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Abstract— Inventory management is one of the main tasks
that the pharmacy department has to carry out in a hospital.
It is a complex problem that requires to establish a tradeoff
between different and contradictory optimization criteria. The
complexity of the problem is increased due to the constraints
that naturally arise in this type of applications. In this paper,
which corresponds to preliminary works performed to imple-
ment advanced control techniques for pharmacy management
in two Spanish hospitals, we propose and assess chance-
constrained model predictive control (CC-MPC) as a mean to
relieve this issue.

I. INTRODUCTION

Inventory control is a classical problem that arises in many
fields. Wherever there is an organization that provides a
certain good or service, there is a need of controlling the
items that are bought to this end. Ideally, the organization
would know exactly when these items will be needed, and
hence they could be ordered to arrive and be used just in
time. Unfortunately, this is not realistic due to the existing
uncertainties with respect to the demand and material or
information delays. As a consequence, some conservatism
in the control policy used is necessary in order to avoid
stockouts, specially because the consequences of such event
can be fatal.

Failures in the stock management in a hospital pharmacy
may have catastrophic social and economical consequences.
On the one hand, the clinical needs of the hospital have to
be satisfied; the social cost of the unavailability of medicines
may be enormous as it may lead to the loss of human lives.
On the other hand, it is not possible to raise the average stock
levels too much. Hospitals have tight budgets that impose
constraints on the stock management. In [1] it is estimated
that about 35% of hospital expenses on services and goods
are due to the pharmacy department. In European countries,
where the health care system is public, these expenses are
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millionaire. Therefore, inventory management is one of the
main tasks that a pharmacy department has to carry out
in a hospital. It is a complex problem because it requires
to establish a tradeoff between contradictory optimization
criteria. In addition, other factors that typically complicate
inventory management problems have also to be taken into
account in this context. For example, there are constraints
on the placement of stocked drugs. Room is not endless,
specially for those drugs that have to be preserved at low
temperature, and thus have to be stored in a fridge. Delays
on drug deliveries and non deterministic demands are also
major issues in this context.

Typically, the pharmacy managers apply very simple in-
ventory control policies. In particular, an (s, S) policy is
usually used, which means that when inventory drops below
level s an order is placed to raise it back to the inventory
higher level S. Alternatively, a fixed size Q can be assigned
to the orders and then s is defined as the reorder point.
Note that other periodic review inventory control are possible
as well, see for example [12] or [2]. Nevertheless, these
policies lack of enough flexibility to take into account all the
factors involved in this optimization problem in a systematic
manner. For this reason, in this work we propose to apply
model predictive control (MPC) to the pharmacy department
inventory management problem. MPC is a popular control
strategy for the design of high performance model-based
process control systems because of its ability to handle multi-
variable interactions, constraints on control (manipulated)
inputs and system states, and optimization requirements in
a systematic manner. MPC takes advantage of a system
model to predict its future evolution starting from the current
system state along a given prediction horizon. Due to its high
versatility, MPC has become one of the most popular control
techniques in industrial applications [3]. In fact, similar prob-
lems such as supply chain management have also benefited
from the application of MPC. For example, [13] and [14]
applied MPC to supply chain management in semiconductor
manufacturing. In [7] a popular supply chain benchmark, the
MIT Beer Game, is used to test a distributed MPC algorithm
with low communicational burden. Likewise, in [11] robust
MPC is applied to production-inventory system. Finally, in
[9] a variation of MPC is used to reduce the number of tuning
parameters when managing inventories and supply chains.

In the design of predictive controllers for dynamical sys-
tems subject to disturbances and/or uncertainty, it is well
known that even if the controller finds a feasible solution,
there is a certain probability that real outputs may violate the
system constraints. Therefore, it would be suitable to replace



and/or reformulate the original constraints involving random
variables by probabilistic statements, allowing not only the
treatment of the uncertainty but also avoiding possible un-
feasibility of the optimization problem behind the predictive
controller. Probabilistic or chance constraints, which have
been treated and developed within the stochastic program-
ming framework [6], were firstly introduced during the 60s -
70s [8]. Combined with the standard MPC theory, they allow
the designer to arise with a stochastic optimization problem
behind the controller by replacing hard constraints (either
of states or inputs) with probabilistic constraints and by
replacing the nominal cost function with its expected value
in the MPC formulation [4]. This stochastic approach, known
as Chance-Constrained MPC (CC-MPC) demonstrates to be
suitable for large-scale complex systems due to its inherent
features such as robustness, flexibility, low computational
requirements, and ability to include the level of reliability
(or risk) associated with the constraints (which implies its
a priori knowledge) [10], [5]. Thus, CC-MPC avoids the
conservative nature of other MPC approaches taking into
account the expected performance of the closed loop with
proper constraint handling instead of directly trying to assure
robust stability.

In this work, which has been performed in collaboration
with two hospitals in Spain, we assess the use of CC-MPC
to inventory management in Hospitalary Pharmacy, and it is
a preliminary work of the project Pharmacontrol1. The goal
of this collaboration is to update the inventory management
system of these hospitals so it is possible to reduce the aver-
age inventory while maintaining the same clinical guarantees.
In order to illustrate the size of the problem, we will say
that the biggest hospital that participates in this work has a
total capacity of 1200 beds for the inpatients. Besides these
inpatients, the pharmacy department provides monthly more
than five thousand drug dispensations for external patients.
In this hospital the expenses on drugs exceed the amount of
fifty millions of euros per year.

The paper is organized as follows. First, a description of
the inventory management problem is shown in Section II.
Section III, presents the optimization problem and the MPC
for this problem. Section IV some simulations are shown.
Finally, in Section V some conclusions are presented.

II. PHARMACY INVENTORY PROBLEM

In this paper we assume that the pharmacy inventory is
composed of Ni different drugs. The following discrete linear
model will be used to represent the evolution of the stock
level of drug i:

si(t+ 1) = si(t) +

npi∑
j=1

oji (t− τ ji )− di(t), (1)

where si ∈ R is the stock of drug i, oji ∈ R is the number of
ordered items to the j-th of the npi providers of the drug i, τ ji

1The project Pharmacontrol has as main objective the improvement of
the stock control in hospital pharmacies, trying to reduce the stock mean
level and, therefore, achieving considerable savings for the hospitals.

is its corresponding transport delay, and di(k) stands for the
aggregate demand of drug i. Note that the number of ordered
items can be decomposed as oji = δji (t−τ ji )u

j
i (t−τ ji ), with

δji (t) being a boolean variable whose value is one only if
an order of drug i to provider j is placed during time t –
otherwise its value is zero – and uj

i ∈ R being the actual
number of ordered items in case an order is placed. This
decomposition is introduced to simplify accounting for costs
that are related to the placement of orders.

We consider the following costs associated to the inventory
management problem:

• pji is the price that the j-th provider offers for drug
i. This price could depend in general on the number
of ordered items. On way to proceed in that case
would be to estimate that dependency (adjusting with an
expression that could be linear, quadratic, ...) to include
explicitly in this term the decision variable oji . We will
assume for simplicity that this price does not depend
on the number of ordered items.

• Cj
sh,i is the shipping costs of asking drug i to provider

j.
• Cop,i represent the costs associated to placing an order

of drug i.
• Cos,i is the cost of running out of stock of drug i, that

is, the cost of shortage. In this case it is possible to
ask for help to other hospitals. These loans require to
contract special deliveries, which may have a high cost.
In addition, the risk of not being able to satisfy the
clinical needs of the hospital is maximum at this point.

• Cs,i is the cost of storage of drug i.

The goals of a pharmacy manager can be summed up in the
following list. Note that the goals are provided in decreasing
priority:

1) Demand satisfaction. In other words, the probability
of drug shortage has to be minimized. The demand of
the drugs is non deterministic. The same may happen
with the transport delay associated to the shipments.
As a consequence, it is common to set a safety stock
in order to cope with the uncertainty introduced by
these problems. Two possibilities arise at this point
depending on whether a fixed or variable safety stock is
set up. In the first case, a minimum bound is introduced
in the optimization problem. In the second one, the
safety stock becomes an optimization parameter. Any-
how, this is translated into the following mathematical
condition:

min
δji ,u

j
i ∀i,j

N∑
k=0

Ni∑
i=1

Cos,iPr(si(t+ k) < 0), (2)

where Pr(si(t+ k) < 0) stands for the probability of
si(t+k) being negative and N is the length of the time
horizon in which the condition has to be satisfied.

2) Minimize the expenses on the acquisition of drugs and



the inventory levels, that is,

min
δji ,u

j
i ∀i,j

N∑
k=0

Ni∑
i=1

npi∑
j=1

δji (t+ k)(pjiu
j
i (t+ k) + Cj

sh,i)

+
N∑

k=0

Ni∑
i=1

Cs,isi(t+ k).

(3)
3) Minimize the number of orders placed. The human

resources of the pharmacy department are limited.
Thus, it is convenient to minimize the fixed costs
introduced every time an order is placed. This goal
is better understood when it is taken into account
that, for example, in a hospital such as Reina Sofı́a
more than twelve thousand orders are placed during
a year. Mathematically, this condition is equivalent to
the following minimization problem:

min
δ

N∑
k=0

Ni∑
i=1

npi∑
j=1

Cop,iδ
j
i (t+ k). (4)

In addition, different constraints have to be taken into
account:

• Storage constraints. On one hand, the stock of drug
i has to be greater than a safety stock si,min, whose
mission is to provide an extra guarantee so that the
probability of lack of inventory is reduced. On the other,
there may be room constraints that limit the maximum
number of drug samples that can be stored. Therefore,

si ∈ [si,min, si,max]. (5)

• Order constraints. The constraints on the orders re-
quire the use of two different variables. The first one
is a boolean variable that represents whether an order
of drug i has been placed to provider j during time t.
Thus, δji (t) ∈ [0, 1]. In case of placing an order it has
to be taken into account that there is both a minimum
and a maximum number of items that can be ordered,
that is,

uj
i ∈ [uj

i,min, u
j
i,max]. (6)

• Operational constraints. The pharmacy has a limited
capacity for placing orders and receiving shipments. For
this reason a limit has to be imposed on the number of
orders placed during an horizon of length N , that is,

N∑
k=0

npi∑
j=1

δji (t+ k) ≤ ∆i, (7)

where ∆i is the maximum number of orders of drug i
that can be placed during the horizon.

• Economical constraints. We will consider a constraint
on the amount of money that can be spent during
the horizon N , being $max the maximum amount.
For simplicity, we will ignore the expenses due to the
stocked goods. Thus, this goal can be mathematically
translated as:

N∑
k=0

Ni∑
i=1

npi∑
j=1

δji (t+ k)(pjiu
j
i (t+ k) + Cj

sh,i + Cop,i)

≤ $max

(8)

III. OPTIMIZATION PROBLEM AND MODEL PREDICTIVE
CONTROL IN PHARMACY INVENTORY

As it was stated in Section II, the objective of the opti-
mization problem is threefold; the demand has to be satisfied,
the fixed assets reduced and the number of orders minimized.
The system can be represented according to Figure 1.

Fig. 1. Block System

System inputs are the estimated drug demands, disturbance
and constraints. The outputs are the optimal stock levels,
minimum costs and data about when and how many orders
should be delivered. The performance index considered in
this work involves a multicriteria weighted function where
demand satisfaction, expenses and number of orders are
included. Note that these terms are defined in Section II as
goals of a pharmacy manager, i.e.,

min
u

J, (9)

with J = β1∆(u, t) + β2E(u, t) + β3Θ(u, t),

where ∆, E and Θ are respectively the terms associated to
demand satisfaction, costs and orders. Note that the outputs
of the problem depend strongly on the weights β, prioritizing
the different terms. These parameters are chosen following
the recommendations of the hospital.

At the end, the problem to solve is a deterministic one,
with the particularity that the constraints are obtained from
probabilistic assumptions.

A. Model Predictive Control

MPC is a control strategy based on the explicit use of
a dynamic model to predict the process output at future
time instants over a prediction horizon (N) [3]. The set of
future control signals is calculated by optimizing a criterion
or objective function. The predicted outputs depend on
the known past inputs and outputs values up to instant k
and on the future control signals. Only the control signal



calculated for instant k is sent to the process whilst the next
control signals are neglected. Some advantages that MPC
presents over other optimization control methods include the
relative ease of implementation, the ready extension to the
multivariable case, and the natural addition of constraints in
the optimization.

In this work, MPC technique has been used to solve the
problem. Next, we examine the terms involved in expres-
sion (9). The first one is related to the satisfaction of the
demand. As it has been said, the demand has a random
behavior. Therefore, all we can do is to minimize the prob-
ability of drug shortage, as it was shown in expression (2).

B. MPC programming

In the following, we will present some considerations
about the inventory control problem in order to ease its
implementation. Hence, the objective function will minimize
the number of orders placed and the expenses made. Con-
sider the system defined by:

s(t+ 1) = s(t) + o(t− τ)− d(t), (10)

where s(t) = [s1(t), ..., sNi(t)], d(t) = [d1(t), ..., dNi(t)]

and o(t− τ) =
npi∑
j=1

δji (t− τ ji )u
j
i (t− τ ji ) represents the total

number of items ordered. As it can be seen, system (10) is
equivalent to (1).

The problem to solve is the following:

min
o

J

subject to (10) and (5)-(8). In this particular problem, we
have to deal with two variables of control: a boolean variable
δji (t) and uj

i (t), which are components of the control variable
o(t). Since finding these two variables together solving the
optimization problem is a difficult task, due to the different
nature of them, this problem will be solved by means of
an exhaustive search algorithm, solving the problem one
time for each possible scenario depending on the value of
{δji (t), ..., δ

j
i (t+N)}. With this algorithm, the optimization

problem is solved with respect to the variable uj
i (t).

It is straightforward to see that if δji (t + k) = 0, k ∈
{0, 1, ..., N}, the number of ordered items oji (t + k) = 0.
Therefore, to simplify the problem, the vector of control
variables {uj

i (t), ..., u
j
i (t + N)} is reduced eliminating the

null component uj
i (t+ k), that is:

∀δji (t+ k) = 0, k ∈ {0, 1, ..., N},



uj
i (t)
...

uj
i (t+ k)

...
uj
i (t+N)


︸ ︷︷ ︸

uj
i (t)

→



uj
i (t)
...

uj
i (t+ k − 1)

uj
i (t+ k + 1)

...
uj
i (t+N)


︸ ︷︷ ︸

u’ji (t)

,

where uj
i (t) ∈ RN+1 and u’ji (t) ∈ RN ′+1, being

N ′ = N −
N∑

k=0

(
1− δji (t+ k)

)
Note that this operation, i.e. to reduce the vector uj

i (t)
to u’ji (t), can be achieved by means of a simple change of
variable:

uj
i (t) = Mu’ji (t),

where M ∈ RN+1 × RN ′+1.
For example, if N = 3:

uj
i (t) =


uj
i (t)

uj
i (t+ 1)

uj
i (t+ 2)

uj
i (t+ 3)

 ,

and we are assuming these values: δji (t) = 1, δji (t + 1) =
1, δji (t + 2) = 0 and δji (t + 3) = 1. That means that the
dimension of uj

i (t) has to be reduced in one order, so N ′ = 2
and

M =


1 0 0
0 1 0
0 0 0
0 0 1

 ,

this matrix provides the reduced vector:

u’ji (t) =

 uj
i (t)

uj
i (t+ 1)

uj
i (t+ 3)

 .

�
Therefore, u’ji (t) contains only the ordered items that are

non-zero.
This optimization problem will be solved as many times

as possible combinations with the values of {δji (t), ..., δ
j
i (t+

N)}, to avoid this variable in the optimization, so we will
obtain the same number of values of the objective function.
The optimal combination of the values of {δji (t), ..., δ

j
i (t +

N)} corresponds with the one that provides the minimal
value of the objective function.

It is necessary to pay special attention to the constraints
while solving this problem. It is not possible to impose the
whole matrix of constraints to the reduced vector u’ji (t), so it
is necessary to also apply the change matrix M to the matrix
of constraints to impose them only to the control components
that we are considering.

C. CC-MPC

In this subsection, the way to treat the constraints stochas-
ticastically is presented. In (10), the aggregate demand d(t)
has associated a stochastic disturbance, due to the uncer-
tain nature of d(t). As the state is influenced by additive
uncertainties d(t), the constraints can not be represented
in a deterministic way. Therefore they are rewritten in a
probabilistic manner, e.g.:

P (s(t+ k) ≥ smin) ≥ 1− δs, ∀k ∈ {1, .., N},



where δs is the probability of failure, so it is the risk bound of
stockout. Developing the last expression along the prediction
horizon, and assuming that the disturbances behave as a
function of a certain probability distribution, it is possible
to calculate or estimate the mean and standard deviation
of the state variable. For example, for the first instant of
the prediction horizon and assuming that the perturbations
behave as a normal distribution with mean µ and standard
deviation σ, i.e., d(t) = N(µ, σ), we get:

P (s(t+ 0) + o(t+ 0)− d(t+ 0) ≥ smin) ≥ 1− δs,

which can be normalized as follows:

P
[
s(t+1)−s(t+0)−o(t+0)−µ

σ ≥ smin−s(t+0)−o(t+0)−µ
σ

]
≥ 1− δs

P
[
s(t+1)−s(t+0)−o(t+0)−µ

σ ≤ smin−s(t+0)−o(t+0)−µ
σ

]
≤ δs

φ
(smin − s(t+ 0)− o(t+ 0)− µ

σ

)
≤ δs

smin − s(t+ 0)− o(t+ 0)− µ

σ
≤ φ−1(δs),

where φ(·) is the probability distribution function. This
allows us to write a constraint of the form:

−o(t+ 0) ≤ s(t+ 0)− smin + φ−1(δs)σ + µ.

Next, for the second time instant in the prediction horizon:

P (s(t+ 2) ≥ smin) ≥ 1− δs
P (s(t+ 1) + o(t+ 1)− d(t+ 1) ≥ smin) ≥ 1− δs
P ((s(t+ 0) + o(t+ 0)− d(t+ 0)) + o(t+ 1)
−d(t+ 1) ≥ smin) ≥ 1− δs
P (s(t+ 0) + o(t+ 0)− d(t+ 0)) + o(t+ 1)
−d(t+ 1) ≥ smin) ≥ 1− δs.

Following the same reasoning of the previous case, we have:

φ
(smin − s(t+ 0)− o(t+ 0)− o(t+ 1)− 2µ

σ
√
2

)
≤ δs

smin − s(t+ 0)− o(t+ 0)− o(t+ 1)− 2µ

σ
√
2

≤ φ−1δs,

which allows us to write the following constraint:

−o(t+ 0)− o(t+ 1) ≤
s(t+ 0)− smin + φ−1δs · σ

√
2 + 2µ.

In general, for a prediction horizon N , we have the fol-
lowing constraint that has to be included in the optimization
problem behind the design of the MPC to implement the
chance constraints:

−


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
1 1 · · · 1




o(t+ 0)
o(t+ 1)
o(t+ 2)

...
o(t+N − 1)

 ≤


1
1
1
...
1

 s(t+ 0)

+


1 1 1

1 2
√
2

1 3
√
3

...
...

...
1 N

√
N


 −smin

µ
φ−1(δs)σ

 .

IV. CASE STUDY AND RESULTS

In this section, we apply the proposed CC-MPC2 to one
of the most expensive drugs that is used in these hospitals.
In addition, this drug deserves special attention since it must
be stored in a fridge, which makes even more important to
reduce its average stock level. The real name and price of the
drug will not be presented in this paper due to confidentiality
reasons.

Regarding the controller, a horizon of 8 days has been
considered. The evolution of the stock is modeled using the
discrete linear model (10). The orders of this drug have a
minimum amount of 4 units and the maximum has been set
to 1000. The price of the drug is 250 euros per unit and
each order placed implies an additional cost of 2 euros. The
deliveries of this drug usually have a delay of 2 days with
respect to the moment in which the order was placed. Finally,
the demand term of (10) is non deterministic. A probabilistic
characterization of its behavior has been calculated for this
drug based on historical data. As a result, we have modeled
the daily demand as a normal random variable with µ = 20
and standard deviation σ = 15.

For simplicity, neither storage cost nor storage limits
have been considered at this stage of our work. The only
implemented constraint with respect to the stock is that the
probability of stockout event has to be lower than 0.001, i.e.,
we request a reliability level of 99.999 %. This choice for the
reliability level is to prioritize the satisfaction of the clinic
needs.

A 600 days simulation of the proposed approach is shown
in Figure 2. In blue, the evolution of the stock using CC-MPC
is shown. In red, the real evolution of the stock according
to the hospital data is shown. In both cases, the stock was
always positive, but in the case of CC-MPC the average
level was 204 units with a standard deviation of 113, which
outperforms the results registered by the hospital (a mean
of 451 units and a standard deviation of 229). Note that,
for the price considered, this difference corresponds to an
amount of more than 60000 euros that is invested frozen
unnecessarily. Finally, it is also interesting to notice that
during the studied period the hospital placed 58 orders while

2The problem could be solved also using Mixed Integer Techniques but
it would imply a much higher computational cost. One of the advantages
of CC-MPC is that the computational cost is the same than the one for a
classic MPC.
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Fig. 2. Real and simulated stock evolution and placed orders.

the CC-MPC placed 44. That is, the CC-MPC obtained better
results even with less orders.

The optimization has to be made taking into account the
constraints given by (5)-(8). A problem is solved at every
sampling time to compute a control sequence u that takes
the system to the desired reference. For this drug, the stock
reference (security stock) has been set to 2.

A word of caution has to be said regarding the results at
this point: there may be some uncertainty associated with
the real data. Sometimes either the drug dispensations or the
arrivals of new items are recorded later than they occurred.
Another interesting issue regarding the real evolution is its
big peaks, which are usually associated to orders placed
before holiday periods (no orders can be placed then). In any
case, the difference between the reality and the simulation
is big enough to believe that the application of this kind of
policies in this context is promising.

All optimization problems, solved for the exhaustive algo-
rithm, were computed using a linear programming (linprog
in Matlab), on a machine with an Intel Core 2 Duo CPU
with 3.33 GHz and 8 GB RAM.

V. CONCLUSIONS

In this paper we have described a control-based method-
ology for decision-making in a pharmacy department to
address prevention and control problems in the inventory
management. As it can be seen, inventory management is
one of the main tasks that a pharmacy department has to
carry out in a hospital. It is a complex problem that requires
to establish a tradeoff between different and contradictory
optimization criteria.

The proposed methodology optimizes the management of
the stock while guaranteeing with a very high probability that
the drugs will be available for the patients. In this sense,

the MPC framework is particularly useful because of its
favorable properties, such as ease of constraint-handling.

Finally, it is worthwhile to mention that the proposed
technique may provide important economical savings based
on the reduction of the average level of stocked drugs while
still guaranteeing the satisfaction of the clinical needs of the
hospital. Future work will include the extension of the current
framework to consider some of the issues that have not been
addressed in this paper, like perturbations or time delays,
and the real implementation of this control policy into the
hospitals that collaborate in this project. It will be interesting
also to compare this results with a worst case approach and
others probability levels. Finally, a more detailed model of
the demand can be developed too.
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