,K2 > 0 such that

‖ξξξδ − ξξξ∗‖2 ≤ K1
√
γ +K2

√

δ
γ .

Proof: Sinceyyy∗ is the unique optimal solution to (4),
(5) implies thatξξξ∗ = argmin{‖ξξξ‖2 : A1yyy

∗ + A2ξξξ ≥ 000}.
Similarly, (9) implies thatξξξ(γ) = argmin{‖ξξξ‖2 : A1yyy(γ)+
A2ξξξ ≥ 000}. Hence, forhhh(γ) := A1(yyy

∗ − yyy(γ)),

ξξξ(γ) = argmin{‖ξξξ‖2 : A1yyy
∗ +A2ξξξ ≥ hhh(γ)}. (26)

Sensitivity of projection onto parametric polyhedral setswas
studied in [18]. Using Theorem 2.1 in [18] and (10), we have

‖ξξξ(γ)− ξξξ∗‖2 ≤ K‖hhh(γ)‖2 ≤ Kσmax(A1)Bξ
√
γ, (27)

for someK > 0. Moreover, (22) and Lemma 3 imply that

‖ξξξδ − ξξξ(γ)‖2 ≤

√

2δ
γ σmax(C) + σmax(A3)‖yyy(γ)− yyyδ‖2

σmin(A4)

Hence,‖ξξξδ − ξξξ(γ)‖2 ≤ (σmax(A3)+1)σmax(C)
σmin(A4)

√

2δ
γ .

E. ALCC - An Augmented Lagrangian Method

Now, we first briefly state a first-order algorithm to directly
solve (9). LetB̄y and B̄ξ be given such thatyyy(γ) ∈ Qy :=
{yyy : ‖yyy − ȳyy‖2 ≤ B̄y}, andξξξ(γ) ∈ Qξ := {ξξξ : ‖ξξξ‖2 ≤ B̄ξ}.
Such B̄y and B̄ξ can be found easily, if we are given

a feasible solution(ŷyy, ξ̂ξξ), i.e. A1ŷyy + A2ξ̂ξξ ≥ 000. Indeed,
selectingB̄y = B̄ and B̄ξ = B/

√
γ works, whereB̄ :=

√

‖ŷyy − ȳyy‖22 + γ‖ξ̂ξξ‖22. ALCC [19] computes a solution to (9)
by inexactly solving a sequence of subproblems:

P ∗
k := min{Pk(yyy,ξξξ) : yyy ∈ Qy, ξξξ ∈ Qξ}, (28)

Pk(yyy,ξξξ) :=
1

2µk
‖yyy − ȳyy‖22 + γ

2µk
‖ξξξ‖22 + hk(yyy,ξξξ),

where hk(yyy,ξξξ) := 1
2‖ (A1yyy +A2ξξξ − θθθk)− ‖22, and {θθθk}

sequence is defined in Fig. 3. Fork ≥ 1, hk(yyy,ξξξ) is convex
in yyy andξξξ -see Lemma 3.1 in [19]. Moreover,

∇yyyhk(yyy,ξξξ) = −A1
T (A1yyy +A2ξξξ − θθθk)− ,

∇ξξξhk(yyy,ξξξ) = −A2
T (A1yyy +A2ξξξ − θθθk)− .

In addition,∇yyyhk(yyy,ξξξ) is Lipschitz continuous inyyy for all
fixedξξξ with constantσ2

max(A1), and∇ξξξhk(yyy,ξξξ) is Lipschitz
continuous inξξξ for all fixed yyy with constantσ2

max(A2).
Hence,∇yyyPk(yyy,ξξξ) is Lipschitz continuous inyyy for all fixed
ξξξ with constantLy

k := 1
µk

+ σ2
max(A1), and ∇ξξξPk(yyy,ξξξ)

is Lipschitz continuous inξξξ for all fixed yyy with constant
Lξ
k := γ

µk
+ σ2

max(A2).
For givenc > 1 andκ > 0, it is shown in [19] that the

ALCC algorithm, displayed in Fig. 3, can compute anǫ-
optimal andǫ-feasible solution to (4) withinO(log(ǫ−1))
ALCC iterations that require at mostO(ǫ−1 log(ǫ−1))
MAPG iterations. The bottleneck step at each MAPG
iteration is the matrix-vector multiplication withA1 ∈
R

N2−N×N , A2 ∈ R
N2−N×Nn, A1

T and A2
T. Due to

specific structures ofA1 andA2, without formingA1 andA2

explicitly, we can computeA1y andA1
Tz with O(N2−N)

complexity for ally andz; A2ξ andA2
Tω with O

(

n(N2 −
N)

)

for all ξ andω. Indeed, neitherA1 nor A2 is stored in
the memory, storing only{xxxℓ}Nℓ=1 is sufficient to be able to
compute these matrix-vector multiplications.

Algorithm ALCC (yyy0, ξξξ0, µ1, τ1, α
y
1 , α

ξ
1)

Iteration 0: Takeθθθ0 = 000, k = 1
Iteration k: (k ≥ 1)

1) Ly
k = 1

µk
+ σ2

max(A1), L
ξ
k = γ

µk
+ σ2

max(A2)

2) ℓmax
k = 4

√

L
y
k
B̄2

y+L
ξ
k
B̄2

ξ

τk

3) (yyyk, ξξξk) = MAPG
(

Pk, L
y
k, L

ξ
k,yyyk−1, ξξξk−1, α

y
k, α

ξ
k, ℓ

max
k

)

4) θθθk+1 = µk

µk+1

(

A1yyyk + A2ξξξk − θθθk
)

−

5) µk+1 = c µk, τk+1 = τk/
(

c k1+κ
)2

6) αy
k+1 = αy

k/
(

c k1+κ
)2

, αξ
k+1 = αξ

k/
(

c k1+κ
)2

Fig. 3: Augmented Lagrangian Algorithm ALCC

Note that at each iteration of ALCC in Step 2) MAPG
algorithm is called to inexactly solve (28). Instead of MAPG,
one can also use APG in Fig. 1 to inexactly solve (28).
Within MAPG algorithm, step sizes taken in each block-
coordinate are determined by the block Lipschitz constant,
i.e. for y-coordinate the step size is1/Ly

k, while it is
1/Lξ

k for the ξ-coordinate. On the other hand, within APG
algorithm displayed in Fig. 1, the step sizes taken in each

coordinate are equal and determined by the global Lipschitz
constant. Thanks to this property of MAPG, we are able to
obtain faster convergence in practice in comparison to APG
algorithm. WhenLy

k ≈ Lξ
k, their performance are almost

the same; however, whenmax{Lξ
k, L

y
k}/min{Lξ

k, L
y
k} ≫ 1,

since APG uses the global constant L, it takes very tiny steps
in one of the block-coordinates.

Algorithm MAPG
(

P, Ly , Lξ, yyy0, ξξξ0, αy , αξ, ℓmax
)

Iteration 0: Takeyyy(1)
0 = yyy

(2)
1 = yyy0, ξξξ

(1)
0 = ξξξ

(2)
1 = ξξξ0, t1 = 1

Iterationℓ: (ℓ ≥ 1)

1) yyyℓ
(1) = ΠQy

(

yyy
(2)
ℓ − 1

Ly ∇yyyP (yyy
(2)
ℓ , ξξξ

(2)
ℓ)

)

2) ξξξℓ
(1) = ΠQξ

(

ξξξ
(2)
ℓ − 1

Lξ ∇ξξξP (yyy
(2)
ℓ , ξξξ

(2)
ℓ)

)

3) tℓ+1 = (1 +
√

1 + 4t2ℓ)/2

4) yyy
(2)
ℓ+1 = yyy

(1)
ℓ + tℓ−1

tℓ+1

(

yyy
(1)
ℓ − yyy

(1)
ℓ−1

)

5) ξξξ
(2)
ℓ+1 = ξξξ

(1)
ℓ + tℓ−1

tℓ+1

(

ξξξ
(1)
ℓ − ξξξ

(1)
ℓ−1

)

6) if ‖yyy
(1)
ℓ − yyy

(2)
ℓ ‖2 ≤ αy and ‖ξξξℓ

(1) − ξξξ
(2)
ℓ ‖2 ≤ αξ

7) return
(

yyy
(1)
ℓ , ξξξ

(1)
ℓ

)

8) else if ℓ = ℓmax

9) return
(

yyy
(1)
ℓ , ξξξ

(1)
ℓ

)

10) end if

Fig. 4: Modified Accelerated Proximal Gradient Algorithm

Convergence and rate result of MAPG follow directly from
APG in [14] with the help of following lemma.

Lemma 5: Let f : Rm → R be a convex function, such
that∇x1f(xxx1,xxx2) is Lipschitz continuous with respect toxxx1

with constantL1, and∇x2f(xxx1,xxx2) is Lipschitz continuous
in xxx2 with constantL2. Then we have

f(zzz1,zzz2) ≤ f(xxx1,xxx2) + L1‖zzz1 − xxx1‖22 + L2‖zzz2 − xxx2‖22
+∇xxx1

f(xxx1,xxx2)
T(zzz1 − xxx1) +∇xxx2

f(xxx1,xxx2)
T(zzz2 − xxx2).

Proof: From Lipschitz continuity of∇x1f(., x2) for
eachx2 and∇x2f(x1, .) for eachx1, it follows that

f(yyy1,xxx2) ≤ f(xxx1,xxx2) +∇xxx1
f(xxx1,xxx2)

T(yyy1 − xxx1)

+ L1

2 ‖yyy1 − xxx1‖22, (29)

f(xxx1, yyy2) ≤ f(xxx1,xxx2) +∇xxx2
f(xxx1,xxx2)

T(yyy2 − xxx2)

+ L2

2 ‖yyy2 − xxx2‖22. (30)

Multiplying (29) and (30) with 1
2 , and summing them up,

gives us

1
2f(yyy1,xxx2) +

1
2f(xxx1, yyy2)

≤ f(xxx1,xxx2) +
1
2∇f(xxx1,xxx2)

T

(

yyy1 − xxx1

yyy2 − xxx2

)

+
L1

4
‖yyy1 − xxx1‖22 +

L2

4
‖yyy2 − xxx2‖22.

Letzzz1 = (xxx1+yyy1)/2 andzzz2 = (xxx2+yyy2)/2, and by convexity
of f , we have

f(zzz1, zzz2) ≤
1

2
f(yyy1,xxx2) +

1

2
f(xxx1, yyy2).

Combining the last two inequality concludes the proof.
Let {yyy(1)ℓ ,ξξξ

(1)
ℓ }ℓ∈Z+ be the iterate sequence generated

by MAPG algorithm while running on (28) starting from

(yyyk−1, ξξξk−1). Using Lemma 5 and adapting the proof of
Theorem 4.4 in [14], it can be shown that for allℓ ≥ 1,

0 ≤ Pk

(

yyy
(1)
ℓ ,ξξξ

(1)
ℓ

)

− P ∗
k

≤
4
(

Ly
k‖yyyk−1 − yyy∗k‖22 + Lξ

k‖ξξξk−1 − ξξξ∗k‖22
)

(ℓ+ 1)2
,

where (yyy∗k,ξξξ
∗
k) is a minimizer of (28). Note that we have

‖yyyk−1 − yyy∗k‖2 ≤ 2B̄y and‖ξξξk−1 − ξξξ∗k‖2 ≤ 2B̄ξ. Hence, for

all ℓ ≥ ℓmax
k , it is guaranteed that

(

yyy
(1)
ℓ ,ξξξ

(1)
ℓ

)

is τk-optimal
to (28).

Note that one can also use ALCC, displayed in Fig. 3,
to compute the primal iteratesηηηℓ in Step-1 of P-APG in
Fig. 2 during theℓ-th iteration. In particular, at beginning of
every P-APG iteration,ηηηℓ can be computed using ALCC
to evaluate∇gγ(θθθ

(2)
ℓ). More importantly, thanks to the

separability of regularized (7), one can do this computation
in parallel running ALCC on each one of theK processors.

Let N = KN̄ such thatN ≥ n+1. Below we consider the
bottleneck memory requirement for solving (9) in 4 cases:a)
P-APG with ALCC computing Step-1 in Fig. 2,b) running
ALCC alone on (9), c) P-APG with a primal-dual IPM
computing Step-1 in Fig. 2, andd) running IPM alone on
(9). The bottleneck for casea) is determined by Step-2 in
Fig. 2, due to dual iteratesθθθ of size (K2 −K)N̄2 +KN̄ .
Similarly, for caseb) Step-4 in Fig. 3 requires storingθθθ of
sizeK2N̄2. On the contrary, IPM needs to solve a Newton
system in each iteration for both casesc) andd). Assuming
Cholesky factorization is stored, one needs to keepK lower
triangular matrices in memory of sizēN(n+1)-by-N̄(n+1)
for casec), and to keep 1 lower triangular matrix of size
N(n + 1)-by-N(n + 1) for casec). Above discussion is
summarized in Table I. Note that running IPM within P-APG
reduces the memory requirement significantly by a factor of
K in comparison to running IPM alone, e.g. if we partition
N observations intoK = 10 subsets and each subproblem
requires 1GB of memory, then running IPM alone requires
roughly 100GB, while IPM within P-APG requires only
10GB in total.

TABLE I: Comparison of Memory Usage

IPM ALCC

Alone O
(

K2N̄2(n+ 1)2
)

O
(

K2N̄2
)

P-APG O
(

KN̄2(n+ 1)2 + (K2 −K)N̄2
)

O
(

(K2 −K)N̄2
)

III. N UMERICAL STUDY

In this section, we provide a comparison in Matlab among
the following methods: Sedumi, ALCC, Mosek, P-APG with
Sedumi, P-APG with ALCC, and P-APG with Mosek, on
problem (9) with increasing dimension. The numerical study
is mainly aimed to demonstrate how the performance of each
method scales with the dimension of the problem.

First, we start with a small size problem:n = 5, N =
100. Λ ∈ R

n×n, {xxxi}Ni=1 ⊂ R
n and {ǫi}Ni=1 ⊂ R are

generated randomly with all the components being i.i.d.
with N (0, 1), and ȳi are generated according to (1), where

f0(xxx) =
1
2xxx

TQxxx, andQ = ΛTΛ. We compare the quality of
the solutions computed by P-APG and dual gradient ascent
(as the dual functiongγ in (16) is differentiable). In order to
compute dual gradient,∇gγ , one needs to solveK quadratic
subproblems. To exploit this parallel structure, we partition
the data into two sets, i.e.K = 2. Within both the dual
gradient ascent and P-APG, we called ALCC to compute
the dual gradients via solvingK QP subproblems. Since we
allow violations for the relaxed constraints, “duality gap”
in the paper is defined asθθθTkCηηηk at kth iteration. Fig. 5
represents how the duality gap of both methods changes at
each iteration. In order to better understand the behavior of
P-APG, we report in Fig. 6 the duality gap of P-APG in a
smaller scale. Fig. 7 reports the infeasibility of iterates, i.e.
∥

∥

(

A1yyyk +A2ξξξk
)

−

∥

∥

2
.

Fig. 5: Duality Gap for P-APG and Dual Gradient Ascent

Fig. 6: Duality Gap for P-APG Method

Fig. 7: Distance to Feasible Region for P-APG and Dual
Gradient Ascent

TABLE II: Comparison with test functionexp(pppTxxx)

N Solver CPU W.T. 1
2

∥

∥yyy − ȳyy
∥

∥

2

2
Gap Infeas.

200

Sedumi 2.69 2.69 1.16E-05 0 0
ALCC 1.86 1.86 1.16E-05 -1.19E-07 9.6E-02
Mosek 0.74 0.74 1.16E-05 2.68E-08 0
PAPG(Sedumi) 29.64 14.84 1.17E-05 1.31E-07 9.9E-02
PAPG(ALCC) 9.93 4.98 1.19E-05 2.93E-08 9.9E-02
PAPG(Mosek) 3.77 1.91 1.17E-05 9.85E-08 9.4E-02

400

Sedumi O.M. O.M. O.M. O.M. O.M.
ALCC 14.74 14.74 6.01E-05 -1.15E-07 9.8E-02
Mosek O.M. O.M. O.M. O.M. O.M.
PAPG(Sedumi) 120.48 30.28 6.00E-05 4.52E-09 9.7E-02
PAPG(ALCC) 35.83 9.11 6.11E-05 -2.87E-08 9.8E-02
PAPG(Mosek) 15.73 4.12 6.00E-05 4.97E-09 9.7E-02

800

Sedumi O.M. O.M. O.M. O.M. O.M.
ALCC 93.57 93.57 2.02E-04 -8.50E-08 9.9E-02
Mosek O.M. O.M. O.M. O.M. O.M.
PAPG(Sedumi) 146 19 2.46E-04 2.41E-08 9.9E-02
PAPG(ALCC) 118.54 15.77 2.10E-04 7.01E-08 9.8E-02
PAPG(Mosek) 52.43 7.52 2.05E-04 6.49E-08 9.7E-02

1600

Sedumi O.M. O.M. O.M. O.M. O.M.
ALCC N/A N/A N/A N/A N/A
Mosek O.M. O.M. O.M. O.M. O.M.
PAPG(Sedumi) N/A N/A N/A N/A N/A
PAPG(ALCC) 323.68 23.94 1.97E-03 5.85E-09 9.9E-02
PAPG(Mosek) 204.56 17.14 1.85E-03 -6.72E-10 9.9E-02

TABLE III: Comparison with test function12xxx
TQxxx

N Solver CPU W.T. 1
2

∥

∥yyy − ȳyy
∥

∥

2

2
Gap Infeas.

200

Sedumi 2.88 2.88 1.25E-04 0 0
ALCC 3.58 3.58 1.25E-04 -3.41E-08 9.8E-03
Mosek 0.65 0.65 1.25E-04 2.11E-08 0
PAPG(Sedumi) 16.7 8.41 1.29E-04 4.48E-06 6.5E-02
PAPG(ALCC) 12.5 6.3 1.25E-04 9.49E-08 9.8E-02
PAPG(Mosek) 5.57 2.8 1.26E-04 1.45E-07 8.6E-02

400

Sedumi O.M. O.M. O.M. O.M. O.M.
ALCC 33.3 33.3 1.02E-03 -6.84E-08 1.4E-02
Mosek O.M. O.M. O.M. O.M. O.M.
PAPG(Sedumi) 164 41.2 1.02E-03 -8.62E-08 9.5E-02
PAPG(ALCC) 63.2 15.7 1.01E-03 1.53E-07 9.7E-02
PAPG(Mosek) 29.01 7.43 1.02E-03 -8.74E-08 9.5E-02

800

Sedumi O.M. O.M. O.M. O.M. O.M.
ALCC 140 140 4.03E-02 -2.94E-07 9.9E-02
Mosek O.M. O.M. O.M. O.M. O.M.
PAPG(Sedumi) 303.33 39.87 4.04E-03 -1.95E-07 9.9E-02
PAPG(ALCC) 206 23.9 4.04E-03 -2.03E-07 9.9E-02
PAPG(Mosek) 100.32 14.34 4.04E-03 -1.95E-07 9.9E-02

1600

Sedumi O.M. O.M. O.M. O.M. O.M.
ALCC N/A N/A N/A N/A N/A
Mosek O.M. O.M. O.M. O.M. O.M.
PAPG(Sedumi) N/A N/A N/A N/A N/A
PAPG(ALCC) 480 29.8 5.28E-03 1.10E-07 9.9E-02
PAPG(Mosek) 273.93 21.47 5.23E-03 5.59E-08 9.8E-02

A primal-dual iterate(ηηη,θθθ) is optimal if the duality gap
and infeasibility are both zero. As the feasibility happensin
the limit, the duality gap in Fig. 6 can go below the red
line, which can be explained by the infeasibility of iterates.
Therefore, observing a decrease in duality gap only tells one
part of the story; without convergence to feasibility, it isnot
valuable alone as a measure. As shown in the Fig. 5 and
Fig. 6, the duality gap converges quickly to zero for both
methods. On the other hand, as shown in Fig. 7, constraint
violation for P-APG iterates decreases to 0 much faster than
it does for the dual gradient ascent iterates. Hence, P-APG
iterate sequence converges to the unique optimal solution
considerably faster.

The larger scale problems are carried out on a single node
at a research computing cluster. The node is composed of
one 16-core processor sharing 32GB. For P-AGPG numerical

tests, in each job submitted to the computing cluster, an
instance of (9) is solved using P-APG on the node such
that each subproblem is computed on a different core.
The dimension of variablesn = 80 and the number of
observationsN = 200, 400, 800, 1600. We partition the set
of observations intoK subsets. Each one of them consists of
100 points. So,K = 2, 4, 8, 16 for N = 200, 400, 800, 1600,
respectively. In all the tables,N/A means that the wall clock
time exceeded 2 hours for the job, andO.M. means the
algorithm in focus runs out of memory. Also CPU denotes
the CPU run time inminutes; W.T. stands for wall-clock
time in minutes. Since the number of constraints increases
at the rate ofO(N2), as the size of problem increases in
N , we reported the normalized infeasibility and normalized
duality gap, which are‖

(

A1yyy + A2ξξξ
)

−
‖2/

√
N2 −N and

θθθTkCηηηk/(N
2−N), respectively. We report numerical results

for the following test functions:f0(xxx) = 1
2xxx

TQxxx, f0(xxx) =
exp(pppTxxx), whereQ is generated as discussed before, and
ppp ∈ R

n is generated using uniform distribution.

TABLE IV: Replications with test functionexp(pppTxxx)

Solver Rep. CPU W.T. 1
2

∥

∥yyy − ȳyy
∥

∥

2

2
Gap Infeas.

PAPG(ALCC)
1 118.54 15.77 2.10E-04 7.01E-08 9.8E-02
2 131.93 17.56 3.90E-04 5.52E-09 9.9E-02
3 136.50 18.01 4.69E-04 -3.87E-09 9.8E-02
4 126.43 16.74 2.91E-04 -2.53E-09 9.9E-02
5 144.31 18.98 5.35E-04 -7.62E-08 9.8E-02

PAPG(Mosek)
1 52.43 7.52 2.05E-04 6.49E-08 9.7E-02
2 57.33 8.12 3.77E-04 9.39E-09 9.9E-02
3 61.53 8.64 4.54E-04 -5.30E-09 9.9E-02
4 55.86 8.00 2.84E-04 -7.48E-09 9.9E-02
5 65.04 9.15 5.15E-04 -7.74E-08 9.8E-02

TABLE V: Replications with test function12xxx
TQxxx

Solver Rep. CPU W.T. 1
2

∥

∥yyy − ȳyy
∥

∥

2

2
Gap Infeas.

PAPG(ALCC)
1 206.00 23.90 4.04E-03 -2.03E-07 9.9E-02
2 213.27 27.63 1.00E-03 -9.04E-08 9.6E-02
3 211.18 27.37 1.11E-03 -1.09E-07 9.9E-02
4 178.77 23.41 7.29E-04 -6.20E-08 9.9E-02
5 200.62 26.14 1.27E-03 -1.05E-07 9.6E-02

PAPG(Mosek)
1 100.32 14.34 4.04E-03 -1.95E-05 9.9E-02
2 79.27 10.87 9.88E-04 -1.04E-07 9.9E-02
3 83.11 11.43 1.09E-03 -1.19E-07 9.9E-02
4 68.90 9.66 7.16E-04 -2.30E-08 9.9E-02
5 79.55 10.99 1.24E-03 -1.19E-07 9.8E-02

All the algorithms are terminated either when they com-
pute an iterate with normalized infeasibility and normalized
duality gap are less than 1E-01 and 1E-06, respectively, or
at the end of 2 hours. The numerical results reported in
Table II and III show that P-APG solution is very close to
the real optimal solution of (9). Note that ALCC fails to
terminate within in 2 hours whenN = 1600; and interior
point methods fail to run anything beyondN = 200 due
O(N2n2) memory requirement. Moreover, in order to test
the robustness of P-APG, we solved 5 random instances
whenN = 800, of which results are reported in Table IV
and Table V. Numerical results show that advantages of P-
APG over running IPM or ALCC alone on (9) become more
and more evident as the dimension of the problem increases.

IV. CONCLUSION

In this paper, we proposed P-APG method to efficiently
compute the least squares estimator for large scale convex
regression problems. By relaxing constraints partially, we
obtained the separability on the corresponding Lagrangian
dual problem. Using Tikhonov regularization, we ensured
the feasibility of iterates in the limit, and we provided error
bounds on 1) the distance between the inexact solution to the
regularized problem and the optimal solution to the original
problem, 2) the constraint violation of the regularized solu-
tion. The comparison in the numerical section demonstrates
the efficiency of P-APG method on memory usage compared
to IPM. Furthermore, the extended random tests show the
stability of P-APG method. Due to limited space, we could
not include computational results on real-life data; but they
will be made available online at authors’ webpage.

REFERENCES

[1] M. Mousavi and P. Glynn. Shape-constrained estimation of value
functions. preprint available at arXiv:1312.7035, 2013.

[2] R. Meyer and J. Pratt. The consistent assessment and fairing of prefer-
ence functions.Systems Science and Cybernetics, IEEE Transactions
on, 4(3):270–278, 1968.

[3] H. Chen and D. Yao. Fundamentals of queueing networks: Per-
formance, asymptotics, and optimization, volume 46 of Stochastic
Modelling and Applied Probability. Springer, 2001.

[4] E. Lim and P. Glynn. Consistency of multidimensional convex
regression.Operations Research, 60(1):196–208, 2012.

[5] P. Groeneboom, G. Jongbloed, and J. Wellner. Estimationof a convex
function: Characterizations and asymptotic theory.Annals of Statistics,
29(6):1653–1698, 2001.

[6] E. Seijo and B. Sen. Nonparametric least squares estimation of a
multivariate convex regression function.The Annals of Statistics,
39(3):1633–1657, 2011.

[7] L. Hannah and D. Dunson. Approximate dynamic programming for
storage problems. InProceedings of the 28th International Conference
on Machine Learning (ICML-11), pages 337–344, 2011.

[8] L. Hannah and D. Dunson. Multivariate convex regressionwith
adaptive partitioning. The Journal of Machine Learning Research,
14(1):3261–3294, 2013.

[9] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004.

[10] J. Nocedal and S. J. Wright.Numerical Optimization. Springer, New
York, 2nd edition, 2006.

[11] Y. Nesterov.Introductory lectures on convex optimization, volume 87
of Applied Optimization. Kluwer Academic Publishers, Boston, MA,
2004.

[12] H. Engl, K. Kunisch, and A. Neubauer. Convergence ratesfor
Tikhonov regularisation of non-linear ill-posed problems. Inverse
problems, 5(4):523, 1989.

[13] D. P. Bertsekas.Nonlinear Programming. Athena Scientific, 1999.
[14] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding

algorithm for linear inverse problems.SIAM J. Img. Sci., 2(1):183–
202, March 2009.

[15] P. Tseng. On accelerated proximal gradient methods
for convex-concave optimization. Preprint available at
http://www.eecs.berkeley.edu/˜brecht/eecs227cdocs/tseng.pdf, 2008.

[16] Y. Nesterov. Smooth minimization of nonsmooth functions. Mathe-
matical Programming, Series A, 103:127–152, 2005.

[17] Y. Nesterov. Excessive gap technique in nonsmooth convex minimiza-
tion. SIAM Journal on Optimization, 16(1):235–249, 2005.

[18] N. D. Yen. Lipschitz continuity of solutions of variational inequalities
with a parametric polyhedral constraint.Mathematics of Operations
Research, 20(3):695–708, 1995.

[19] N. S. Aybat and G. Iyengar. An augmented lagrangian method for
conic convex programming. preprint, arXiv:1302.6322 [math.OC],
2013.

	I Introduction
	II Methodology
	II-A Separability
	II-B Projected Subgradient Method for Dual
	II-C Tikhonov Regularization Approach
	II-D Accelerated Proximal Gradient (APG) Algorithm
	II-E ALCC - An Augmented Lagrangian Method

	III Numerical Study
	IV Conclusion
	References

