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Energy-based modeling of electric motors

Al Kassem Jebai, Pascal Combes, Frangois Malrait, Philippe Martin and Pierre Rouchon

Abstract— We propose a new approach to model electrical
machines based on energy considerations and construction sym-
metries of the motor. We detail the approach on the Permanent-
Magnet Synchronous Motor and show that it can be extended to
Synchronous Reluctance Motor and Induction Motor. Thanks to
this approach we recover the usual models without any tedious
computation. We also consider effects due to non-sinusoidal
windings or saturation and provide experimental data.

I. INTRODUCTION

Good models of electric motors are paramount for the
design of control laws. The well-established linear sinusoidal
models may be not accurate enough for some applications.
That is why a lot of interest is shown in modeling non-linear
and non-sinusoidal effects in electrical machines. Magnetic
saturation modeling has become even more critical when
considering sensorless control schemes with signal injection
[1]-[4].

The linear sinusoidal models are usually derived by a
microscopic analysis of the machine, see e.g. [5], [6]. Based
on such models, there has been some effort aiming at
modeling torque ripple [7]-[9] and magnetic saturation [10],
[11]. One problem is that the models must respect the so-
called reciprocity conditions [12] to be physically acceptable.
An alternative way to model physical systems is to use the
energy-based approach, see e.g. [13], [14], which was applied
to electrical machines in [15]-[17]. An energetic approach
is used to convey the dynamic behavior of the machine.

In this paper we recover the usual linear sinusoidal models
of most of the AC machines using a simple macroscopic
approach based on energy considerations and construction
symmetries. Choosing an adapted frame (which happens to
be the usual dg frame) allows us to get simple forms for the
energy function. A nice feature of this approach is that it
can easily include saturation or non-sinusoidal effects, and
that the reciprocity conditions are automatically enforced. We
also prove the modeling of saturation can actually be done in
the fictitious frames a3 or dq provided the star-connection
scheme is used; this fact is commonly used in practice but
apparently never rigorously justified.

This paper is organized as follows: in section [l we apply
the energy-based approach to a general Permanent Magnet
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Synchronous Motor (PMSM). Then in section [[l, we use
the construction symmetries to simplify the energy function
of the PMSM. In sections and [V| we develop models for
the non-sinusoidal or saturated PMSM. Finally in section
we shortly show this approach can be directly applied also
to the Induction Machine (IM).

II. ENERGY-BASED MODELING OF THE PMSM

A. Notations

When z is a vector we denote its coordinates in the uvw
T . .
frame by z¥" := (2%, z",2")" . When f is a scalar function

T
we denote its gradient by 83% = ( of of of ) ; to be

Ox¥’ OxV ) OxWw
consistent when f is a vector function, % is the transpose
of its Jacobian matrix.

B. A brief survey of energy-based modeling

The evolution of a physical system exchanging energy
through the external forces (); can be found by apply-
ing a variational principle to a function £ —the so-called
Lagrangian— of its generalized coordinates {¢;} and their
derivatives {¢;}, see e.g. [13], [14],
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However is not in state form, which may be incon-
venient. Such a state form with p; := g—; and ¢; as state
variables can be obtained by considering the Hamiltonian

function, also called the energy function,
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Indeed the differential of H is
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hence H can be seen as a function of the generalized
coordinates {¢;} and the generalized momenta {p;}. As a

consequence we find the so-called Hamiltonian equations

o ~oq + Qi (4a)
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which are in state form.



C. Application to a PMSM in the abc frame

For a PMSM with three identical windings the generalized
coordinates are .
q=(0,4%,45,45)

Y

where 6 is the (electrical) rotor angle and qubc are the

electrical charges in the stator windings. Their derivatives
are r
G = (w,25,15,7)

) Y89 sy Vs

where w is the (electrical) rotor velocity and ngc are the
currents in the stator windings. The power exchanges are:

« the electrical power 1%’ 135 provided to the motor by
the electrical source, where u?bc is the vector of voltage
drops across the windings; this power is associated with
the generalized force u2>

« the electrical power —RsngCngbc dissipated in the sta-
tor resistances Ry; it is associated with the generalized
force — R419%¢

o the mechanical power —77 7 dissipated in the load,
where T7, is the load torque and n the number of pole
pairs; it is associated with the generalized force —T17..

Applying (T) and noting there is no storage of charges in

an electrical motor, hence the Lagrangian function does not

depend on ¢%*¢, we find
d aLabC
%W = ugbc — Rslgbc (Sa)
1 aLabc aLabc - E (Sb)
dt Ow 0 n’

We denote the Lagrangian function by £%¢ to underline it
is considered as a function of the variables 12*°. We then
recover the usual equations of the PMSM, see e.g. [5], [6],
by defining

8Labc

abe abey .__ abc

P20, w,12°¢) := i (0, w,22°%) (6)
Labc

T%(0,w,29%¢) = naae (0, w,22%); @)

$2%¢ can be identified with the stator flux and 72%¢ with
the electro-mechanical torque. Hence the specification of the
Lagrangian function yields not only the dynamical equations
but also the current-flux relation and the electro-mechanical
coupling.
To get a system in state form we define as in (@) the
Hamiltonian function
oL abc 700 abc
Ow Ohabe

Fc can be seen as a function of the angle 6, the ro-

. . abe
tor kinetic momentum p := %w and the stator flux
¢abc - aLaebe,
ave

j{abc = w + ZZbc _ Labc. (8)

Jbe of course does not depend on ¢2b°

dugbe s
By (@) and (@) we then find the state form
debe
(Zst = ¢ — R0k (9a)
dp b
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Fig. 1.

Star-connected motor electrical circuit

with
ag{abc
abe abce abc
s (07/)7 (bs ) = 8¢§bc (97/)7 ¢s ) (10)
85—(“170
T2 (0, p, $3") = —n (0, p,¢2%). (D)

00
In the next subsections we show this Hamiltonian formu-

lation can be simplified by expressing it in the a8 and dg
frames.

D. Hamiltonian formulation in the af frame

The stator windings of the PMSMs are usually star-
connected, see figure [T] This implies

19 422 415 = 0. (12)
This algebraic relation can easily be taken into account after
a change of coordinates. Indeed we change variables to the
a0 frame with PO .= @z2c  thanks to the orthogonal
matrix (i.e. G~ = €7T)
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We then define the Hamiltonian function in the /30 variables
by
HPO, p, 9377) = H(0, p, €T H27).

This transformation preserves (9), (I0) and (TI); for instance

abe aB0
Q000X

af0 __ abe __
Zs = GZS a¢gbc - 8(1)?’80



and
TS0, p, 37°) :=T(0, p, €02™)
((9f}fabc
W((i p, Co2™)
HH PO o
o (0:9.027°).

The constraint (T2)), i.e. 12(6, p, »¢7°) = 0, and the assump-
tion of a non-degenerated Hamiltonian function implies ¢°
is a function of (6, p, %, $?) by the implicit function the-
orem. Hence we can define the star-connection-constrained
Hamiltonian function

G20, p, 027) 1= (6, p, (627, 6006, ,627)) ).

Obviously, the system can be decomposed into
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2 (0., (627,600, p,62%)) ) =2 = 0.

This means the current-flux and electromechanical relations
are also decoupled from the 0-axis.

Therefore we have simplified the equation coming from
the Hamiltonian formulation by decoupling from the 0-axis
(there are less equations and less variables). The derivation
is valid for any Hamiltonian function, which is usually not
acknowledged in the literature.

where we used

E. Hamiltonian formulation in the dq frame

We can further simplify the formulation by expressing
variables in the dg0 frame, i.e. ¢910 := R(0)" ¢2# with

cosf) —sinf 0
R(0) := | sinf cosd 0],
0 0 1

and defining
HI(D, p, 657°) = O, p, R(O)H™).
Unfortunately this transformation does not preserve the

Hamiltonian equations. However the flavor of the Hamilto-
nian formulation is preserved; indeed on the one hand
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hence the current-flux relation and electro-mechanical torque
are

(a0
quo(av P ¢gq0) = 6¢dq0 (97 P ¢qu)
T, p, 57°) o= T270(0, p, R(0)$4™°)
83‘qu0
00

Since 12(6, p, $39°) = 0 when evaluated under the con-
straint (I2), the 0-axis can be decoupled as in section [[I-D}

(18)

+ d0T gy gd0 (19)

= N

dpdd
2; = ud? — Rl — Juwele (20a)

d
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0
—dc‘l’;s = ug, @n

with current-flux relation and electro-mechanical torque
given by

dq
199(0, p, ¢29) = 0% (0, p, ¢%7)

dple

(22)

OFHda
T(0, p, p24) = —n +mde” gopta

50 (23)
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We will see in the next section that the construction
symmetries of the PMSM are more easily expressed in the
dq frame, resulting in simpler Hamiltonian functions.

where J :=

FE. Partial conclusion

The whole model of the PMSM can thus be obtained
with the specification of only one energy function, yet to be
defined. Since no assumption was made on the motor, this
approach applies to any PMSM. In particular this implies
that modeling the saturation in the dg frame is equivalent
to modeling it in the physical frame abc if the motor is
star-connected; to our knowledge this had never been proven
before though the conclusion is widely used.

Besides the reciprocity condition [12] of the flux-current

d

relation %d)q = 8¢3

tion. Indeed, as zd 8(3;; and 2 = aggzq , we have
azg B O?H B O*H - 0ud
003 09i0¢d  9¢dogs  0¢d’

which is equivalent to the reciprocity condition.

III. CONSTRUCTION SYMMETRY CONSIDERATIONS

To restrict the number of possible Hamiltonian functions
we now put constraints on the form of these functions. To
do so we use three simple and general geometric symmetries
enjoyed by any well-built PMSM.

A. Phase permutation symmetry

Circularly permuting the phases, then rotating the rotor
by 5 27 leaves the motor unchanged, hence the energy. Thus

2
= H(0 + =, p, POI"),

30, p, 02) :

(24)
where

P =

= o O
OO =
o = O

Writing this relation in the a0 and dqO frames yields

27
HOP0, p, 637%) = HO + -, p, €PET2) (25)

2
= 3490(9 + =~

3 (26)

HIO(0, p, 62, 92, ¢2) 0, 0%, 90, 00).

B. Central symmetry

Reversing the currents in the phases, then rotating the rotor
by 7 leaves the motor unchanged, hence the energy. Thus

H?O, p, p2°°) = HP(0 + 7, p, —p2%).  (27)

Writing this relation in the a0 and dqO frames yields

3006, p,03%)
:]-quo(67 p? g’ g7¢2>

= HPO(6 + 7, p, —CCTHI) (28)
=HYO +7,p, 02, 67, —07). (29)

C. Orientation symmetry

Permuting the phases b and c preserves the energy, then
changing direction. the direction of rotation leaves the motor
unchanged, hence the energy. Thus

HO, p, ¢5") = T (=0, —p, 065"),  (30)
where
1 00
O=1(0 0 1
010
Writing this relation in the oS0 and dq0 frames yields
H0(0, p, 637°) = H (0, —p,COCT $27%)  (31)
HUO0, p, 65, 02, 65) = H (=0, —p, ¢, — 6%, ¢3). (32)
D. PFartial conclusion

Gathering (26), (29) and (32) and decoupling the 0-axis,
we eventually find

590, . z,¢z>:%dQ<9+§,p, 460)
(9, p. 61, 61) 4 —e1).

=HY(—0,—p, ¢
In other words, % is F-periodic with respect to 6 and
satisfies a parity condition on 6, p and ¢?. These symmetries
constrains the possible energy functions as shown in the next
sections.

(33a)
(33b)

E. The linear sinusoidal model

As an example we consider the simplest case, namely
a PMSM whose magnetic energy in the dq frame is a
second-order polynomial not depending on the position 6
nor on the kinetic momentum p. This means we assume
a sinusoidally wound motor with a first-order flux-current
relation. Moreover, as we are not modeling mechanics, we
take the simplest kinetic energy. That is to say

! o2
307 G4

2
dqg . 14
H = 2Jn?

where J is the rotor inertia moment and a,b,c,d, e, f are
some constants.

The symmetry (33b) implies ¢ = e = 0. As the the
energy function (% is defined up to a constant we can freely
change a, in particular set a = %-. Defining

5.
o the d-axis inductance L% := 1
¢ the g-axis inductance L9 := ;
o the permanent magnet flux ¢, := L9,
(34) eventually reads

d ;2
+a+b¢f+c¢>g+§¢§l +eplpl+

1
dq _ d = q2
As a consequence (20), 22) and (23) become

dq

dﬁ; =ud? — Ry — Juepde (36a)
d/’ d

=TH-T 36b

noy =1e L (36b)
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which is the usual model for PMSM, see e.g. [5], [6]. It is re-
markable that this model can be recovered without the rather
traditional microscopic approach. We have simply followed
a standard energy approach with simplest possible energy
function, and taken into account very general construction
symmetries.

Notice the model of the Synchronous Reluctance Motor
can be obtained in exactly the same way. Indeed since the
rotor is not oriented, we have the extra symmetry

:}quO(o’p’ g» gvd)g) g{qu(a Py = sa_ q _¢0) (37)
which implies b = 0 in (34) hence ¢ = 0.

IV. A NON-SINUSOIDAL PMSM MODEL

One interest of the energy approach is to provide models
more general than the usual sinusoidal and saturated PMSM,
simply by considering more general energy functions. In
particular it easily explains the so-called torque ripple phe-
nomenon, i.e. the Z-periodicity of the torque with respect
to 6, see e.g. [7], [8]. We still assume the magnetic energy
does not depend on the kinetic momentum p, and the simplest
possible kinetic energy.

By (33a) (% is Z-periodic with respect to # hence can
be expended in Fourier series

HU(G, p, ¢, 92) =

+Za6k

57 0% + 357 (62, 07)

, ¢9) cos 6k6 + ber (6%, 1) sin 6k .  (38)

dq
o

Thanks to symmetry (32) H2? and {ag} are even func-
tions of ¢4, and {bgy, } are odd functions of ¢4. Particularizing

(22)-(23) to this energy function gives

a¢s (b, 637) *Z a«m
Z }ng

which shows 24 and T4 are also Z-periodic.

We experimentally checked this phenomenon on a test
bench featuring current, position and torque sensors. We used
two test motors, a Surface Permanent Magnet (SPM) and an
Interior Permanent Magnet (IPM) PMSM, see characteristics
in table [ As expected the experimental plots in figure ]2
exhibit a -periodicity with respect to 6. The experiments
were done at low velocity and no load so that this effect is
well-visible.

Moreover if we consider the 0 axis, the symmetries [[TT-A]
implies %1 hence ¢! is only 2 -periodic with respect to 6.

qu(97p7 ¢S) - pv ¢2lq)

T
Tedq(evpv ¢s uoa ¢gq)+m§q 3¢sa

PMSM kind IPM SPM
Rated power 750W 1500W
Rated current (peak) 4.51A 5.19A
Rated voltage (peak) | 110V 245V
Rotor flux (peak) 196mWb | 1556mWb
Rated speed 1800rpm | 3000rpm
Rated torque 3.98Nm 6.06 Nm
Pole number (n) 3 5

TABLE I

TEST MOTOR PARAMETERS.

0.5

Te |

Te
0.5
0.4
0.4

0.3
0.3

E 0.2 E 0.2
3 =z
= =
=01 = o1
S &~
0
0
-0.1
-0.1
-02 . . .
0 100 200 300 0 100 200 300
0 in deg 0 in deg
(a) SPM torque measurement (b) IPM torque measurement
1.1 - -
iq 1 lq
1
0.9
0.9
08
08
07
07
< < 0.6
g% i
= 05 < 05
04 0.4
03 03
0.2 0.2
0 100 200 300 0 100 200 300

0 in deg 0 in deg

(c) SPM current 2 measurement (d) TPM current 2 measurement

Fig. 2. Stator current and torque measurements diverse kinds of PMSM

This effect can be experimentally seen on the potential vy
of the point O in figure [T} thanks to (2T

dg?
dt -0, — V3w

p, %) = w0 =10
here v0 := \%( V340 +oe) is as usual set to 0 by the inverter.
Therefore vy will exhibit a <F-periodicity with respect to 6,
which was also measured on the test bench.

V. MODELING OF MAGNETIC SATURATION

We now investigate the effect of magnetic saturations;
this very important when trying to control the motor at
low velocity and high load, see e.g. [1]-[4]. We consider
only sinusoidal motors (i.e. the energy function 3% is



Motor IPM SPM
Measured R 1.52Q 2.1Q

2
Py 420 £0.12A.Wb | 3.06 £ 0.084.Wb

2
a7 2.83+0.12A.Wb | 2.94+ 0.08A.Wb
#3030 0.770 £ 0.007A.Wb | 0.655 % 0.006A.Wb
#3012 0.702 £ 0.009A.Wb | 0.617 + 0.010A.Wb
¢4, a0 0.486 £ 0.012A.Wb | 0.724 + 0.010A.Wb
¢4 a00 0.734 4 0.015A.Wb | 1.010 4 0.025A.Wb
¢4 ,00.4 0.175 £ 0.004A.Wb | 0.262 % 0.006A.Wb

TABLE I
EXPERIMENTAL MAGNETIC PARAMETERS

independent of #) since the non-sinusoidal effects in well-
wound PMSMs are experimentally small in the presence of
magnetic saturation. We still assume the magnetic energy
does not depend on the kinetic momentum p, and the simplest
possible kinetic energy.

In normal operation ¢¢ is close to the permanent magnet
flux ¢ps, while ¢? is small with respect to ¢ps. It is thus
natural to expand % as a Taylor series in the variables

(¢ — ¢rr) and 2

HY =31+ DS o k(62— ou)"Fo2E, (39)

n=3 k=0

where U-Cldq is given by (33). Moreover, all odd powers of ¢?
have by (33Db) null coefficients, hence

o 3]
g‘qu == g_(ldq + Z Z an72m,2m(¢g - ¢M)n—2m¢g2m.

n=3 m=0

(40)
We experimentally checked the validity of this conclusion
on the two motors described in table [l We first obtained the
flux-current relation by integrating the back-electromotive
force when applying voltage steps, see figure [3] We then
truncated the series at n = 4 and experimentally identified
Ld, L1 Qas3.0, 01,2, 04,0, X2 2, 00,4, S€€ [18] for details. The
agreement between the flux-current relation obtained from
J% and the experimental flux-current relation is excellent.
Notice the linear model using only fH;iq is good only at low

current.

VI. ENERGY-BASED MODELING FOR THE INDUCTION
MOTOR

We now apply our approach to the Induction Motor (IM).
We show that taking the most basic assumptions (sinusoidal
and linear motor) we find again the linear model as we did

in section [II=El
A. Deploying the formalism

Assuming the squirrel-cage rotor is actually equivalent to
three identical wound phases, the generalized coordinates of
an IM with three identical stator windings are

b oc booe\T
q=(0,45,45, 95, 4, 4> 47)

)
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Fig. 3. Experimental and fitted flux-current relations.

where 6 is the (electrical) rotor angle and ¢2*¢ and ¢2*
are the electrical charges in the stator and rotor windings

respectively. Their derivatives are

G = (w,1%,15,2%,22,2° ZC)T,

1989 %89 Ysy Yy Yy U

where w is the (electrical) rotor velocity and ngc and Z‘T’bc

are the currents in stator and rotor windings respectively.
Proceeding as in the generalized momenta are

b b T
p:(p7 gv s (;7 ;l'a ryqsf') ’

where p is the kinetic momentum and ¢?*¢ and %% are the
flux produced by stator and rotor windings respectively. The
power exchanges are:

« the electrical power ua*¢’ 13%¢ provided to the motor by

the electrical source, where u2¢ is the vector of voltage
drops along the stator winding; this power is associated
with the generalized force 12"

o the electrical power —R429%¢" 12%¢ dissipated in the sta-
tor resistances Ry; it is associated with the generalized

b
force —R12°¢.



« the electrical power — R, z“bCT abe dissipated in the rotor
resistances R,; it is associated with the generalized
force —R,19%¢,

o the mechanical power —77,% dissipated in the load,
where 717, is the load torque and n the number of pole
pairs; it is associated with the generalized force —T7 .

Using the same method as in we find

d abc
gzst — abc R Zabc (413)

abc
—d(’;; = —Ra™ (41b)
CZ; = Tabe Ty, (41c)

where the stator variables are expressed in the stator frame
and the rotor variables are expressed in the rotor frame. The
current-flux and electro-mechanical relations are also similar,

abc abc abc ag_fabc abc _abc
ZS (97 p7 gbs ) d)/r ) = a¢abc (97 p7 (?bs b d)/]" ) (42)
> aoc aoc aj-(:abc aoc aoc
Z$b°(97ﬂa¢sb 7¢7~b )= W(&P» ¢Sb ,¢rb ) (43)
aoc aoc aobc 83‘{:0’1)6 aoc aoc
T (0, p, 05", 67°) 1= —n=p— (0,9, 65", 67°). (44)
Due to the connection scheme of the rotor,
W@+l 48 =0 (45)

and the fact that most stators are star-connected (see figure E]),
it is still interesting to change frame and decouple the 0-axis
as was done in It is also interesting to express all the
variables in the same frame rotating at the synchronous speed
. To do S0 we define 940 := K(0,)" z9%¢ and x40 :=
(9 — 0)" z9% where o, := w, and

dt
5 cos COSQ—% cos@—%
X(0) ::\/; —sinf —sinf—2 —sind— 3
1 1 1
V2 V2 V2

Even through the equation will not be preserved, as in
we can get similar relations

dq

dﬁ; = u% — Ra% — Juw,¢d (46a)
dq

dﬁ? = Ryt = (s —w)ey (46b)
ilif T4 T (46¢)

These are the usual dynamic equations for the IM (see e.g.
(51, [6D).

In the dq frame the current-flux and electromechanical
relations then read

d.
1090, p, ¢24, ¢19) = ‘Z)M( e N )\
OFHda
1890, p, 9%, $d7) = YL (0, p, 0%, 020 (48)
d.
T0, p, p%, ¢2) 1= — 82{9‘1 +quT3¢f«lq. (49)

B. Symmetries

We now use the motor construction symmetries as in
section [[TI] considering only the case of a sinusoidal induction
machine.

So, whatever the angle € of the rotor, the energy will be
the same, as long as the relative position of the rotor flux
space vector with respect to stator flux space vector remains
the same. Thus the energy function in the dg frame does not
depend on 6.

Rotating the stator and rotor flux space vectors by the same
angle n preserves the energy, so

HYM(p, ¢, ¢27) = HY(p, R(1) 29, R(n)¢29).

Exchanging two phases on the stator and the rotor and
symmetrizing the rotor position also preserves the energy so

HYM (p, ¢24, ¢27) = FHY(—p, 8¢9, 8¢97), (51

s (1)

C. The linear sinusoidal model

(50)

with

We consider a second order-polynomial energy function
independent on 6 and with magnetic part independent on p.
We keep the simplest expression of the kinetic energy. Such
a model is of the form

K= P + a + bp% + cp

J 2
+ 01" DY 4 1" Bgla 4+ gla” Fota(52)

where a € R, (b,¢) € (R*)? and (D, E, F) € (Ma(R))3.

The equation (30) implies that b = ¢ = (0,0) and D,
E and F commute with the rotations. So (D,E,F) €
{ad+ 7, (o, B) € R?} where J € My(R) is the identity
matrix and J was defined in Due to (3I) D, E and
F' are colinear with J because J does not commute with 8,
hence the energy function is of the form

edt®’ 619 + foi1" gl

(53)
We can choose freely a = 0 as the energy function is defined
up to a constant. We define o, L,,,, Ls and L, by the implicit
relations (it can be checked that it is invertible when it is
defined)

I = s+ a o del ¢l +

2Jn?

L,L.o = L,L, — L2

1 2L 1
d = = — m =
2w ‘T aLe T
Thus, the energy function reads
1 L T
f}qu — 2 m dqg _ 4dgq dq _ 4dq
2Jn 2p + 2L L (¢s ¢7‘ ) (¢s ¢T )
L dq dq dq dq
5L, L e S +3 L L e L (54)

Applying @7) and (@8] one gets the current-flux relations

LsL'r'Uqu = Lm(¢fq - ngq) + (Lr - Lm)gbgq
LsLyotg = Lin (79 — ¢¢9) + (Ls — Lin )65



Inverting these equations and takir%g into account the electro-
mechanical torque is T, = qu Hqﬁgq, the usual relations
(see e.g. [5], [6]) are easily identified. Therefore we re-
covered the linear sinusoidal model for the IM without the
tedious microscopic approach.
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