
ar
X

iv
:1

40
3.

55
91

v1
  [

m
at

h.
O

C
]  

21
 M

ar
 2

01
4

Optimal robust smoothing extragradient algorithms
for stochastic variational inequality problems

Farzad Yousefian, Angelia Nedić, and Uday V. Shanbhag

Abstract—We consider stochastic variational inequality prob-
lems where the mapping is monotone over a compact convex
set. We present two robust variants of stochastic extragradient
algorithms for solving such problems. Of these, the first scheme
employs an iterative averaging technique where we considera
generalized choice for the weights in the averaged sequence. Our
first contribution is to show that using an appropriate choice
for these weights, a suitably defined gap function attains the
optimal rate of convergenceO

(

1
√

k

)

. In the second part of the
paper, under an additional assumption of weak-sharpness, we
update the stepsize sequence using a recursive rule that leverages
problem parameters. The second contribution lies in showing that
employing such a sequence, the extragradient algorithm possesses
almost-sure convergence to the solution as well as convergence in
a mean-squared sense to the solution of the problem at the rate
O

(

1

k

)

. Motivated by the absence of a Lipschitzian parameter, in
both schemes we utilize a locally randomized smoothing scheme.
Importantly, by approximating a smooth mapping, this scheme
enables us to estimate the Lipschitzian parameter. The smoothing
parameter is updated per iteration and we show convergence to
the solution of the original problem in both algorithms.

I. I NTRODUCTION

The theory of variational inequality (VI) was introduced
in mid-1960s, motivated by the elastostatic equilibrium prob-
lems. During the past five decades, this subject has been a
powerful framework in modeling a wide range of optimization
and equilibrium problems in operations research, engineering,
finance, and economics (cf. [1], [2]). Given a setX ⊂ R

n

and a mappingF : X → R
n, a VI problem, denoted

by VI(X,F ), requiresdeterminingan x∗ ∈ X such that
F (x∗)T (x−x∗) ≥ 0 for anyx ∈ X . In this paper, our interest
lies in computation of solutions to VI problems with uncertain
settings. We consider the casewhereF : X → R

n represents
the expected value of a stochastic mappingΦ : X ×Ω → R

n,
i.e., Fi(x) , E[Φi(x, ξ(ω))] where ξ : Ω → R

d is a
d−dimensional random variable and(Ω,F ,P) denotes the
associated probability space. Consequently,x∗ ∈ X solves
VI(X,F ) if

E[Φ(x∗, ξ(ω))]
T
(x− x∗) ≥ 0, for everyx ∈ X. (1)

The stochastic VI problem (1) arises in many situations,
often modeling stochastic convex optimization problems and
stochastic Nashequilibrium problems. Utilized by sampling
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from an unbiased stochastic oracleΦ(x, ξ), iterative algo-
rithms have been developed to solve the problem (1). Such
schemes include the stochastic approximation type methods
[3], [4] and extragradient type methods [5], [6], [7]. In a recent
work [8], Kannan and Shanbhag studied almost-sure conver-
gence of extragradient algorithms and provided sufficiency
conditions for the solvability of stochastic VIs with pseudo-
monotone mappings. Prox-type methods were first developed
by Nemirovski [7] for solving VIs with monotone and Lip-
schitz mappings and addressed different problems in convex
optimization and variational inequalities. Recently, Juditsky et
al. [5] introduced the stochastic Mirror- Prox (SMP) algorithm
for solving stochastic VIs in both smooth and nonsmooth
cases. In [5], it is assumed that the mappingF is monotone
and satisfies the following relation:

‖F (x)− F (y)‖ ≤ L‖x− y‖+B, for all x, y ∈ X,

whereL ≥ 0 andB ≥ 0 are known constants. Under such con-
ditions, by choosing a constant stepsize rule0 < γ < 1√

3L
, the

optimal rate of convergence of a suitably defined gap function
is shown to beO(1)

(
L
t
+ B+σ√

t

)

whereσ is the upper bound
on the variance of the stochastic oracle andt is the pre-fixed
number of iterations. In this paper, our main goal is developing
two classes of robust extragradient algorithms for monotone
stochastic VIs in extension of the work in [5] and [8]. The
first class of the proposedextragradientalgorithms employs
the well-known averaging technique utilized by new choices
of the averaging weights. In the second part of the paper, we
consider monotone VI problems with weak-sharpness property
and we develop an extragradient algorithm that employs a
recursive stepsize policy. Such a stepsize sequence isobtained
in terms of problem parameters. The word “robust” refers to
the self-tuned stepsize rule and capability of dealing withthe
absence of a Lipschitz constant. Our main contributions in this
paper are described as follows:
(1) Choice of the averaging weights:The SMP algorithm in [5]
generates a wighted-iterative averaging sequence of the form
x̄t ,

∑k

t=1
γt∑
k

t=0 γt

xt wherext is generated at the t-th itera-
tion andγt > 0 is the corresponding stepsize. Recently, Nedić
and Lee [9] showed that using different weights of the form

γ
−1
t∑

k

t=0 γ−1
t

, the subgradient mirror-descent algorithms attain the
optimal rate of convergence without requiring window-based
averaging sequencessimilar to [10] and [3]. In this paper,
we generalize this idea in two directions: First, we show that
such choices can be applied in the stochastic extragradient
algorithms (e.g. [5]). Second, using the weights γr

t∑
k

t=0 γr

t

where
r ∈ R is a constant, we show that for anyr < 1, the optimal
convergence rate is attained. Note that this optimal rate cannot
be attained whenr = 1 (e.g. in [5]).
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(2) Developing parameterized stepsizes:In the second part of
the paper, we assume that the problem with monotone mapping
has a weak-sharpness property. We develop a recursive stepsize
sequence that leverages problem parameters and show that by
employing such a stepsize rule, the sequence{xt} generated
by the extragradient algorithm converges in almost-sure sense
to the solution of the problem. Moreover, we show that this
robust scheme converges in mean-squared sense to the solution
of the problem with the rate ofO

(
1
k

)
.

(3) Estimating the Lipschitzian parameterL: While the SMP
algorithm in [5] addresses both smooth and nonsmooth prob-
lems by allowingL to be zero, knowing the constantL benefits
the rate of convergence since the termL

t
decays faster than

B+σ√
t

. Moreover, the prescribed constant stepsize in [5] is
bounded in terms ofL. We consider the case that the mapping
is either nonsmooth or the constantL is unknown. Motivated
by a smoothing technique first introduced by Steklov [11], our
goal is addressing these cases.Recentlyin [12] and [4], by
employing this technique we addressed nonsmoothness in de-
veloping adaptive stepsizes stochastic approximation schemes
in absence or unavailability of a Lipschitz constant. We extend
those results by applying such smoothing technique for both
extragradientschemes.

The paper is organized as follows: in SectionII , we present
an algorithm utilizing the weighted averagingand we show the
convergence of a suitably defined gap function to zero with
the optimal rate. In SectionIII we present an algorithm with
a recursive stepsize updates and provide itsconvergence and
rate analysis.We conclude with some remarksin SectionIV.

Notation: In this paper, a vectorx is assumed to be a
column vector,xT denotes the transpose of a vectorx, and
‖x‖ denotes the Euclidean vector norm, i.e.,‖x‖ =

√
xTx.

We let ΠX(x) denote the Euclidean projection of a vectorx

on a setX , i.e., ‖x−ΠX(x)‖ = miny∈X ‖x− y‖. We write
a.s. as the abbreviation for “almost surely”. We useE[z] to
denote the expectation of a random variablez.

II. STOCHASTIC EXTRAGRADIENT METHOD

We consider the following stochastic variant of Korpele-
vich’s extragradient scheme: for allt ≥ 0:

yt+1 = ΠX [xt − γtΦ(xt + z′t, ξ
′
t)] ,

xt+1 = ΠX [xt − γtΦ(yt+1 + zt, ξt)] .
(2)

In this scheme,{γt} is the stepsize sequence andx0 ∈ X is a
random initial point withE

[
‖x0‖2

]
≤ ∞. The vectorsξt and

ξ′t are two i.i.d samples from the probability space(Ω,F ,P).
Also, zt andz′t are two i.i.d. samples from a uniform random
variableZt ∈ R

n. The ith element ofZt, denoted byZt,i

is uniformly distributed in the interval[− ǫt
2 ,

ǫt
2 ]. To have a

well-defined algorithm, we define the setXǫ , X+Cn(0, ǫ),
whereCn(0, ǫ) , {x ∈ R

n | xi ∈ [− ǫ
2 ,

ǫ
2 ]} is a cube centered

at origin. The scalarǫ is assumed to be an upper bound for
the sequence{ǫt}. We denote the history of the scheme using
the following notations:

F ′
t , {x0} ∪ {ξ′0, z′0, ξ′1, z′1, . . . , ξ′t, z′t},

Ft , {ξ0, z0, ξ1, z1, . . . , ξt, zt}, (3)

wheret ≥ 0. The first set of assumptions is on the setX , the
mappingF , and the random variables.

Assumption 1:Let the following hold:
(a) The setX ⊂ R

n is closed, convex, and bounded, i.e.,
‖x‖ ≤ M for all x ∈ X and someM > 0. (b) The mapping
F is monotone and bounded on the setXǫ, i.e.,‖F (x)‖ ≤ C

for all x ∈ Xǫ and someC > 0. (c) There exists anx∗ ∈ X

such that(x − x∗)TE[Φ(x∗, ξ)] ≥ 0, for all x ∈ X . (d) The
random variableszt, z′t, ξk andξ′k are all i.i.d. and independent
from each other for anyt, k ≥ 0.

We also make use of the following assumptions.
Assumption 2:Definew(x) , Φ(x, ξ)−F (x) for x ∈ Xǫ.

We assume, the samplesΦ(x, ξ) taken in algorithm (2) are
unbiased, i.e.,E[w(x)] = 0 for all x ∈ Xǫ. Moreover, the
variance of the samplesΦ(x, ξ) is bounded, i.e.,there isν > 0
such thatE

[
‖w(x)‖2

]
≤ ν2 for all x ∈ Xǫ.

Also, we define the approximate mapping

Ft(x) , E[F (x+ Zt)] , for all x ∈ X and all t ≥ 0. (4)

The following result has been shown in our prior work [13]
(on random local smoothing):

Lemma 1:Let the mappingFt : X → R
n be defined by

(4) whereZt is uniformly distributed overCn(0, ǫt). Then,
for all t ≥ 0, Ft is Lipschitz continuous over the setX , i.e.,

‖Ft(x) − Ft(y)‖ ≤
√
nC

ǫt
‖x− y‖, for all x, y ∈ X.

In our analysis,we exploit the following properties of the
projection mapping (cf. Chapter 2 in [14]).

Lemma 2 (Properties of the projection mapping):Let
X ⊆ R

n be a nonempty closed convex set.

(a) ‖ΠX [u]−ΠX [v]‖ ≤ ‖u− v‖, for all u, v ∈ R
n.

(b) (ΠX [u]−u)T (x−ΠX [u]) ≥ 0, for all u ∈ R
n andx ∈ X.

For notational convenience, we define the stochastic errors
of algorithm (2) as follows:

wt , Φ(yt+1 + zt, ξt)− F (yt+1 + zt),

w′
t , Φ(xt + z′t, ξ

′
t)− F (xt + z′t),

∆t , F (yt+1 + zt)− Ft(yt+1),

∆′
t , F (xt + z′t)− Ft(xt).

(5)

We have the following basic result for the algorithm.
Lemma 3:Let Assumptions1 and 2 hold, and0 < γt ≤
ǫt√
5nC

for all t ≥ 0. Then, for the iterates of algorithm (2), the
following relation holds for ally ∈ X and all t ≥ 0:

‖xt+1 − y‖2

≤ ‖xt − y‖2 + 2γtF (yt+1 + zt)
T (y − (yt+1 + zt))

+ 2
√
nCγtǫt + 2γtw

T
t (y − yt+1) + 5γ2

tBt, (6)

whereBt , ‖∆t‖2 + ‖∆′
t‖2 + ‖wt‖2 + ‖w′

t‖2, and∆t, ∆′
t,

wt andw′
t are as defined in (5).

Proof: Let y ∈ X and t ≥ 0 be fixed, but arbitrary.
We start by estimating an upper bound for the stochastic term

2



‖xt+1 − y‖2. From algorithm (2), we have the following:

‖xt+1 − y‖2 = ‖xt+1 − xt + xt − y‖2

= ‖xt+1 − xt‖2 + ‖xt − y‖2 + 2(xt+1 − xt)
T (xt − y)

= ‖xt+1 − xt‖2 + ‖xt − y‖2

+ 2(xt+1 − xt)
T (xt − xt+1) + 2(xt+1 − xt)

T (xt+1 − y)

= ‖xt − y‖2 − ‖xt+1 − xt‖2 + 2(xt+1 − xt)
T (xt+1 − y) (7)

where in the second equality, we add and subtractxt, and
in the third equality, we add and subtractxt+1. Consider
Lemma2(b), and letu , xt−γtΦ(yt+1+zt, ξt) andx , y. By
algorithm (2), we havext+1 = ΠX [u]. Thus, by Lemma2(b),
we obtain

0 ≤ (xt+1 − (xt − γtΦ(yt+1 + zt, ξt)))
T
(y − xt+1)

= (xt+1 − xt)
T (y − xt+1) + γtΦ(yt+1 + zt, ξt)

T (y − xt+1).

Hence(xt+1−xt)
T (xt+1−y) ≤ γtΦ(yt+1+zt, ξt)

T (y−xt+1),
and by relation (7), it follows that

‖xt+1 − y‖2 ≤ ‖xt − y‖2 − ‖xt+1 − xt‖2

+ 2γtΦ(yt+1 + zt, ξt)
T (y − xt+1).

By adding and subtractingyt+1 in ‖xt+1 − xt‖2, we have

‖xt+1 − y‖2 ≤ ‖xt − y‖2 − ‖xt+1 − yt+1 + yt+1 − xt‖2

+ 2γtΦ(yt+1 + zt, ξt)
T (y − xt+1)

= ‖xt − y‖2 − ‖xt+1 − yt+1‖2

− ‖yt+1 − xt‖2 − 2(xt+1 − yt+1)
T (yt+1 − xt)

+ 2γtΦ(yt+1 + zt, ξt)
T (y − xt+1). (8)

Using Lemma2(b) with u , xt − γtΦ(xt + z′t, ξ
′
t) andx ,

xt+1, andusingyt+1 = ΠX [u] (see algorithm (2)), we obtain

0 ≤ (yt+1 − (xt − γtΦ(xt + z′t, ξ
′
t)))

T
(xt+1 − yt+1)

= (yt+1 − xt)
T (xt+1 − yt+1)

+ γtΦ(xt + z′t, ξ
′
t)

T (xt+1 − yt+1).

Therefore, −(yt+1 − xt)
T (xt+1 − yt+1) ≤ γtΦ(xt +

z′t, ξ
′
t)

T (xt+1− yt+1), which together with relation (8), yields

‖xt+1 − y‖2 ≤ ‖xt − y‖2 − ‖xt+1 − yt+1‖2

− ‖yt+1 − xt‖2 + 2γtΦ(xt + z′t, ξ
′
t)

T (xt+1 − yt+1)

+ 2γtΦ(yt+1 + zt, ξt)
T (y − xt+1).

By adding and subtractingyt+1 in the appropriate terms of
the preceding relation, we further have

‖xt+1 − y‖2 ≤ ‖xt − y‖2 − ‖xt+1 − yt+1‖2

− ‖yt+1 − xt‖2 + 2γtΦ(xt + z′t, ξ
′
t)

T (xt+1 − yt+1)

+ 2γtΦ(yt+1 + zt, ξt)
T (y − yt+1 + yt+1 − xt+1)

= ‖xt − y‖2−‖xt+1 − yt+1‖2
︸ ︷︷ ︸

Term 1

−‖yt+1 − xt‖2 (9)

+ 2γtΦ(yt+1 + zt, ξt)
T (y − yt+1)

+2γt (Φ(xt + z′t, ξ
′
t)− Φ(yt+1 + zt, ξt))

T
(xt+1 − yt+1)

︸ ︷︷ ︸

Term 2

.

From thedefinitionsof Terms 1 and 2,by employing2ab ≤
a2 + b2, for any a, b ∈ R, we have that

Term 1 + Term 2≤ γ2
t ‖Φ(yt+1 + zt, ξt)− Φ(xt + z′t, ξ

′
t)‖2.

The preceding inequality and relation (9) imply that

‖xt+1 − y‖2 ≤ ‖xt − y‖2 − ‖yt+1 − xt‖2

+ 2γtΦ(yt+1 + zt, ξt)
T (y − yt+1)

+ γ2
t ‖Φ(yt+1 + zt, ξt)− Φ(xt + z′t, ξ

′
t)‖2. (10)

We now estimate the term‖Φ(yt+1+zt, ξt)−Φ(xt+z′t, ξ
′
t)‖2.

Using the definitions (5), we have

‖Φ(yt+1 + zt, ξt)− Φ(xt + z′t, ξ
′
t)‖2

= ‖F (yt+1 + zt) + wt − F (xt + zt)− w′
t‖2

= ‖Ft(yt+1) + ∆t + wt − Ft(xt)−∆′
t − w′

t‖2.
By the triangle inequality, we further obtain

‖Φ(yt+1 + zt, ξt)− Φ(xt + z′t, ξ
′
t)‖2

≤ (‖Ft(yt+1)− Ft(xt)‖ + ‖∆t‖+ ‖∆′
t‖+ ‖wt‖+ ‖w′

t‖)
2

≤ 5‖Ft(yt+1)− Ft(xt)‖2 + 5Bt

≤ 5
nC2

ǫ2t
‖yt+1 − xt‖2 + 5Bt, (11)

where second inequality is obtained from the following rela-
tion for anya1, a2, . . . , am ∈ R and any integerm ≥ 2:

(a1 + a2 + . . .+ am)2 ≤ m
(
a21 + a22 + . . .+ a2m

)
,

and the last inequality in (11) is obtained using the Lips-
chitzian property of mappingFt from Lemma (1). Using the
upper bound we found in (11), from inequality (10), we obtain

‖xt+1 − y‖2 ≤ ‖xt − y‖2 − ‖yt+1 − xt‖2

+ 2γtΦ(yt+1 + zt, ξt)
T (y − yt+1)

+ 5nC2 γ
2
t

ǫ2t
‖yt+1 − xt‖2 + 5γ2

tBt

≤ ‖xt − y‖2 −
(

1− 5nC2 γ
2
t

ǫ2t

)

‖yt+1 − xt‖2

+ 2γtΦ(yt+1 + zt, ξt)
T (y − yt+1) + 5γ2

tBt.

From our assumption thatγt ≤ ǫt√
5nC

, we have5nC2 γ2
t

ǫ2
t

≤ 1.
Therefore, from the preceding inequality we obtain

‖xt+1 − y‖2 ≤ ‖xt − y‖2

+ 2γtΦ(yt+1 + zt, ξt)
T (y − yt+1) + 5γ2

tBt. (12)

From the definition ofwt in (5) we obtain

Φ(yt+1 + zt, ξt)
T (y − yt+1)

= F (yt+1 + zt)
T (y − yt+1) + wT

t (y − yt+1)

= F (yt+1 + zt)
T (y − (yt+1 + zt))

+ F (yt+1 + zt)
T zt + wT

t (y − yt+1)

≤ F (yt+1 + zt)
T (y − (yt+1 + zt))

+ ‖F (yt+1 + zt)‖‖zt‖+ wT
t (y − yt+1)

≤ F (yt+1 + zt)
T (y − (yt+1 + zt))

+
√
nCǫt + wT

t (y − yt+1), (13)

3



where the first inequality is implied by the Cauchy-Schwartz
inequality and the last inequality is obtained by boundedness
of the mappingF over the setXǫ from Assumption1 and
by the boundedness ofzt (sincezt = (zt,1; zt,2; . . . ; zt,n) and
|zt,i| ≤ ǫt for all i, we have‖zt‖ ≤ √

nǫt). From inequalities
(12) and (13), we arrive at the desired relation.
Unlike optimization problems where the function provides
a metric for distinguishing solutions, there is no immediate
analog in variational inequality problems. However, one may
prescribe a residual function associated with a variational
inequality problem.

Definition 1 (Gap function):Let X ⊂ R
n be a nonempty

and closed set. Suppose that mappingF : X → R
n is defined

on the setX . We define the following gap function, G: X →
R

+ ∪ {0} to measure the accuracy of a vectorx ∈ X :

G(x) = sup
y∈X

F (y)T (x− y). (14)

We note that the gap function G is in fact also a function of
the setX and the mapF , but we do not use this dependency
so we use G instead of GX,F .

Lemma 4 (Properties of gap function):Consider
Definition (1). We have the following properties [1]:

(a) The gap function (14) is nonnegative for anyx ∈ X .
(b) Assume that the mappingF is bounded over the set X.

Then, G is continuous at anyx ∈ X .

Proposition 1 (Error bounds on the expected gap value):
Consider problem (1), and let Assumptions1 and2 hold. Let
the weighted average sequence{ȳk(r)} be defined by

ȳk+1(r) ,

∑k

t=0 γ
r
t (yt+1 + zk)
∑k

t=0 γ
r
t

, for all k ≥ 0,

wherer ∈ R is a parameter,{yt} is generated by algorithm (2),
and the stepsize sequence{γt} is non-increasing and0 < γt ≤

ǫk√
5nC

for all t ≥ 0. Then, the following statements are valid:
(a) For anyk ≥ 0, andr ≥ 1, we have:

E[G(ȳk+1(r))] ≤
(

k∑

t=0

γr
t

)−1
(
4M2γr−1

0 (15)

+
√
nC

k∑

t=0

γr
t ǫt + (5.5ν2 + 5C2)

k∑

t=0

γr+1
t

)

.

(b) For anyk ≥ 0, andr < 1, we have:

E[G(ȳk+1(r))] ≤
(

k∑

t=0

γr
t

)−1(
4M2

γ1−r
0

(16)

+
4M2

γ1−r
k

+
√
nC

k∑

t=0

γr
t ǫt + (5.5ν2 + 5C2)

k∑

t=0

γr+1
t

)

.

Proof: In the first part of the proof, we allowr to be
any real number and we obtain a general relation. Using the
general relation, we prove parts (a) and (b) separately. Letus
defineut+1 as

ut+1 = ΠX [ut + γtwt], for any t ≥ 0, (17)

whereu0 = x0. Adding and subtractingut, (3) yields

‖xt+1 − y‖2 ≤ ‖xt − y‖2

+ 2γtF (yt+1 + zt)
T (y − (yt+1 + zt)) + 2

√
nCγtǫt

+ 2γtw
T
t (ut − yt+1) + 2γtw

T
t (y − ut) + 5γ2

tBt. (18)

Next, we find an upper bound for the term2γtwT
t (ut − y):

‖ut+1 − y‖2 = ‖ΠX [ut + γtwt]− y‖2 ≤ ‖ut + γtwt − y‖2

= ‖ut − y‖2 + 2γtw
T
t (ut − y) + γ2

t ‖wt‖2,
where the second relation is implied by Lemma2(a). Thus,

2γtw
T
t (ut − y) ≤ ‖ut − y‖2 − ‖ut+1 − y‖2 + γ2

t ‖wt‖2.
The preceding relation and (18) imply that

‖xt+1 − y‖2 ≤ ‖xt − y‖2

+ 2γtF (yt+1 + zt)
T (y − (yt+1 + zt)) + 2

√
nCγtǫt

+ 2γtw
T
t (ut − yt+1) + ‖ut − y‖2 − ‖ut+1 − y‖2

+ 5γ2
t (Bt + 0.2‖wt‖2). (19)

By monotonicity of the mappingF over the setXǫ from
Assumption1(b) we have

F (yt+1 + zt)
T (y − (yt+1 + zt))

≤ F (y)T (y − (yt+1 + zt)). (20)

From (19) and (20), and rearranging the terms we obtain

γtF (y)T (yt+1 + zt − y)

≤ 0.5‖xt − y‖2 − 0.5‖xt+1 − y‖2 + 0.5‖ut − y‖2

− 0.5‖ut+1 − y‖2 +
√
nCγtǫt + γtw

T
t (ut − yt+1)

+ 2.5γ2
t (Bt + 0.2‖wt‖2).

Multiplying both sides of the preceding inequality byγr−1
t for

some constantr ∈ R andk ≥ 0, we have

γr
t F (y)T (yt+1 + zt − y) ≤ 0.5γr−1

t ‖xt − y‖2

− 0.5γr−1
t ‖xt+1 − y‖2 + 0.5γr−1

t ‖ut − y‖2

− 0.5γr−1
t ‖ut+1 − y‖2 +

√
nCγr

t ǫt + γr
tw

T
t (ut − yt+1)

+ 2.5γr+1
t (Bt + 0.2‖wt‖2). (21)

(a) r ≥ 1: Since{γt} is a non-increasing sequence andr ≥ 1,
we getγr−1

t+1 ≤ γr−1
t . Therefore, from relation (21)

γr
tF (y)T (yt+1 + zt − y)

≤ 0.5γr−1
t ‖xt − y‖2 − 0.5γr−1

t+1 ‖xt+1 − y‖2

+ 0.5γr−1
t ‖ut − y‖2 − 0.5γr−1

t+1 ‖ut+1 − y‖2 +
√
nCγr

t ǫt

+ γr
tw

T
t (ut − yt+1) + 2.5γr+1

t (Bt + 0.2‖wt‖2).
Summing overt from t = 0 to k, we obtain

k∑

t=0

γr
t F (y)T (yt+1 + zt − y)

≤ γr−1
0

2
‖x0 − y‖2 −

γr−1
k+1

2
‖xk+1 − y‖2

+
γr−1
0

2
‖u0 − y‖2 −

γr−1
k+1

2
‖uk+1 − y‖2 +

√
nC

k∑

t=0

γr
t ǫt

+

k∑

t=0

γr
tw

T
t (ut − yt+1) + 2.5

k∑

t=0

γr+1
t (Bt + 0.2‖wt‖2).
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From boundedness of the setX and the triangle inequality,
we have‖u0 − y‖2 = ‖x0 − y‖2 ≤ 4M2. Thus, from the
definition of ȳk+1(r), the preceding relation implies that

(
k∑

t=0

γr
t

)

F (y)T (ȳk+1(r) − y)

≤ 4M2γr−1
0 +

√
nC

k∑

t=0

γr
t ǫt +

k∑

t=0

γr
tw

T
t (ut − yt+1)

+ 2.5

k∑

t=0

γr+1
t (Bt + 0.2‖wt‖2).

Taking supremum over the setX with respect toy, invoking
the definition of the gap function (1), we have

(
k∑

t=0

γr
t

)

G(ȳk+1(r)) ≤ 4M2γr−1
0 +

√
nC

k∑

t=0

γr
t ǫt

+

k∑

t=0

γr
tw

T
t (ut − yt+1) + 2.5

k∑

t=0

γr+1
t (Bt + 0.2‖wt‖2).

Taking expectations, we obtain the following:
(

k∑

t=0

γr
t

)

E[G(ȳk+1(r))]

≤ 4M2γr−1
0 +

√
nC

k∑

t=0

γr
t ǫt +

k∑

t=0

γr
t E
[
wT

t (ut − yt+1)
]

+ 2.5
k∑

t=0

γr+1
t E

[
Bt + 0.2‖wt‖2

]
. (22)

The algorithm (2) implies that yt+1 is (Ft−1 ∪ F ′
t)-

measurable andxt+1 is (Ft ∪ F ′
t)-measurable. Moreover, the

definition ofwt in (5), and the definition ofut in (17) imply
that wt is (Ft ∪ F ′

t)-measurable andut is
(
Ft−1 ∪ F ′

t−1

)
-

measurable. Thus, the termut − yt+1 is (Ft−1 ∪ F ′
t)-

measurable. Also, from Assumption2, F (yt+1 + zt) =
E[Φ(yt+1 + zt, ξt) | Ft−1 ∪ F ′

t ∪ {zt}]. Therefore,

E
[
wT

t (ut − yt+1) | Ft−1 ∪ F ′
t ∪ {zt}

]

= (ut − yt+1)
T
E[wt | Ft−1 ∪ F ′

t ∪ {zt}]
= (ut − yt+1)

T
E[Φ(yt+1 + zt, ξt) | Ft−1 ∪ F ′

t ∪ {zt}]
− (ut − yt+1)

TF (yt+1 + zt) = 0,

where we use theunbiasedness of the mappingF . Taking
expectation on the preceding equation, we obtain

E
[
wT

t (ut − yt+1)
]
= 0, for any t ≥ 0. (23)

Next, we estimateE
[
‖wt‖2

]
. From Assumption2, we have

E
[
‖wt‖2 | Ft−1 ∪ F ′

t ∪ {zt}
]
≤ ν2, for any t ≥ 0.

Taking expectations, we obtain the following inequality:

E
[
E
[
‖wt‖2 | Ft−1 ∪ F ′

t ∪ {zt}
]]

≤ ν2

⇒ E
[
‖wt‖2

]
≤ ν2, for any t ≥ 0. (24)

In a similar fashion, we can show the following:

E
[
‖w′

t‖2
]
≤ ν2, for any t ≥ 0. (25)

Next, we estimateE
[
‖∆t‖2

]
. From the definition of∆t in (5):

E
[
‖∆t‖2 | Ft−1 ∪ F ′

t

]

= E
[
‖F (yt+1 + zt)− Fk(yt+1)‖2 | Ft−1 ∪ F ′

t

]

= E
[
‖F (yt+1 + zt)‖2 | Ft−1 ∪ F ′

t

]

+ E
[
‖Fk(yt+1)‖2 | Ft−1 ∪ F ′

t

]

− 2E
[
F (yt+1 + zt)

TFt(yt+1) | Ft−1 ∪ F ′
t

]
. (26)

Note that from Definition 4, Ft(yt+1) =
E[F (yt+1 + zk) | Ft−1 ∪ F ′

t]. Since yt+1 is (Ft−1 ∪ F ′
t)-

measurable, we observe thatFt(yt+1) is also (Ft−1 ∪ F ′
t)-

measurable. Therefore, from relation (26) we have

E
[
‖∆t‖2 | Ft−1 ∪ F ′

t

]

= E
[
‖F (yt+1 + zt)‖2 | Ft−1 ∪ F ′

t

]
+ ‖Ft(yt+1)‖2

− 2E[F (yt+1 + zt) | Ft−1 ∪ F ′
t]
T
Fk(yt+1)

= E
[
‖F (yt+1 + zt)‖2 | Ft−1 ∪ F ′

t

]
+ ‖Fk(yt+1)‖2

− 2Ft(yt+1)
TFt(yt+1)

≤ E
[
‖F (yt+1 + zt)‖2 | Ft−1 ∪ F ′

t

]
≤ C2,

where the last inequality isobtained using boundednessof
the mappingF over the setXǫ. Taking expectations over the
preceding relation, we get

E
[
E
[
‖∆t‖2 | Ft−1 ∪ F ′

t

]]
≤ C2

⇒ E
[
‖∆t‖2

]
≤ C2, for any t ≥ 0. (27)

In a similar fashion, we can show that

E
[
‖∆′

t‖2
]
≤ C2, for any t ≥ 0. (28)

In conclusion, invoking relations (23), (24), (25), (27), and
(28), from relation (22) we conclude with the following:

(
k∑

t=0

γr
t

)

E[G(ȳk+1(r))]

≤ 4M2γr−1
0 +

√
nC

k∑

t=0

γr
t ǫt + (5.5ν2 + 5C2)

k∑

t=0

γr+1
t

implying the desired result (15).
(b) r < 1: Consider relation (20). Adding and subtracting the
terms0.5γr−1

t−1 ‖xt − y‖2 and0.5γr−1
t−1 ‖ut − y‖2, we can write

γr
tF (y)T (yt+1 + zt − y)

≤ ‖xt − y‖2
2γ1−r

t−1

− ‖xt+1 − y‖2
2γ1−r

t

+
‖ut − y‖2
2γ1−r

t−1

− ‖ut+1 − y‖2
2γ1−r

t

+

(

1

2γ1−r
t

− 1

2γ1−r
t−1

)

(
‖xt − y‖2 + ‖ut − y‖2

)

+
√
nCγr

t ǫt + γr
tw

T
t (ut − yt+1)

+ 2.5γr+1
t

(
Bt + 0.2‖wt‖2

)
.

Boundedness ofX implies that‖xt−y‖2+‖ut−y‖2 ≤ 8M2.
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By summing overt from t = 1 to k, we obtain
k∑

t=1

γr
t F (y)T (yt+1 + zt − y)

≤ ‖x1 − y‖2
2γ1−r

0

− ‖xk+1 − y‖2
2γ1−r

k

+
‖u1 − y‖2
2γ1−r

0

− ‖uk+1 − y‖2
2γ1−r

k

+ 4M2

(
1

γ1−r
k

− 1

γ1−r
0

)

+
√
nC

k∑

t=1

γr
t ǫt

+

k∑

t=1

γr
tw

T
t (ut − yt+1) + 2.5

k∑

t=1

γr+1
t

(
Bt + 0.2‖wt‖2

)
.

By letting t = 0 in relation (20), and then adding the resulting
inequality to the preceding inequality, we obtain the following:

k∑

t=0

γr
t F (y)T (yt+1 + zt − y)

≤ ‖x0 − y‖2
2γ1−r

0

− ‖xk+1 − y‖2
2γ1−r

k

+
‖u0 − y‖2
2γ1−r

0

− ‖uk+1 − y‖2
2γ1−r

k

+ 4M2

(
1

γ1−r
k

− 1

γ1−r
0

)

+
√
nC

k∑

t=0

γr
t ǫt

+

k∑

t=0

γr
tw

T
t (ut − yt+1) + 2.5

k∑

t=0

γr+1
t

(
Bt + 0.2‖wt‖2

)
.

Invoking boundedness of the setX again, we obtain
k∑

t=0

γr
tF (y)T (yt+1 + zt − y)

≤ 4M2

γ1−r
0

+
4M2

γ1−r
k

+
√
nC

k∑

t=0

γr
t ǫt +

k∑

t=0

γr
tw

T
t (ut − yt+1)

+ 2.5

k∑

t=0

γr+1
t

(
Bt + 0.2‖wt‖2

)
.

The remainder of the proof can be done in a similar fashion
to the proof of part (a).

Theorem 1 (Optimal rate of convergence forȳk(r)):
Under assumptions of Proposition1, consider the weighted
average sequence{ȳk(r)} of the sequence{yt} generated by
algorithm (2), where

γt =
γ0√
t+ 1

, ǫt =
ǫ0√
t+ 1

, with γ0 ≤ ǫ0√
5nC

.

Then, whenr < 1, we have

E[G(ȳk(r))] ≤
θr√
k
, for all k ≥ 1,

whereθr , 4(2−r)γ−r
0 M2+ 2−r

1−r
(
√
nCǫ0+γ0(5.5ν

2+5C2)).
Proof: Let us define

Term A,
(k + 1)

1−r

2

∑k
t=0(t+ 1)−

r

2

, Term B,

∑k
t=0(t+ 1)−

(1+r)
2

∑k
t=0(t+ 1)−

r

2

.

Consider Proposition1(b). Note thatγk ≤ γ0 andr < 1 imply
that 4M2

γ
1−r

0

≤ 4M2

γ
1−r

k

. From the definitions of Term A and B, the
relation Proposition1(b) implies that

E[G(ȳk+1(r))] ≤ R1(Term A) +R2(Term B), (29)

whereR1 , 8γ−r
0 M2 andR2 ,

√
nCǫ0 + γ0(5.5ν

2 + 5C2).
We make use of the following relation in our analysis:
∫ k+1

0

(x + 1)−pdx ≤
k∑

t=0

(t+ 1)−p ≤ 1 +

∫ k

0

(x+ 1)−pdx,

wherep ∈ R andk ≥ 0. From this relation, it follows that

Term A≤ (k + 1)
1−r

2

∫ k+1

0 (x+ 1)−
r

2 dx
=
(

1− r

2

) (k + 1)
1−r

2

(k + 1)(1−
r

2 )

=
2− r

2
√
k + 1

,

Term B≤
∫ k

0
(x+ 1)−

(1+r)
2 dx

∫ k+1

0 (x+ 1)−
r

2 dx
=

(
2− r

1− r

)
(k + 1)

1−r

2

(k + 1)(1−
r

2 )

=
2− r

(1− r)
√
k + 1

.

In conclusion, replacing the preceding bounds for TermA and
TermB in relation (29), we get the desired result.

III. RECURSIVE STEPSIZE ANDSMOOTHING

Motivated by the little guidance on the choice of a dimin-
ishing stepsize, in this section, we consider algorithm (2) and
assume that thestepsizeγt and the smoothing sequenceǫt are
given by
{

γ∗
0 = 2αM

q

γ∗
t+1 = γ∗

t

(
1− α

2M γ∗
t

) ,

{
ǫ∗0 = 2αβM

q

ǫ∗t+1 = ǫ∗t

(

1− α
2βM ǫ∗t

) ,

(30)

where β is a constant such that β >

max
{√

5nC, α2−5(C2+ν2)
2
√
nC

}

and q , α + 2C2α + 2αν2 +

2(α + 1)β
√
nC + 5(C2 + ν2). Our goal is to analyze the

convergence of{xk} to the solution of problem (1).
Definition 2 (Weak-sharpness property):Consider

VI(X,F ) where X ⊂ R
n and F : X → R

n is a
continuous mapping. LetX∗ denote the solution set of
VI(X,F ). The problem has a weak-sharpness property with
parameterα > 0, if for all x ∈ X and allx∗ ∈ X∗

F (x∗)T (x− x∗) ≥ αdist(x,X∗). (31)

Lemma 5 (A recursive error bound):Consider algorithm
(2). Let Assumption1 and 2 hold and suppose mappingF
is strictly monotone overX andγk ≤ ǫk√

5nC
for any k ≥ 0.

Moreover, assume that problem (1) has the weak-sharpness
property with parameterα > 0. Then, problem (1) has a
unique solution,x∗, and the following relation holds:

E
[
‖xt+1 − x∗‖2 | Ft−1 ∪ F ′

t

]

≤
(

1− αγt

M

)

‖xt − x∗‖2 + q1ǫtγt + q2γ
2
t , (32)

whereq1 , α(1 + 2(C2 + ν2)) + 5(C2 + ν2) andq2 , 2(1+
α)β

√
nC.

Proof: Since the mappingF is strictly monotone over the
closed and convex setX , the problem VI(X,F ) has at most
one solution. From non-emptiness of the solution set of the
problem (1), we conclude that it has a unique solution. Let
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x∗ be such a solution. From relation (6), for y = x∗ and the
monotonicity property of the mappingF we have

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + 2γtF (x∗)T (x∗ − (yt+1 + zt))

+ 2
√
nCγtǫt + 2γtw

T
t (x

∗ − yt+1) + 5γ2
tBt.

Invoking the weak-sharpness property and the uniqueness of
the solution set,we obtain

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2αγt‖yt+1 + zt − x∗‖
+ 2

√
nCγtǫt + 2γtw

T
t (x

∗ − yt+1) + 5γ2
tBt.

Taking conditional expectation, we obtain

E
[
‖xt+1 − x∗‖2 | Ft−1 ∪ F ′

t

]

≤ ‖xt − x∗‖2 − 2αγtE[‖yt+1 + zt − x∗‖ | Ft−1 ∪ F ′
t ]

+ 2
√
nCγtǫt + 5γ2

t

(
C2 + ν2

)
, (33)

where we usedE
[
wT

t (x
∗ − yt+1) | Ft−1 ∪ F ′

t

]
= 0 . Using

the triangle inequality, we can write

‖yt+1 + zt − x∗‖ ≥ ‖yt+1 − x∗‖ − ‖zt‖
⇒− 2αγt‖yt+1 + zt − x∗‖ ≤ −2αγt‖yt+1 − x∗‖

+ 2αγt‖zt‖ ≤ −2αγt‖yt+1 − x∗‖+ 2α
√
nCγtǫt.(34)

Next, we find a lower bound for the term‖yt+1 − x∗‖. Using
the triangle inequality we have

‖yt+1 − x∗‖ ≥ ‖xt − x∗‖ − ‖yt+1 − xt‖

≥ ‖xt − x∗‖2
2M

− ‖yt+1 − xt‖, (35)

where in the last inequality we used the boundedness of the
setX . We also have

‖yt+1 − xt‖ = ‖ΠX [xt − γtΦ(xt + z′t, ξ
′
t)]− xt‖

≤ ‖xt − γtΦ(xt + z′t, ξ
′
t)− xt‖ = γt‖Φ(xt + z′t, ξ

′
t)‖

= γt‖F (xt + z′t) + w′
t‖ ≤ 0.5γk

(
12 + ‖F (xt + z′t) + w′

t‖2
)

≤ 0.5γk
(
12 + 2‖F (xt + z′t)‖2 + 2‖w′

t‖2
)

≤ 0.5γk
(
1 + 2C2 + 2‖w′

t‖2
)
. (36)

Relations (34), (35), and (36) imply that

− 2αγt‖yt+1 + zt − x∗‖ ≤ −αγt

M
‖xt − x∗‖2 + αγ2

t

+ 2C2αγ2
t + 2αγ2

t ‖w′
t‖2 + 2α

√
nCγtǫt.

From the preceding relation, and (33) we have

E
[
‖xt+1 − x∗‖2 | Ft−1 ∪ F ′

t

]

≤
(

1− αγt

M

)

‖xt − x∗‖2 + αγ2
t + 2C2αγ2

t + 2αγ2
t ν

2

+ 2α
√
nCγtǫt + 2

√
nCγtǫt + 5γ2

t

(
C2 + ν2

)
.

Replacingǫt by βγt, we obtain the desired relation.
We use the following Lemma in establishing the almost-sure
convergence(cf. Lemma 10, page 49 [15]).

Lemma 6:Let {vk} be a sequence of nonnegative random
variables, whereE[v0] < ∞, and let {αk} and {µk} be

deterministic scalar sequences such that:

E[vk+1|v0, . . . , vk] ≤ (1 − αk)vk + µk a.s. for all k ≥ 0,

0 ≤ αk ≤ 1, µk ≥ 0,
∞∑

k=0

αk = ∞,

∞∑

k=0

µk < ∞, lim
k→∞

µk

αk

= 0.

Then,vk → 0 almost surely.
Theorem 2 (Optimal rate of convergence forxk):

Consider algorithm (2). Let Assumption 1 and 2 hold,
let mappingF be strictly monotone overX , and assume that
problem (1) has the weak-sharpness property with parameter
α > 0. Suppose the sequencesγt and ǫt are given by the
recursive relations (30). Then, problem (1) has a unique
solution,x∗, and the following results hold:

(a) The sequence{xt} generated by the algorithm (2) con-
verges to the solution of problem (1) almost surely as
k → ∞.

(b) The sequence{xt} generated by the algorithm (2) con-
verges to the solution of problem (1) in a mean-squared
sense. More precisely, we have

E
[
‖xt − x∗‖2

]
≤
(
4qM2

α2

)
1

t
, for all t ≥ 1.

Proof: (a) First we show thatǫ∗t = βγ∗
t for any t ≥ 0.

From (30), we haveǫ∗0 = 2αβM
q

= βγ∗
0 , implying that the

relation holds fort = 0. Assume that the relation holds for
some fixedt. We show that it holds fort+ 1. We have

ǫ∗t+1 = ǫ∗t

(

1− α

2βM
ǫ∗t

)

= βγ∗
t

(

1− α

2βM
βγ∗

t

)

= βγ∗
t+1

Therefore, we conclude thatǫ∗t = βγ∗
t for any t ≥ 0. Since

we assumedβ >
√
5nC, we getǫ>t

√
5nCγ∗

t or equivalently,
γt < ǫt√

5nC
for any t ≥ 0. Next, we show that{γ∗

t } is a
decreasing sequence with strictly positive elements. We have

α2 − 5(C2 + ν2)

2
√
nC

< β ⇒ α2 < 5(C2 + ν2) + 2
√
nCβ

⇒ α2 < α(1 + 2C2 + 2ν2 + 2
√
nCβ) + 5(C2 + ν2)

+ 2
√
nCβ = q ⇒ α

q
<

1

α
⇒ γ∗

0 <
2M

α
.

Using the preceding relation we obtainγ∗
1 = γ∗

0 (1− α
2M γ∗

0 ) <
γ∗
0 < 2M

α
andγ∗

1 > 0. Following the same approach, induction
implies that

0 < . . . < γ∗
2 < γ∗

1 < γ∗
0 <

2M

α
, (37)

verifying that {γ∗
t } is a decreasing sequence with strictly

positive terms. Therefore, all the conditions of Lemma5 hold
showing that for the unique solutionx∗, we have

E
[
‖xt+1 − x∗‖2 | Ft−1 ∪ F ′

t

]

≤
(

1− αγt

M

)

‖xt − x∗‖2 + q1ǫtγt + q2γ
2
t

≤
(

1− αγt

M

)

‖xt − x∗‖2 + βq1γ
2
t + q2γ

2
t ,
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where we used the relationǫ∗t = βγ∗
t . From definition ofq1,

q2 and q, we haveq = βq1 + q2. Thus, from the preceding
relation we obtain

E
[
‖xt+1 − x∗‖2 | Ft−1 ∪ F ′

t

]
≤
(

1− αγt

M

)

‖xt − x∗‖2

+ qγ2
t , for all t ≥ 0.

The next step is to show
∑∞

t=0 γ
∗
t = ∞ and

∑∞
t=0 (γ

∗
t )

2 < ∞.

The proof of these relations can be found in our prior work
(cf. Prop. 3 in [12]). The last step of the proof is applying
Lemma6 on the preceding inequality. We verified that all the
conditions of Lemma6 are satisfied forvt , ‖xt − x∗‖2,
αt , α

2M γ∗
t , µt , q(γ∗

t )
2. Therefore,xt converges tox∗

almost surely.
(b) In the first part of the proof, using induction ont, we show
that using the sequencesγ∗

t andǫ∗t , we have

E
[
‖xt − x∗‖2

]
≤ 2Mq

α
γ∗
t , for all t ≥ 0. (38)

For t = 0, the relation becomesE
[
‖x0 − x∗‖2

]
≤

2Mq
α

γ∗
0 = 4M2. This holds becauseE

[
‖x0 − x∗‖2

]
≤

E
[
2‖x0‖2 + 2‖x∗‖2

]
≤ 4M2. Let us assume that relation

(38) holds for t. Then, taking expectation from (32) and the
definition of q we can write

E
[
‖xt+1 − x∗‖2

]
≤
(

1− αγ∗
t

M

)

E
[
‖xt − x∗‖2

]

+ q(γ∗
t )

2, for all t ≥ 0.

Using the induction hypothesis, from the preceding relation it
follows

E
[
‖xt+1 − x∗‖2

]
≤
(

1− αγ∗
t

M

)
2Mq

α
γ∗
t + q(γ∗

t )
2

=
2Mq

α
γ∗
t

(

1− αγ∗
t

M
+

αγ∗
t

2M

)

=
2Mq

α
γ∗
t+1.

Therefore, the relation (38) holds for t + 1, implying that it
holds for anyt ≥ 0. In the second part of the proof, we show
that

γ∗
t ≤ 2M

αt
, for all t ≥ 0. (39)

From definition of the sequence{γ∗
t } we have fort ≥ 0,

1

γ∗
t+1

=
1

γ∗
t (1 −

αγ∗

t

2M )
=

1

γ∗
t

+
α

2M

1− αγ∗

t

2M

.

Summing up fromt = 0 to k we obtain

1

γ∗
k+1

=
1

γ∗
0

+
α

2M

k∑

t=0

1

1− αγ∗

t

2M

>
α

2M

k∑

t=0

1

1− αγ∗

t

2M

. (40)

From the Cauchy-Schwarz inequality, 1
1
n

∑
n

k=1
1
a
k

≤
1
n

∑n
k=1 ak holds for arbitrary positive numbers

a1, a2, . . . , an. Thus, for the terms1− αγ∗

t

2M we get
(

1

k + 1

k∑

t=0

1

1− αγ∗

t

2M

)−1

≤ 1

k + 1

k∑

t=0

(1− αγ∗
t

2M
)

<

∑k

t=0 1

k + 1
= 1 ⇒

k∑

t=0

1

1− αγ∗

t

2M

> k + 1.

The preceding relation and (40) imply that the inequality (39)
holds. In conclusion, using the two relations (38) and (39), we
obtain the desired result.

IV. CONCLUDING REMARKS

We presented two robust variants of a stochastic extragra-
dient method for solving monotone stochastic VIs by utilizing
a smoothing technique. First, using a new class of choices
for the weights in an averaging scheme, we show that a
suitably defined gap function converges to zero at rate of
O
(

1√
k

)

. Second, we develop a recursive rule for updating
stepsize and smoothing parameters and we show both the
almost-sure convergence and that the rate in mean-squared
sense is optimal. Importantly, this scheme allows for tuning
the steplength sequence to problem parameters.
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