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Abstract

Recent work has shown that deploying two nondegenerate optical parametric
amplifiers (NOPAs) separately at two distant parties in a coherent feedback loop
generates stronger Einstein-Podolski-Rosen (EPR) entanglement between two prop-
agating continuous-mode output fields than a single NOPA under same pump power,
decay rate and transmission losses. The purpose of this paper is to investigate the
stability and EPR entanglement of a dual-NOPA coherent feedback system under the
effect of phase shifts in the transmission channel between two distant parties. It is
shown that, in the presence of phase shifts, EPR entanglement worsens or can vanish,
but can be improved to some extent in certain scenarios by adding a phase shifter
at each output with a certain value of phase shift. In ideal cases, in the absence of
transmission and amplification losses, existence of EPR entanglement and whether
the original EPR entanglement can be recovered by the additional phase shifters are
decided by values of the phase shifts in the path.

1 Introduction

Entanglement is a key resource for quantum information processing. As an open quantum
system is susceptible to external environment, entanglement would decay due to losses
caused by unwanted interaction between the quantum system and its external electro-
magnetic field, which may lead to failure of quantum communication between two distant
parties (Alice and Bob) and limit transmission distance [1]. Therefore, reliable generation
and distribution of entanglement between two distant communicating parties (Alice and
Bob) has become increasingly important. Continuous-variable entanglement has an advan-
tage over discrete-variable one due to its high efficiency in generation and measurement of
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quantum states [2]. As the most widely used continuous variable entangled resource, Gaus-
sian EPR-like entangled pairs can be generated between amplitude and phase quadratures
of two outgoing light beams of a nondegenerate optical parametric amplifier (NOPA) [3, 4].

The main component of a NOPA is a two-end cavity which consists of a nonlinear χ(2)

crystal and mirrors. With a strong undepleted coherent pump beam employed as a source
of energy, interactions between the pump beam and two modes inside the cavity generate
a pair of outgoing beams in Gaussian EPR-like entangled states [4]. In Fig 1, a NOPA is
simply denoted by a block with four inputs and two outputs. More details of the NOPA
are given in Section 3.

Figure 1: A dual-NOPA coherent feedback system

Our previous work [5] presents a dual NOPA coherent feedback system where two
NOPAs are separately located at two distant endpoints (Alice and Bob) and connected
in a feedback loop without employing any measurement devices, shown in Fig 1. In the
network, two entangled outgoing fields ξout,a,2 and ξout,b,1 are generated. Our previous
work [5] shows that under the same pump power, decay rate and transmission losses, the
dual-NOPA coherent feedback network generates stronger EPR entanglement than a single
NOPA placed in the middle of the two ends (at Charlie’s). The paper also examines effects
of losses and time delays on the dual-NOPA system. Not surprisingly, EPR entanglement
worsens as transmission and amplification losses increase; transmission time delays reduce
the range of frequency over which EPR entanglement exists.

In this paper, we examine the effect of phase shifts along the transmission channels on
EPR entanglement generated by the dual-NOPA coherent feedback system. What we are
interested in is whether phase shifts degrade EPR entanglement; if they do, then whether
we can recover it or minimize the EPR entanglement reduction by placing two adjustable
phase shifters separately at each output. The paper is organised as follows. Section 2
briefly introduces linear quantum systems and an EPR entanglement criterion between
two continuous-mode Gaussian fields. A description of our dual-NOPA coherent feedback
system under influence of losses and phase shifts is given in Section 3. Section 4 investigates
the stability condition, as well as EPR entanglement under effects of phase shifts in a
lossless system and a more general case where transmission losses and amplification losses
are considered. Finally Section 5 gives the conclusion of this paper.
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2 Preliminaries

This paper employs the following notations. ı denotes
√
−1, the transpose of a matrix

of numbers or operators is denoted by ·T and ·∗ denotes (i) the complex conjugate of a
number, (ii) the conjugate transpose of a matrix, as well as (iii) the adjoint of an operator.
I denotes an identity matrix. Trace operator is denoted by Tr[·].

2.1 Linear quantum systems

An open linear quantum system without a scattering process contains n-bosonic modes
aj(t) (j = 1, . . . , n) satisfying [ai(t), aj(t)

∗] = δij. The dynamics of the system can be
described by the time-varying interaction Hamitonian between the system and environment

Hint(t) = ı
m∑
j=1

(Ljξj(t)
∗ − L∗jξj(t)), (1)

in which Lj is the j-th system coupling operator and ξj(t) (j = 1, . . . ,m) is the field opera-
tor describing the j-th environment field [1]. When the environment is under the condition
of the Markov limit, the field operator under the vacuum state satisfies [ξj(t), ξj(s)

∗] =
δ(t − s), where δ(t) denotes the Dirac delta function. When Lj is linear and H is
quadratic in aj and a∗j , the Heisenberg evolutions of mode aj and output filed opera-
tor ξout,j are defined by aj(t) = U(t)∗ajU(t) and ξout,j(t) = U(t)∗ξin,j(t)U(t) with unitary

U(t) = exp−→ (−i
∫ t

0
Hint(s)ds) and is of the form

ż(t) = Az(t) +Bξ(t), (2)

ξout,j(t) = Cz(t) +Dξ(t), (3)

for some real matrices A, B, C and D, where we have defined

z = (aq1, a
p
1, . . . , a

q
n, a

p
n)T ,

ξ = (ξq1, ξ
p
1 , . . . , ξ

q
m, ξ

p
m)T ,

ξout = (ξqout,1, ξ
p
out,1, . . . , ξ

q
out,l, ξ

p
out,l)

T , (4)

with quadratures [7, 8]

aqj = aj + a∗j , apj = (aj − a∗j)/i,
ξqj = ξj + ξ∗j , ξpj = (ξj − ξ∗j )/i. (5)

2.2 EPR entanglement between two continuous-mode fields

Unlike bipartite entanglement of two-mode Gaussian states, which can be measured by
the logarithmic negativity [6], EPR entanglement between two continuous-mode (many-
mode) output fields ξout,1 and ξout,2 has to be evaluated in frequency domain [4, 2, 9].
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F (ıω), the Fourier transform of f(t), can be achieved by Fourier transformation F (ıω) =
1√
2π

∫∞
−∞ f (t) e−ıωtdt. Similarly, we can get the Fourier transforms of ξout,1(t), ξout,2(t), z(t)

and ξ(t), as Ξ̃out,1 (ıω), Ξ̃out,2 (ıω), Z(ıω) and Ξ(ıω), respectively.

Based on equations (2) and (3), we have

Ξ̃q
out,1(ıω) + Ξ̃q

out,2(ıω) = C1Z (ıω) +D1Ξ (ıω) ,

Ξ̃p
out,1(ıω)− Ξ̃p

out,2(ıω) = C2Z (ıω) +D2Ξ (ıω) , (6)

where C1 = [1 0 1 0]C, C2 = [0 1 0 −1]C, D1 = [1 0 1 0]D and D2 = [0 1 0 −1]D.

If the ingoing signals are in a vacuum state, the EPR entanglement between the two
fields are related to the two-mode amplitude squeezing spectra V+ and the two-mode phase
squeezing spectra V− which have the following definitions

〈(Ξ̃q
out,1(ıω) + Ξ̃q

out,2(ıω))∗(Ξ̃q
out,1(ıω′) + Ξ̃q

out,2(ıω′))〉 = V+(ıω)δ(ω − ω′),
〈(Ξ̃p

out,1(ıω)− Ξ̃p
out,2(ıω))∗(Ξ̃p

out,1(ıω′)− Ξ̃p
out,2(ıω′))〉 = V−(ıω)δ(ω − ω′), (7)

where 〈·〉 denotes quantum expectation. V+(ıω) and V−(ıω) are real valued and can be
easily calculated by using the transfer functions Hj(ıω) = Cj (ıωI − A)−1B+Dj (j = 1, 2),
as described in [10, 11],

V+(ıω) =Tr [H1(ıω)∗H1(ıω)] , (8)

V−(ıω) =Tr [H2(ıω)∗H2(ıω)] . (9)

Denote V (ıω) = V+(ıω) + V−(ıω). The sufficient condition that the fields ξout,1 and ξout,2
are correlated at the frequency ω rad/s is [9],

V (ıω) < 4. (10)

Ideally, we would like V (ıω) = V+(ıω) = V−(ıω) = 0 for all ω, which denotes infinite-
bandwidth two-mode squeezing, representing an ideal Einstein-Podolski-Rosen state. How-
ever, in reality the ideal EPR correlation can not be achieved, so in practice the goal is to
make V (ıω) as small as possible over a wide frequency range [9]. Following [5] and [10], for
low frequencies, we have a good approximation that V+(iω) ≈ V+(0) and V−(iω) ≈ V−(0).

Define ξψ1

out,1 = eıψ1ξout,1, ξψ2

out,2 = eıψ2ξout,2 with ψ1, ψ2 ∈ (−π, π] and denote the corre-

sponding two-mode squeezing spectra as V ψ1,ψ2
± (ıω, ψ1, ψ2), we have the following definition

of EPR entanglement.

Definition 1 Fields ξout,1 and ξout,2 are EPR entangled at the frequency ω rad/s if ∃ ψ1, ψ2 ∈
(−π, π] such that

V ψ1,ψ2(ıω, ψ1, ψ2) = V ψ1,ψ2
+ (ıω, ψ1, ψ2) + V ψ1,ψ2

− (ıω, ψ1, ψ2) < 4. (11)

Unless otherwise specified, throughout the paper EPR entanglement refers to the case with
ψ1 = ψ2 = 0. EPR entanglement is said to vanish at frequency ω if there are no values of
ψ1 and ψ2 satisfying the above criterion.
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3 The system model

In this section, we consider a dual-NOPA (G1 and G2) coherent feedback network shown
in Fig. 2 previously proposed in [5]. During the transmission, the system undergoes
transmission losses and possibly some phase shifts. Transmission loss in each path of
the system is modelled by a beamsplitter with transmission rate α and reflection rate β
(α2+β2 = 1), and phase shift θi (i = 1, 2) in each path is modelled by a phase shifter, whose
outgoing field ξout and input field ξin have the relation ξout = eıθiξin [12, 13]. Two phase
shifters with adjustable phase shifts φ1 and φ2 are placed at two outputs separately. We
are interested in EPR entanglement generated between continuous-mode outgoing fields
ξout,a,2 and ξout,b,1.

Figure 2: A dual-NOPA coherent feedback system under effects of losses and phase shifts.

Each NOPA Gi (i = 1, 2) has two oscillator modes ai and bi inside its cavity. As a strong
coherent beam is pumped to the nonlinear χ(2) crystal in the cavity, the modes ai and bi
are coupled via a two-mode squeezing Hamiltonian H = ı

2
ε (a∗i b

∗
i − aibi), where ε is a real

coupling coefficient related to the amplitude of the pump beam [4]. Mode ai is coupled
to ingoing noise ξin,a,i and amplification loss ξloss,a,i via coupling operators L1 =

√
γai

and L3 =
√
κai, respectively, for some constant damping rates γ and κ; similarly mode

bi interacts with input signal ξin,b,i and additional noise ξloss,b,i by operators L2 =
√
γbi

and L4 =
√
κbi. The modes satisfy the commutation relations [ai, a

∗
j ] = δij, [ai, bj] = 0,

[ai, b
∗
j ] = 0, [ai, aj] = 0 and [bi, bj] = 0 (i, j = 1, 2) [1].

The dynamics of the system in Fig. 2 is given by

ȧ1 (t) =− γ + κ

2
a1 (t) +

ε

2
b∗1 (t)−√γξin,a,1 (t)−

√
κξloss,a,1 (t) ,

ḃ1 (t) =− γ + κ

2
b1 (t) +

ε

2
a∗1 (t)− αγeıθ2b2 (t)− α√γeıθ2ξin,b,2 (t)−

√
κξloss,b,1 (t)− β√γξBS,2 (t) ,

ȧ2 (t) =− γ + κ

2
a2 (t) +

ε

2
b∗2 (t)− αγeıθ1a1 (t)− α√γeıθ1ξin,a,1 (t)−

√
κξloss,a,2 (t)− β√γξBS,1 (t) ,

ḃ2 (t) =− γ + κ

2
b2 (t) +

ε

2
a∗2 (t)−√γξin,b,2 (t)−

√
κξloss,b,2 (t) , (12)
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with outputs

ξout,b,1 (t) =
√
γeıφ1b1 (t) + α

√
γeı(θ2+φ1)b2 (t) + αeı(θ2+φ1)ξin,b,2 (t) + βeıφ1ξBS,2 (t) ,

ξout,a,2 (t) =
√
γeıφ2a2 (t) + α

√
γeı(θ1+φ2)a1 (t) + αeı(θ1+φ2)ξin,a,1 (t) + βeıφ2ξBS,1 (t) . (13)

Define the quadratures

z =[aq1, a
p
1, b

q
1, b

p
1, a

q
2, a

p
2, b

q
2, b

p
2]T ,

ξ =[ξqin,a,1, ξ
p
in,a,1, ξ

q
in,b,2, ξ

p
in,b,2, ξ

q
loss,a,1, ξ

p
loss,a,1, ξ

q
loss,b,1, ξ

p
loss,b,1,

ξqloss,a,2, ξ
p
loss,a,2, ξ

q
loss,b,2, ξ

p
loss,b,2, ξ

q
BS,1, ξ

p
BS,1, ξ

q
BS,2, ξ

p
BS,2]T ,

ξout =[ξqout,b,1, ξ
p
out,b,1, ξ

q
out,a,2, ξ

p
out,a,2]T . (14)

According to (2), (3) (12) and (13), we have

ż (t) = Az (t) +Bξ (t) , (15)

ξout (t) = Cz (t) +Dξ (t) , (16)

where A,B,C, and D are real matrices.

As mentioned in Section 2.2, two-mode squeezing spectra V±(ıω) can be approximated
to V±(0) at ω = 0 in low frequency domain. In the remainder of this paper, we evaluate
degree of EPR entanglement between outgoing fields ξout,a,2 and ξout,b,1 by V±(0). Based
on (8) and (9), we get

V (0) = V+(0) + V−(0) = Tr [H∗1H1 +H∗2H2] , (17)

where H = D − CA−1B, H1 =
[

1 0 1 0
]
H and H2 =

[
0 1 0 −1

]
H.

4 Analysis of effect of phase shifts on the dual-NOPA

coherent feedback system

Here we analyse effects of phase shifts θ1 and θ2 on stability and EPR entanglement of the
dual-NOPA coherent feedback system. We investigate EPR entanglement when the system
is lossless, that is, amplification and transmission losses are neglected, as well as EPR
entanglement of the system with losses. Moreover, we examine effects of adjustable phase
shifters with phase shifts φ1 and φ2 to see whether they can recover the EPR entanglement
impacted by θ1 and θ2.

Parameters of the system are defined as follows. Based on [5] and [14], we define
γr = 7.2 × 107 Hz as a reference value of the transmissivity mirrors, ε = xγr Hz and
γ = γr

y
Hz, where x and y (0 < x, y ≤ 1) are adjustable real parameters. Following

[5, 14], we assume that κ = 3×106√
2

when ε = 0.6γr and the value of κ is proportional to

the absolute value of ε, so we set κ = 3×106√
2×0.6

x. Transmission rate α ∈ (0, 1] and reflection

rate β =
√

1− α2. Range of phase shifts θ1, θ2, φ1, φ2 is (−π, π]. Note that we employ
Mathematica to perform the complex symbolic manipulations that are required in this
paper.
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4.1 Stability condition

To make the system workable, stability must be guaranteed. In our case, the system is
stable which means that as time goes to infinity, the mean total number of photons within
cavities of the two NOPAs must not increase continuously. Mathematically, stability con-
dition holds when matrix A in equation (15) is Hurwitz, that is, real parts of all eigenvalues
of A are negative. Based on this, we have the following theorem which states the stability
condition of our system with parameters x, y, κ, α, θ1 and θ2.

Theorem 2 The dual-NOPA coherent feedback system under the influence of losses and
phase shifts is stable if and only if

xy <

(
1 + yκ

γr

)2

√(
1 + yκ

γr

)2
+ α2 + α

∣∣cos ∆θ
2

∣∣ (18)

with 0 < x, y ≤ 1, 0 ≤ α ≤ 1 and ∆θ = θ1 − θ2.

Proof. Based on (12) and (15), we have

A =



−γ+κ
2

0 ε
2

0 0 0 0 0
0 −γ+κ

2
0 − ε

2
0 0 0 0

ε
2

0 −γ+κ
2

0 0 0 −αγ cos θ2 αγ sin θ2

0 − ε
2

0 −γ+κ
2

0 0 −αγ sin θ2 −αγ cos θ2

−αγ cos θ1 αγ sin θ1 0 0 −γ+κ
2

0 ε
2

0
−αγ sin θ1 −αγ cos θ1 0 0 0 −γ+κ

2
0 − ε

2

0 0 0 0 ε
2

0 −γ+κ
2

0
0 0 0 0 0 − ε

2
0 −γ+κ

2


.

Eigenvalues of the matrix are

λ = −γ + κ

2
±
√
ε2

4
± αεγ

2
cos

∆θ

2
± ıαεγ

2
sin

∆θ

2

= −γ + κ

2
±
√
reıϕ, (19)

where

r =

√(
ε2

4
± αεγ

2
cos

∆θ

2

)2

+

(
αεγ

2
sin

∆θ

2

)2

,

ϕ = arctan
αεγ

2 sin ∆θ
2

ε2

4 ±
αεγ

2 cos ∆θ
2

+ 2kπ, k ∈ Z. (20)

Real parts of the eigenvalues are

real(λ) = −γ + κ

2
±
√
r cos

ϕ

2

= −γ + κ

2
±
√
r

√
1 + cosϕ

2

= −γ + κ

2
± 1

2

(
ε2

2
± αεγ cos

∆θ

2
+

√
ε4

4
+ α2ε2γ2 ± αε3γ cos

∆θ

2

) 1
2

. (21)
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Hence,

max(real(λ)) = −γ + κ

2
+

1

2

(
ε2

2
+ αεγ

∣∣∣∣cos
∆θ

2

∣∣∣∣+

√
ε4

4
+ α2ε2γ2 + αε3γ

∣∣∣∣cos
∆θ

2

∣∣∣∣
) 1

2

(22)

Stability holds when max(real(λ)) < 0. By solving the inequality with ε = xγr, γ = γr
y

,
0 < x, y, α ≤ 1, the theorem is obtained.

The theorem directly shows that, stability of the system is only impacted by the differ-
ence between values of θ1 and θ2, not by the values of θ1 and θ2 individually. However, as
0 ≤

∣∣cos ∆θ
2

∣∣ ≤ 1 and α has positive value, as long as the system without phase shifts is sta-
ble, the system maintains stability in the presence of phase shifts due to the transmission
distance.

4.2 Effect of phase shifts on EPR entanglement of a lossless sys-
tem

In this part, we investigate the effect of the phase shifts on the EPR entanglement between
ξout,a,2 and ξout,b,1 when the system has no transmission losses (α = 1) and no amplification
losses (κ = 0). Based on Section 3, we obtain the two-mode squeezing spectra between
the two outgoing fields of the dual-NOPA coherent feedback system V±(0, θ1, θ2, φ) as a
function of θ1, θ2 and φ = φ1 + φ2 at ω = 0 when α = 1 and κ = 0,

V±(0, θ1, θ2, φ) = 2
b1 + 2b2 cos

(
θ1−θ2

2

)
cos
(
θ1+θ2

2 + φ
)

+ b3 cos (θ1 − θ2)

b4 − b3 cos (θ1 − θ2)
,

(23)

where

b1 = ε8 + 12ε6γ2 − 10ε4γ4 + 12ε2γ6 + γ8,

b2 = 4εγ(ε2 − γ2)(ε2 + γ2)2,

b3 = 8ε2γ2(ε2 − γ2)2,

b4 = ε8 − 4ε6γ2 + 22ε4γ4 − 4ε2γ6 + γ8. (24)

What is of our interest is whether θ1 and θ2 decrease the degree of EPR entanglement;
if they do, whether φ can recover the original EPR entanglement (when θ1 = θ2 = 0) or
at least improve the EPR entanglement, as well as how much EPR entanglement can be
improved. To this end, we define the following functions at ω = 0,

• V nops
± , the two-mode squeezing spectra between the two outgoing fields of the dual-

NOPA coherent feedback system without phase shifts. That is, V±(0, θ1, θ2, φ) is as
in (23) at θ1 = θ2 = φ1 = φ2 = 0;

• V ps
± (θ1, θ2), the two-mode squeezing spectra between the two outgoing fields of the

dual-NOPA coherent feedback system under the effect of the phase shifts θ1 and θ2,
but without φ1 and φ2. That is, V±(0, θ1, θ2, φ) is as in (23) at φ = 0;

8



• V±(φ), the two-mode squeezing spectra between the two outgoing fields of the dual-
NOPA coherent feedback system under the effect of phase shifts φ1 and φ2 with fixed
values of θ1 and θ2. That is, V±(0, θ1, θ2, φ) is as in (23) for fixed θ1 and θ2;

• f(θ1, θ2) = V ps
± (θ1, θ2) − V nops

± . If θ1 and θ2 degrade the EPR entanglement, then
f(θ1, θ2) > 0;

• g(φ) = V±(φ)− V nops
± . If the EPR entanglement degraded by a fixed value of θ1 and

θ2 is fully recovered by φ1 and φ2, then g(φ) = 0;

• h(φ) = V±(φ)−V ps
± . If the EPR entanglement impacted by θ1 and θ2 is improved by

φ1 and φ2, then h(φ) < 0.

4.2.1 A simple case (θ1 = θ2 = θ)

Let us begin with a simple case, where phase shifts θ1 = θ2 = θ. According to (23), we
have

f(θ, θ) =
4b2(cos(θ)− 1)

b4 − b3

. (25)

Based on the stability condition (18), here system is stable when xy <
√

2 − 1, that is,
ε < (

√
2 − 1))γ, hence b2 < 0. Moreover b4 − b3 = (ε2 − 2εγ − γ2)2(ε2 + 2εγ − γ2)2 > 0.

Therefore f(θ, θ) ≥ 0 (equality holds when θ = 0), which implies EPR entanglement
worsens in the presence of phase shifts θ1 and θ2. Now we examine the effect of φ. We
have

g(φ) =
4b2(cos(θ + φ)− 1)

b4 − b3

, (26)

we can see that as long as φ = {−θ,±π − θ}, the EPR entanglement is fully recovered.

4.2.2 General case

Here we consider the lossless system in a general situation, where phase shifts θ1 and θ2

can be different.

Let κ = 0, α = 1, m = θ1−θ2
2

, n = θ1+θ2
2

, m,n,m+ n, n−m ∈ (−π, π] and φ = φ1 + φ2,
φ ∈ (−2π, 2π]. Then (23) can be written as

V±(0,m, n, φ) = 2
b1 + 2b2 cos (m) cos (n+ φ) + b3 cos (2m)

b4 − b3 cos (2m)
(27)

where bi (i = 1, 2, 3, 4, 5) is as in (24).

Analysing (27) gives the lemmas below.
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Lemma 3 The presence of the phase shifts θ1 6= 0 and θ2 6= 0 degrades the two-mode
squeezing spectra (V ps

± (m,n) > V nops
± ), thus degree of EPR entanglement becomes worse or

EPR entanglement may vanish.

Proof. Based on the functions defined at beginning of this subsection, we have

f(m,n) = 2
b1 + 2b2 cos(m) cos(n) + b3 cos(2m)

b4 − b3 cos(2m)
− 2

b1 + 2b2 + b3
b4 − b3

, (28)

∂f

∂n
(m,n) =

−4b2 cos(m) sin(n)

b4 − b3 cos(2m)
, (29)

∂f

∂m
(m,n) = −4 sin(m)

b2 cos(n)(b4 + b3 sin(m)2)

(b4 − b3 cos(2m))2
− 4 sin(m)

3b2b3 cos(m)2 cos(n)

(b4 − b3 cos(2m))2

−4 sin(m)
2b3(b1 + b4) cos(m)

(b4 − b3 cos(2m))2
. (30)

f(m,n) is a periodic continuous twice differentiable function with variables m and n, and
it is convenient to take the range of m and n to be the entire real line. Hence global
minima of f must be stationary points. Therefore for m,n,m+ n, n−m ∈ (−π, π], global
minima of f(m,n) are stationary points as well. With the help of Mathematica, we obtain
that the first order partial derivatives of f with respect to variables m and n vanish at
(m,n) = {(0, 0), (0, π), (±π

2
, π

2
), (−π

2
,−π

2
)}. The values of f at these stationary points are

f(m,n) =


0, if (m,n) = (0, 0), that is, θ1 = θ2 = 0
−8b2
b4−b3 , if (m,n) = (0, π)
−4(b1b3+b3b4+b2b3+b2b4)

(b4−b3)(b4+b3) , if (m,n) = {(±π
2 ,

π
2 ), (−π

2 ,−
π
2 )}.

(31)

Again, when the system is stable, we have as before that b2 < 0, b3 > 0 and b4 − b3 > 0.
Moreover, Mathematica shows that b1b3+b3b4+b2b3+b2b4 = 4εγ(ε2−γ2)(ε2+2εγ−γ2)2(ε2+
γ2)4 < 0. Thus, f(m,n) = V ps

± (m,n) − V nops
± ≥ 0. Equality holds when (m,n) = (0, 0),

which is the case with no phase shifts. We obtain Lemma 3.

Lemma 4 When m 6= ±π
2
, φ ensures the existence of EPR entanglement and minimizes

the EPR entanglement reduction caused by θ1 and θ2 if its value is set as φ0
1,

φ0 =

{
−n if m ∈ (−π

2
, π

2
)

±π − n if m ∈ (−π,−π
2
) ∪ (π

2
, π].

(32)

In particular, when m = {0, π}, φ0 fully recovers the EPR entanglement. However, if
m = ±π

2
, φ has no effect on the system and EPR entanglement vanishes.

Proof. We have

h(φ) =
4b2 cos(m)(cos(n+ φ)− cosn)

b4 − b3 cos(2m)
, (33)

h(1)(φ) =
−4b2 cos(m) sin(n+ φ)

b4 − b3 cos(2m)
, (34)

h(2)(φ) =
−4b2 cos(m) cos(n+ φ)

b4 − b3 cos(2m)
. (35)

1Eventhough there is more than one minimum φ0, the function V im
± (m) takes the same value for all

the minima.
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The first derivative h(1)(φ) vanishes at φ = {−n,±π−n}. As b2 < 0 and b4− b3 cos(2m) ≥
b4 − b3 > 0, we get

h(2)(−n) =
−4b2 cos(m)

b4 − b3 cos(2m)

{
> 0 if m ∈ (−π

2
, π

2
)

< 0 if m ∈ (−π,−π
2
) ∪ (π

2
, π],

h(2)(±π − n) =
4b2 cos(m)

b4 − b3 cos(2m)

{
< 0 if m ∈ (−π

2
, π

2
)

> 0 if m ∈ (−π,−π
2
) ∪ (π

2
, π].

(36)

Thus a local minimizer of h(φ) is

φ0 =

{
−n if m ∈ (−π

2
, π

2
)

±π − n if m ∈ (−π,−π
2
) ∪ (π

2
, π],

(37)

at which

h(−n) =
4b2 cosm(1− cosn)

b4 − b3 cos(2m)
< 0, if m ∈ (−π

2
,
π

2
),

h(±π − n) =
4b2 cosm(−1− cosn)

b4 − b3 cos(2m)
< 0, if m ∈ (−π,−π

2
) ∪ (

π

2
, π]. (38)

We conclude that the above values of φ0 minimize the two-mode squeezing spectra influ-
enced by phase shifts θ1 and θ2 when m 6= ±π

2
. At m = ±π

2
, the term containing φ in h(φ)

becomes 0, thus φ has no impact on the two-mode squeezing spectra.

Define V im
± (m) as the two-mode squeezing spectra between the outputs of the system

when φ = φ0 with respect to variable m, according to (27) and (32),

V im
± (m) =


2 b1+2b2 cos(m)+b3 cos(2m)

b4−b3 cos(2m) if m ∈ (−π
2 ,

π
2 )

2 b1−2b2 cos(m)+b3 cos(2m)
b4−b3 cos(2m) if m ∈ (−π,−π

2 ) ∪ (π2 , π]

2 if m = ±π
2 .

(39)

Denote the first derivative of V im
± (m) as V

im(1)
± (m). By applying Mathematica to solve

V
im(1)
± (m) = 0 based on (24), we obtain that stationary points of V im

± (m) are 0 and π.
Values of V im

± (m) at the stationary points and the non-differentiable points m = ±π
2

are

V im
± (m) =

{
2 b1+2b2+b3

b4−b3 = V nops
± , if m = {0, π}

2, if m = ±π
2 ,

(40)

hence, V nops
± ≤ V im

± (m) ≤ 2, which implies that at m = {0, π}, φ fully recovers the
original EPR entanglement; at m = ±π

2
, φ has no effect on the EPR entanglement and the

EPR entanglement vanishes; in remaining cases of m, φ improves the EPR entanglement
impacted by θ1 and θ2 but cannot fully recover the EPR entanglement.

Fig. 3 and Fig. 4 illustrate an example of the lossless dual-NOPA coherent feedback
system undergoing phase shifts with x = 0.4 and y = 1, according to values reported in
[5]. Note that in all the figures of two-mode squeezing spectra in the rest of the paper,
values of squeezing spectra are given in dB unit, that is, V±(dB) = 10 log10(V±). Hence,
EPR entanglement exists when V± < 10 log10(2) = 3.0103 dB based on (10) and the EPR
entanglement is stronger as V±(dB) is more negative.

11



In Fig. 3, the left plot shows that at some values of m and n, V ps
± (m,n) > 3.0103

dB, which implies that phase shifts in the paths of the system can lead to death of EPR
entanglement. The right plot shows the difference between values of V ps

± (m,n) and V nops
± .

When (m,n) 6= (0, 0), we see that V ps
± (m,n) > V nops

± , which indicates phase shifts in the
paths between two NOPAs degrade the EPR entanglement.

Figure 3: Plots of V ps
± (m,n)(dB) (left) and V ps

± (m,n)(dB)−V nops
± (dB) (right) of the lossless

dual-NOPA coherent feedback system with x = 0.4, y = 1, α = 1, κ = 0 and φ = 0.

Figure 4: Plots of V im
± (m)(dB) (top row), V im

± (m)(dB) − V nops
± (dB) (middle row) and

V im
± (m)(dB) − V ps

± (m,n)(dB) (bottom row) of the lossless dual-NOPA coherent feedback
system with x = 0.4, y = 1, α = 1 and κ = 0. Ranges of values of m are [−π

2
, π

2
] (left

column) and [π
2
, π] (right column).
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Fig. 4 shows the effects of φ0 on the two-mode squeezing spectra. Note that as
V±(0,m, n, φ) is an even function of m, plots of V±(0,m, n, φ) over intervals (−π,−π

2
]

and [π
2
, π] of m are symmetric, thus we do not show the plots of squeezing spectra versus

varying values of m ranging from −π to −π
2
. The plots of V im

± (m) against the parame-
ter m in the top row shows that EPR entanglement exists (V im

± (m) < 3.0103 dB) over
the range of m, except for m = ±π

2
(V im
± (±π

2
) = 3.0103 dB). The middle row illustrates

the original EPR entanglement is fully recovered by φ0 at m = {0, π}. The bottom row
displays the difference between values of V im

± (m) and V ps
± (m,n) against the parameters m

and n. We see that the difference value is not positive which implies that, φ0 improves
the two-mode squeezing spectra in most scenarios, but does not impact the system when
(m = ±π

2
, n ∈ (−π, π]), (m ∈ (−π

2
, π

2
), n = 0) and (m ∈ (−π,−π

2
) ∪ (π

2
, π], n = π). Note

that based on Lemma 4, in the first case where (m = ±π
2
, n ∈ (−π, π]), the adjustable

phase shifters at the outputs do not impact the EPR entanglement of the system for any
values of φ; however for (m ∈ (−π,−π

2
)∪ (π

2
, π], n = π), though φ0 does not have an effect

on the EPR entanglement impacted by θ1 and θ2, φ = φ0 is the best choice based on the
proof of Lemma 4.

4.3 Effect of phase shifts on EPR entanglement of the dual-
NOPA coherent feedback system with losses

Now let us investigate the performance of the dual-NOPA coherent feedback system under
the presence of phase shifts, transmission losses and amplification losses.

Let m = θ1−θ2
2

, n = θ1+θ2
2

, m,n,m+n, n−m ∈ (−π, π] and φ = φ1 +φ2, φ ∈ (−2π, 2π],
the two-mode squeezing spectra between the two outputs in the dual-NOPA coherent
feedback system under the effect of phase shifts and losses is

V±(0,m, n, φ) = 2
c1 + 2c2 cos (m) cos (n+ φ) + c3 cos (2m)

c4 − c5 cos (2m)
, (41)

where

c1 = 4α4ε2γ2(κ4 + 8κε2γ + (ε2 − γ2)2 − 2κ2(ε2 + γ2)) + α2(−κ2 + ε2 + γ2)2(κ4

+4κ3γ − 2κ2(ε2 − 3γ2) + 4κγ(ε2 + γ2) + ε4 + 2(1 + 2β2)ε2γ2 + γ4)

+(κ2 − ε2 + 2κγ + γ2)2(4γ(κ+ γ)(κ2 + ε2 + κγ) + β2(−κ2 + ε2 + γ2)2),

c2 = 4αεγ(−κ2 + ε2 + γ2)(−κ4 − 4κ3γ − 6κ2γ2 + 4α2κε2γ + ε4 − 4κγ3 − γ4),

c3 = 8α2ε2γ2(−κ+ ε− γ)(κ+ ε+ γ)(3κ2 + 2κγ + ε2 − γ2),

c4 = κ8 + 8κ7γ − 4κ6(ε2 − 7γ2)− 8κ5(3ε2γ − 7γ3) + κ4(6ε4 − 60ε2γ2 + 70γ4)

+8κ3(3ε4γ − 10ε2γ3 + 7γ5)− 4κ2(ε2 − 7γ2)(ε2 − γ2)2 + 8κγ(−ε2 + γ2)3

+ε8 − 4ε6γ2 + 2(3 + 8α4)ε4γ4 − 4ε2γ6 + γ8,

c5 = 8α2ε2γ2(κ2 + 2κγ − ε2 + γ2)2. (42)

Similar to Section 4.2.2, we have the following lemmas.
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Lemma 5 The presence of the phase shifts θ1 6= 0 and θ2 6= 0 degrades the two-mode
squeezing spectra (V ps

± (m,n) > V nops
± ), thus degree of EPR entanglement becomes worse or

EPR entanglement may vanish.

Proof. Based on the functions defined at the beginning of Section 4.3, we have

f(m,n) = 2
c1 + 2c2 cos(m) cos(n) + c3 cos(2m)

c4 − c5 cos(2m)
− 2

c1 + 2c2 + c3

c4 − c5
, (43)

∂f

∂n
(m,n) =

−4c2 cos(m) sin(n)

c4 − c5 cos(2m)
, (44)

∂f

∂m
(m,n) = −4 sin(m)

c2 cos(n)(c4 + c5 sin(m)2)

(c4 − c5 cos(2m))2
− 4 sin(m)

3c2c5 cos(m)2 cos(n)

(c4 − c5 cos(2m))2

−4 sin(m)
2(c3c4 + c1c5) cos(m)

(c4 − c5 cos(2m))2
. (45)

Similar to the proof in Section 4.2.2, global minima of f(m,n) are stationary points. As
given by Mathematica, the first order partial derivatives of f with respect to the variable
m and n vanish at (m,n) = {(0, 0), (0, π), (±π

2
, π

2
), (−π

2
,−π

2
)}, at which values of f(m.n)

are

f(m,n) =


0, if (m,n) = (0, 0), that is, θ1 = θ2 = 0
−8c2
c4−c5 , if (m,n) = (0, π)
−4(c1c5+c3c4+c2c4+c2c5)

(c4−c5)(c4+c5) , if (m,n) = {(±π
2 ,

π
2 ), (−π

2 ,−
π
2 )}.

(46)

Based on stability condition (18), replacing ε, γ and κ in (42) with definitions ε = xγr,

γ = γr
y

, κ = 3×106√
2×0.6

x, 0 < x, y, α ≤ 1, γr = 7.2× 107 and noting γ ≥ ε ≥ αε, Mathematica

gives that

c4 − c5 =
(
κ4 + ε4 + 4κ3γ − 2(1 + 2α2)ε2γ2 + γ4 − 2κ2(ε2 − 3γ2) + κ(−4ε2γ + 4γ3)

)2
,

c2 = 4αεγd1d2,

c1c5 + c3c4 + c2c4 + c2c5 = 4αεγ(−κ2 + ε2 − 2κγ + 2αεγ − γ2)2d1d2d3, (47)

where

d1 = ε2 + γ2 − κ2 =

(
5.1715× 1015x2 +

5.184× 1015

y2

)
> 0,

d2 = −(γ4 − ε4)− 4κγ(γ2 − α2ε2)− 6κ2γ2 − 4κ3γ − κ4 < 0,

d3 = (κ2 + γ2 − ε2)2 + 4κ2γ2 + 4α2ε2γ2 + 4κ3γ + 4κγ(γ2 − ε2) > 0. (48)

We see that c4 − c5 > 0, c2 < 0 and c1c5 + c3c4 + c2c4 + c2c5 < 0. Therefore, f(m,n) ≥ 0,
that is, V ps

± (m,n) ≥ V nops
± . Equality holds when (m,n) = (0, 0), which is the case with no

phase shifts. We obtain Lemma 5.

Lemma 6 φ minimizes the two-mode squeezing spectra at ω = 0 impacted by θ1 and θ2 if
its value is set as

φ0 =

{
−n if m ∈ (−π

2
, π

2
)

±π − n if m ∈ (−π,−π
2
) ∪ (π

2
, π],

(49)

However, when m = ±π
2
, φ has no effect on the system.
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Proof. We have

h(φ) =
4c2 cosm(cos(n+ φ)− cosn)

c4 − c5 cos(2m)
, (50)

h(1)(φ) =
−4c2 cos(m) sin(n+ φ)

c4 − c5 cos(2m)
, (51)

h(2)(φ) =
−4c2 cos(m) cos(n+ φ)

c4 − c5 cos(2m)
. (52)

As proof of Lemma 4, we obtain a local minimizer φ0.

Lemma 7 Define V im
± (m), the two-mode squeezing spectra at ω = 0 of the outgoing fields

in the dual-NOPA coherent feedback system with φ = φ0 as a function of m 2,

V im
± (m) =


2 c1+2c2 cos(m)+c3 cos(2m)

c4−c5 cos(2m) if m ∈ (−π
2 ,

π
2 )

2 c1−2c2 cos(m)+c3 cos(2m)
c4−c5 cos(2m) if m ∈ (−π,−π

2 ) ∪ (π2 , π]

2 c1−c3c4+c5
if m = ±π

2 .

(53)

V im
± (m) = 2 has four real roots denoted by ±m1 and ±m2, with m2 ≥ m1 ≥ 0. EPR

entanglement under the influence of phase shifts and losses exists on intervals (−π,−m2),
(−m1,m1) and (m2, π]. The original EPR entanglement impacted by θ1 and θ2 is fully re-
covered by φ0 if m = {0, π}. Also, EPR entanglement is improved as value of m approaches
{0,±π}.

Proof. The first derivative of V im
± (m) is

V
im(1)
± (m) =

 −4 (2(c3c4+c1c5) cos(m)+c2(c4+2c5+c5 cos(2m))) sin(m)

(c4−c5 cos(2m))2
, if m ∈ (−π

2 ,
π
2 )

4 (−2(c3c4+c1c5) cos(m)+c2(c4+2c5+c5 cos(2m))) sin(m)

(c4−c5 cos(2m))2
, if m ∈ (−π,−π

2 ) ∪ (π2 , π].
(54)

Employing (42) and solving V
im(1)
± (m) = 0 via Mathematica, we obtain that stationary

points of V im
± (m) are 0 and π. Values of V im

± (m) at stationary points and non-differentiable
points ±m

2
are

V im
± (m) =

{
2 c1+2c2+c3

c4−c5 = V nops
± , if m = {0, π}

2 c1−c3c4+c5
, if m = ±π

2 .
(55)

Noting 0 < x, y, α ≤ 1 and d3 in (48). Mathematica shows that

(c1 − c3)− (c4 + c5) = 8ε2γ
(
(1 + α2)κ+ (1− α2)γ

)
d3 > 0. (56)

Hence, 2 c1−c3
c4+c5

> 2. Consequently, global minima of V im
± (m) are at m = {0, π} at which

the original EPR entanglement is fully recovered.

Recall d1 and d2 from (48). Mathematica then gives

V
im(1)
± (m) =

{
−d4 sin(m)

d5
, if m ∈ (−π

2 ,
π
2 )

d4 sin(m)
d6

, if m ∈ (−π,−π
2 ) ∪ (π2 , π].

(57)

2Eventhough there is more than one minimum φ0, the function V im
± (m) takes the same value for all

minima.
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where

d4 = 16αεγd1d2 < 0,

d5 =
(
κ4 + ε4 + 4κ3γ − 2ε2γ2 + 4α2ε2γ2 + γ4 − 2κ2(ε2 − 3γ2) + κ(−4ε2γ + 4γ3)

+4αεγ(κ2 − ε2 + 2κγ + γ2) cos(m)
)2
> 0,

d6 =
(
κ4 + ε4 + 4κ3γ − 2ε2γ2 + 4α2ε2γ2 + γ4 − 2κ2(ε2 − 3γ2) + κ(−4ε2γ + 4γ3)

−4αεγ(κ2 − ε2 + 2κγ + γ2) cos(m)
)2
> 0. (58)

Therefore,

V
im(1)
± (m) =

{
> 0, if m ∈ (−π,−π

2 ) ∪ (0, π2 )
< 0, if m ∈ (−π

2 , 0) ∪ (π2 , π),
(59)

implies that V im
± (m) is a piecewise monotonically increasing function on intervals (−π,−π

2
)∪

(0, π
2
) and a piecewise monotonically decreasing function over (−π

2
, 0)∪(π

2
, π). It approaches

the maximum value 2 c1−c3
c4+c5

> 2 at m = ±π
2

and minimum value equals to V nops
± when

m = {0, π}. Hence, the even function V im
± (m) of m has four real roots denoted by ±m1

and ±m2 with 0 ≤ m1 ≤ m2. V im
± (m) < 2 on intervals (−π,−m2), (m1,m1) and (m2, π].

Proof is completed.

Figure 5: Plots of V ps
± (m,n)(dB) (left) and V ps

± (m,n)(dB)−V nops
± (dB) (right) of the dual-

NOPA coherent feedback system with x = 0.4, y = 1, α = 0.95, κ = 3×106√
2×0.6

x and φ = 0.

Fig. 5 and Fig. 6 illustrate an example of the dual-NOPA coherent feedback system
undergoing both phase shifts and losses with x = 0.4, y = 1 and α = 0.95. Similar to Fig.
3, the left plot in Fig. 5 shows that EPR entanglement vanishes at some values of m and
n. The right plot shows that the non-zero phase shifts in the paths decrease the degree of
EPR entanglement.

Fig. 6 illustrates the effect of φ0. Based on symmetric property of function V±(0,m, n, φ),
we can see from Fig. 6 that the top row shows that under the effect of φ0, for some
values of m near ±π

2
there is no EPR entanglement between the two outgoing fields

(V im
± (m) ≥ 3.0103 dB); the middle row shows the original EPR entanglement is fully
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Figure 6: Plots of V im
± (m)(dB) (top row), V im

± (m)(dB) − V nops
± (dB) (middle row) and

V im
± (m)(dB) − V ps

± (m,n)(dB) (bottom row) of the dual-NOPA coherent feedback system

with x = 0.4, y = 1, α = 0.95 and κ = 3×106√
2×0.6

x. Ranges of values of m are [−π
2
, π

2
] (left

column) and [π
2
, π] (right column).

recovered at m = {0, π} and the bottom row shows that φ0 improves the two-mode squeez-
ing spectra except for the cases where (m = ±π

2
, n ∈ (−π, π]), (m ∈ (−π

2
, π

2
), n = 0) and

(m ∈ (−π,−π
2
) ∪ (π

2
, π], n = π). Note that based on Lemma 6, any value of φ does not

impact the EPR entanglement of the system when m = ±π
2
; while φ = φ0 is the best option

in the last two scenarios where (m ∈ (−π
2
, π

2
), n = 0) and (m ∈ (−π,−π

2
) ∪ (π

2
, π], n = π).

Table 1 and Table 2 illustrate the effect of transmission and amplification losses on the
existence of EPR entanglement with an optimal choice of φ0. We see that as either trans-
mission losses or amplification losses increase, the range of values of m over which the EPR
entanglement does not exist becomes larger, and the performance of EPR entanglement
worsens in the presence of losses, as can be expected.

Table 1: Influence of transmission losses on the range of nonexistence of EPR entanglement
with x = 0.4, y = 1 and κ = 3×106√

2×0.6
x

α [−m2,−m1] [m1,m2]
1 [−1.58951,−1.55208] [1.55208, 1.58951]

0.97 [−1.61856,−1.52303] [1.52303, 1.61856]
0.95 [−1.63848,−1.50311] [1.50311, 1.63848]
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Table 2: Influence of amplification losses on the range of nonexistence of EPR entanglement
with x = 0.4, y = 1 and α = 0.95

κ [−m2,−m1] [m1,m2]

0.1 3×106√
2×0.6

x [−1.62156,−1.52003] [1.52003, 1.62156]

0.2 3×106√
2×0.6

x [−1.62344,−1.51815] [1.51815, 1.62344]

0.5 3×106√
2×0.6

x [−1.62907,−1.51252] [1.51252, 1.62907]
3×106√
2×0.6

x [−1.63848,−1.50311] [1.50311, 1.63848]

5 Conclusion

This paper has investigated the effects of phase shifts on stability and EPR entanglement
of a dual-NOPA coherent feedback network. Stability condition determined by parameters
of the system with losses and phase shifts is derived. The system remains stable in the
presence of phase shifts, whenever the system is stable in the absence of phase shifts.

In the lossless system, in the absence of transmission and amplification losses, the pres-
ence of phase shifts θ1 6= 0 and θ2 6= 0 in the paths between two NOPAs degrades the
two-mode squeezing spectra between the two outputs in the system, which implies EPR
entanglement worsens or even vanishes. The two-mode squeezing spectra under the influ-
ence of θ1 and θ2 is minimized by setting φ = φ0. However, existence of EPR entanglement
and the degree of EPR entanglement recovered by φ0 depend on the parameter m. EPR
entanglement is fully recovered by φ0 if m = {0, π}. EPR entanglement vanishes when
m = ±m

2
.

When transmission and amplification losses are not neglected, the two-mode squeezing
spectra are degraded by phase shifts in the paths and are maximally recovered by setting
φ = φ0. However, existence of EPR entanglement is impacted by both phase shifts and
losses in the paths. The range of values of m over which the EPR entanglement can be
improved by φ0 decreases as losses grow.
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