
HAL Id: hal-01067123
https://hal.science/hal-01067123

Submitted on 23 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounded Control of a General Extended Chained Form
Systems

Ahmad Hably, Nicolas Marchand

To cite this version:
Ahmad Hably, Nicolas Marchand. Bounded Control of a General Extended Chained Form Systems.
CDC 2014 - 53rd IEEE Conference on Decision and Control, Dec 2014, Los Angeles, United States. 6
p. �hal-01067123�

https://hal.science/hal-01067123
https://hal.archives-ouvertes.fr


Bounded Control of a General Extended Chained Form Systems

Ahmad Hably*

GIPSA-lab, Grenoble-inp

Saint-Martin d’Heres, France

Nicolas Marchand**

GIPSA-lab, CNRS

Saint-Martin d’Heres, France

Abstract— In this paper, a state feedback control is proposed
for the control of second-order chained form system with
bounded inputs. The feedback law is based on a receding
horizon strategy that provides convergence of the system to any
desired final state. Numerical simulations are given to show the
effectiveness of the proposed control strategy.

I. INTRODUCTION

In this paper a control law is developed for the general

second order chained-form system defined as:






ẍ0 = u

ẍ1 = v

ẍi = xi−1u i ∈ {2, . . . ,m}
(1)

where x0,...,m are the states and u, v are the control inputs.

Controlling this type of system is not easy because it does

not meet the Brockett conditions [3]. These conditions are

necessary for the existence of static state feedback control

C1. In addition, the second order chained system differs from

first-order chained systems, initially proposed by [11] as it

contains a drift component. For these reasons, system (1)

has attracted much attention during recent years in the non-

linear control community. In [7], a discontinuous control to

exponentially stabilize the generalized version of system (1)

is presented. It was also the subject of study in [12] where the

exponential stability is guaranteed by applying a continuous

control law variable over time. Furthermore, [13] has studied

the convergence of system (1) by a state and output feedback

based on sampled data control.

In the case where i = 2, one gets the following system:






ẍ0 = u

ẍ1 = v

ẍ2 = x1u

(2)

Typical examples of this system include unicycle-type ve-

hicles, car-like vehicles and planar underactuated manipu-

lators. The V/STOL aircraft without gravity [6] can also

be transformed into a system that is equivalent to the

second-order chained form using coordinate and feedback

transformation [2]. This particular system has been studied

by several authors. In particular, [4] has presented conditions

for system (2) to be linearizable by a state transformation and

discontinuous control . In [2], a Lyapunov-type stability and

origin exponential convergence of system (2) were provided

by a continuous time-variable homogeneous control law. The

work in [10] has studied the practical stabilization of a
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class of constrained systems that includes the chained-form

systems by applying a transverse function approach while [8]

has applied the vertical transverse as an extension transverse

function approach for the second order systems.

Despite the rich literature on the subject, the control problem

of system (1) that respects saturation constraints on the con-

trol inputs is not explicitly addressed. This problem is only

treated for first order chained systems by a discontinuous

approach proposed in [9] and a predictive control proposed

in [1].

This actual paper can be considered as a generalization of

[1] in the case of second order systems with saturation

constraints. In addition, it generalizes our previous work [5]

where we only considered a chained-form system of length

2. This paper addresses systems with an arbitrary chain

length where a new choice for the basis functions of the

control is to be applied. It turns out that this generalization

is in no way straightforward. The proposed control is based

on the principle of predictive control where feedback is

obtained by solving at each sampling instant an open-loop

optimization problem in which the current state x(k) plays

the role of initial state. Then the first part of the optimal

control sequence is applied. At the next sampling instant

k+1 , a new open-loop optimization problem is solved with

x(k + 1) as the initial state, the first part of the resulting

optimal sequence again is applied and so on.

The paper is organized as follows. In section II, the for-

mulation of the open loop control is given. In section III,

two algorithms are provided to find suboptimal solutions of

the optimization problem. In section IV, the state feedback

control to be applied in closed-loop is formulated. Some

numerical simulations are presented in section V. The paper

ends with conclusions in section VI.

Notation: In this paper, δ > 0 denotes some fixed sampling

period. For any time-dependent signal w(.), w(k) simply

denotes w(kδ). The classical notation X(t; 0;χ0;w) is used

to denote the solution at time instant t of the system starting

from an initial state χ0 at initial time t = 0 under the control

w(.).

II. OPEN LOOP CONTROL FORMULATION

System (1) can be divided into two subsystems. The first

sub-system Σ1 is linear and takes the form of a double

integrator with u the control and ζ = (x0, ẋ0)
T the state

vector. The second sub-system Σ2 is linear, variable in time,

if u is taken as a function of time, with v the control and

z = (xm, ẋm, . . . , x1, ẋ1)
T the state vector. The global state



vector of system (1) is y = [ζ z]T . The open loop piecewise

continuous control sequence is then defined by:

W =

(

U

V

)

=

((

u0

v0

)

,

(

u1

v1

)

, . . . ,

(

un−1

vn−1

))

(3)

where ui and vi represent the control inputs applied to the

system at time i to direct system’s state yi to yi+1. The

time horizon with a constant sampling period δ is given by

t̃=
(

0 δ . . . nδ
)

.

The ultimate goal of this command is to steer the system

(1) to the desired final state yd = (ζd, zd)
T starting from

the initial state y0 = (ζ0, z0)
T . In the following, a clear

parametrization of (3) is given.

1) Profile of U : Subsystem Σ1 is expressed by the fol-

lowing equation:

Σ1 : ζ̇ = AΣ1
ζ +BΣ1

u =

(

0 1
0 0

)

ζ +

(

0
1

)

u. (4)

One choice of ui can be made by taking the following linear

form in i = 0, . . . , n− 1

ui = αi+ β =
[

i 1
]

[

α

β

]

(5)

where α and β are functions of the initial state ζ0 and final

state ζn. One method to find these parameters is to sample

Σ1 over the entire prediction horizon stating from the initial

state ζ0. State matrix A1 and command matrix B1 of Σ1,

obtained by sampling, take the following form as a function

of the sampling period δ

A1 =

[

1 δ

0 1

]

; B1 =

[

δ2

2
δ

]

. (6)

By applying the corresponding control ui, Σ1 will reach to

the final state ζn starting from ζ0:

ζn = An
1 ζ0 +

n−1
∑

i=0

(A1)
n−1−iB1ui. (7)

Using the definition ui (5), the final state (7) after n sampling

periods can be written as:

ζn = An
1 ζ0 + Γn

[

α

β

]

(8)

with the square matrix

Γn =

n−1
∑

i=0

(A1)
n−1−iB1

[

i 1
]

. (9)

In the following section, we will present the necessary

conditions for the existence of the piecewise continuous

control U .

2) Existence of U : To fulfill our objective to steer sub-

system Σ1 from the initial state ζ0 to the final state ζn, equal

to the desired state ζd, in n sampling periods, Γn must be

of full rank which is a result of the following lemma.

Lemma 1: ∀n > 1, the square matrix Γn is of full rank.

Proof: see appendix I.

By applying this lemma, one gets the elements ui (5) of the

piecewise continuous U with α and β are defined by:
[

α

β

]

= Γ−1
n [ζd −An

1 ζ0]. (10)

This control steers subsystem Σ1 in n sampling periods from

the initial state ζ0 to the final state ζn = ζd, i.e. the desired

state.

3) Profile of V : The second subsystem can be written as

follows:

Σ2 : ż = AΣ2
z +BΣ2

v (11)

=

























0 1
0 u 0

0
. . .

. . . 1
0 u

0 0 1
0

























z +























0

...

0
1























v

with AΣ2
∈ R2m×2m and BΣ2

∈ R2m×1.

We follow the same approach as for the control U however,

without any special form. The sampled states of Σ2 are at

each sampling period δ given by:


















z1 = A20z0 +B20v0
z2 = A21z1 +B21v1
...

zn = A2n−1
zn−1 +B2n−1

vn−1.

(12)

Matrices A2i and B2i are found by sampling AΣ2
and BΣ2

with u = ui.

A2i =





















1 uiδ u2
i
δ2

2! . . . u2m−1
i

δ2m−1

(2m−1)!

0 1 uiδ . . . u2m−2
i

δ2m−2

(2m−2)!

...
...

0 . . . 0 1 uiδ

0 . . . 0 0 1





















(13)

B2i =





















u2m−1
i

δ2m

2m!

u2m−2
i

δ2m−1

(2m−1)!

...

ui
δ2

2!
δ





















. (14)

The final state zn after n sampling periods takes the fol-

lowing form depending on Φn and Ψn: zn = Φnz0 +ΨnV

where Ψn, Φn and V are given by:

Ψn =
[

A2n−1
A2n−2

· · ·A21B20 , . . . , A2n−1
B2n−2

, B2n−1

]

Φn =

n−1
∏

j=0

A2j

V = [v0 v1 . . . vn−1]
T . (15)



4) Existence of V : To find the elements of V (15), Ψn

must be full rank. The full rank of Ψn is established by the

following lemma.

Lemma 2: If u 6= 0, then Ψn is of full rank for n > 2m.

Proof: See appendix II. It is derived essentially from

controllability issues.

By applying Lemma 2, the piecewise continuous control V

steers Σ2 from the initial state z0 to a state zn = zd in n

sampling periods:

V = Ψ+
n (zd − Φnz0) (16)

where Ψ+
n is the pseudo-inverse matrix of Ψn.

Ψ+
n = ΨT

n (ΨnΨ
T
n )

−1

The global control obtained, denoted by W = [U V ]T , steers

the system (1) from an initial state y0 to any desired final

state yd without considering saturation constraints:

−umax ≤ u ≤ umax, −vmax ≤ v ≤ vmax. (17)

The objective of the following section is to develop an al-

gorithm that converges iteratively to an admissible sequence

of control (i.e. respects the constraints).

III. SUB-OPTIMAL SOLUTIONS OF THE OPTIMIZATION

PROBLEM

Our objective here is to find the control inputs, at each

sampling period, ui and vi such that saturation constraints

(17) are respected. The input of this control algorithm are

the initial state y0 and desired final state after n sampling

periods yn = yd = (ζd, zd). An algorithm A(y0) based on

the following lemma is developed.

Lemma 3: limn→∞ ||U || → 0, limn→∞ ||V || → 0.

Proof: See appendix ??

Remark: This lemma is important as it gives a relationship

between horizon length n and the magnitude of the control.

If n increases then the magnitude of the elements of U and

V will tend to zero.

A. Algorithm A(y0)

Using the algorithm stated below an admissible control is

computed. The algorithm consists of the following steps:

1) Initialize the prediction horizon n.

2) Find Γn, Φn and Ψn given by (9), (II-.3) and (15) .

3) Find U and V using (5) et (16).

4) Test the constriants of saturation (17).

5) If step (4) is not respected, increase the horizon length,

for example n = n+ 1.

6) Repeat the algorithm from step (2) until the constraints

are satisfied.

The result is the admissible control sequences Ŵ :

Ŵ =

(

Û

V̂

)

=

((

û0

v̂0

)

,

(

û1

v̂1

)

, . . . ,

(

ûn̂−1

v̂n̂−1

))

(18)

which will be applied during the time horizon:

t̂n̂(y0) =
(

0 δ . . . n̂δ
)

(19)

where n̂ denotes the length of the prediction horizon by

applying algorithm A(y0). The control inputs resulting from

the above algorithm provide the necessary control to steer the

chained-form system from an initial state y0 to the desired

final state yn̂ = yd in n̂ sampling periods while satisfying the

saturation constraints. The only limitation of this algorithm

occurs when u is zero. In this case, the controllability of the

second subsystem Σ2 is lost hence that of the entire system

as well. Discontinuous approaches seek for example to move

away from this singularity. From its definition, u = 0 means

that α and β of (5) are equal to zero, in other words,

equality ζd = (A1)
nζ0 (i.e. 8) is satisfied. To avoid this

situation, an additional step is applied before executing the

algorithm A(y0). This step also helps to increase the speed

of convergence of the state from the initial state y0 to the

desired final state yd. Thus, a constant control ε ∈ {−1, 1}
is first applied for 0 to qmax sampling periods:

wq,ε(τ) =

(

εumax

0

)

∀τ ∈ [0, qδ] (20)

The application of this control for q sampling periods di-

rects the system state to an intermediate state ỹ(y0, q, ε) =
Y (qδ; 0; y0;wq,ε(.)). Then, the system is oriented to a de-

sired final state yn = yd by the application of Algorithm

A(ỹ).
As a result, we obtain a set of control sequences that can

steer the system in a different time duration as a function

of q and ε. For example, in the case where q = qmax and

ε = −1 the control steers the system in a time duration of

qmaxδ + t̂n̂(ỹ(y0, qmax,−1)) where t̂n̂(ỹ(y0, qmax,−1)) is

obtained by the application of A(ỹ(y0, q = qmax, ε = −1)).
Since our objective is to steer the system in minimum time

then the control sequence with the smallest time duration is

selected. Therefore, the objective is to find the optimal and

admissible open loop control wopt(y0) corresponding to the

solution of the following optimization problem

(q̂(y0), ε̂(y0)) = Arg min
(q,ε)∈A(y0)

qδ + t̂n̂(yf (y0, q, ε)) (21)

with

A(y0) = {(q, ε) ∈ {0, . . . , qmax} × {−1, 1} |

t̂n̂(yf (y0, q, ε)) < t̂n̂(y0)− q.δ}.

The control wopt(y0) takes the following form

wopt(y0) =

[

uopt(y0)
vopt(x0)

]

= (wopt
0 , . . . , w

opt

q̂(y0)
, Ŵ (yf )) (22)

where Ŵ (yf ) is the control obtained after the execution of

A(yf ). For j = 1, . . . , q̂(y0):

w
opt
j =

(

ε̂(y0)u
max

0

)

.

This control will be applied for the following time horizon:

topt(y0) = (0, δ, . . . , δq̂(y0), t̂n̂(yf )) (23)

with

t̂n̂(yf ) = ((q̂(y0) + 1)δ, . . . , (q̂(y0) + n̂(y0))δ) (24)



B. Algorithm B(y0)

This algorithm is applied to find the suboptimal control

inputs in open loop that steers system (1) from initial state

y0 to final desired state yd while respecting the saturation

constraints on the control inputs (17).

1) Decompose the system (1) into Σ1 and Σ2.

2) For n, q ≤ qmax and ε = ±1, find the control by

applying a constant control plus the algorithm A(y0).
3) Take the control that corresponds to the solution of the

optimization problem (21).

It may be noted that there is no special treatment for the

singular case in the optimization problem. In fact, there is no

optimization but merely a choice in a finite set of solutions.

In the next section, the state feedback control is defined.

IV. STATE FEEDBACK CONTROL

Using the principles of predictive control, control is

achieved by the following state feedback

Theorem 1: The discrete time state feedback defined for

σ ∈ [0, δ[:
w(kδ + σ) = w

opt
1 (yk) (25)

where w
opt
1 (yk) is the first element of the open loop control

sequence (Algorithm B(y0) of section III-B), steers system

(1) starting from an initial state y0 to a desired final state yd.

Proof: See appendix III.

V. SIMULATIONS

To show the effectiveness of the proposed controller,

several simulation studies are carried out on system 1

with m = 3. Starting from an initial state x0 =
[−1.5, 0, 1.75, 0, 0.5, 0, 2, 0]T under the control inputs [u, v]
constrained by [umax, vmax] = [5, 5] with qmax = 2 and

δ = 0.1, we have studied the following cases :

1) Convergence to a final desired state xd =
[0, 0, 0, 0, 0, 0, 0, 0]T (Figs. 1 and 2),

2) Convergence to null desired state (Figs. 3 and 4) from

a singular initial state x0 = [0, 0, 1.75, 0, 0.5, 0, 2, 0]T ,

3) Convergence to a final desired state xd different from

zero xd = [1, 0, 0.2, 0,−0.3, 0, 0.1, 0]T 1.

These simulation results show that the proposed controller

is able to steer the extended chained form system from any

initial state to any desired state. In addition, we have tested

the admissible domain of the control with [umax, vmax] =
[0.05, 0.05] and the desired state is the origin xd =
[0, 0, 0, 0, 0, 0, 0, 0]T . These constraints will make the control

law converge to a bang-bang type behavior, well known in

time optimal control. The effect of the sampling period δ on

the control performance is examined where δ is equal to 1
sec instead of 0.1 sec. We have noticed that the resulting

closed-loop convergence time increases with the increase of

the sampling period. To end, the effect of the value of qmax

on the convergence time is also studied where we qmax = 10
is used instead of qmax = 2. By increasing qmax, the control

algorithms generate more trajectories potentially with smaller

convergence time.

1Figures are omitted due to page limitations.

VI. CONCLUSION

In this paper, a state feedback control which assures the

convergence of the extended chained form system to any

position is proposed. This controller is based on model

predictive control and handles the singular situations without

any special treatment. It also respects arbitrary saturation

constraints on the control inputs. The proposed scheme is

real-time implementable. The average calculation time for

each iteration of the previous simulations uses 0.01 sec under

MATLAB
c©. This time can be reduced by a factor of 10 to

100 using a C framework.

APPENDIX I

EXISTENCE OF U

Lemma ∀n > 1, Γn is full rank.

Proof: Matrix Γn can be written as:





∑n−1
i=0 [

δ2

2 + (n− 1− i)δ2]i
∑n−1

i=0
δ2

2 + (n− 1− i)δ2

∑n−1
i=0 iδ

∑n−1
i=0 δ





(26)

The development of the four elements of (26) gives:

Γ11
n =

δ2n(n− 1)(n− 1
2 )

2
− δ2

n−1
∑

i=0

i2 (27)

Γ12
n =

δ2n2

2
(28)

Γ21
n =

δn(n− 1)

2
(29)

Γ22
n = δn (30)

Thanks to (29), Γn is full rank when Γ11
n 6= n−1

2 Γ12
n . The

proof is based on the following difference Γ11
n − n−1

2 Γ12
n ,

Γ11
n −

n− 1

2
Γ12
n = −δ2

n−1
∑

i=0

i2 +
nδ2

4
(n− 1)2 (31)
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Fig. 1. The convergence of the extended chained form system starting
from the initial state x0 = [−1.5, 0, 1.75, 0, 0.5, 0, 2, 0]T and converging
to a final desired state xd = [0, 0, 0, 0, 0, 0, 0, 0]T with the saturation
constraints on the control inputs [umax, vmax] = [5, 5] and qmax = 2
with δ = 0.1 sec.
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Fig. 2. The control inputs u (in blue) and v (in red) applied
for steering the extended chained form system from the initial state
x0 = [−1.5, 0, 1.75, 0, 0.5, 0, 2, 0]T to a final desired state xd =
[0, 0, 0, 0, 0, 0, 0, 0]T with the saturation constraints on the control inputs
[umax, vmax] = [5, 5] and qmax = 2 with δ = 0.1 sec.

For In :=
∑n

i=0 i
2 et Jn := (n+1)n2

4 , then Γ11
n − n−1

2 Γ12
n =

δ2(Jn−1 − In−1). One also has

∆In = In − In−1 = n2 (32)

∆Jn = Jn − Jn−1 =
3n2

4
−

n

4
(33)

It is obvious that ∆In > ∆Jn and since I1 > J1 one has

that ∀n > 0, In > Jn. Therefore, Γ11
n 6= n−1

2 Γ12
n and Γn is

full rank ∀n > 1.

APPENDIX II

EXISTENCE OF V

We find a relation between the length of the prediction

horizon n and system’s dimension m such that matrix Ψn is

full rank.

Lemma If u 6= 0, then Ψn is of full rank for n > 2m.

Proof: To prove this lemma, we have to use the following

relationship (α = β = 0 ↔ ζd = ζ0). This relationship

means that the command u vanishes only when the desired

state is equal to the initial state. Assume first that α = β = 0,

then necessarily and thanks to (??), we have the following

relation between the initial state and the desired state:

ζd = An
1 ζ0 = An

1

(

ζ10
ζ20

)

with A1 =

(

1 δ

0 1

)

.

(34)

The desired state ζd (34) is written:

ζd =

(

ζ1d
ζ2d

)

=

(

ζ10 + nδζ20
ζ20

)

. (35)

Since the position convergence is considered, ζd is of the

form [ζ1d 0]T where ζ1d is the desired target position with

zero speed ζ2d = 0. Therefore, we obtain the desired state

equal to the initial state (ζ20 = ζ2d = 0 et ζ10 = ζ1d ). In the

case where the initial state is different from the desired state

(ζ0 6= ζd), then one has α 6= 0 or β 6= 0. The question is

whether α and β are at the same time different from zero.

The answer is based on the characteristics of the ui. We

know that ui can be canceled only once during the horizon

n because it takes the form of a piecewise continuous straight

line. Indeed, if there are two different time instants i1 and

i2 (i1 6= i2) such that the corresponding commands ui1 and

ui2 vanish (ui1 = ui2 = 0), then applying the definition of

α and β (5) we obtain the following system of equations:
{

αi1 + β = 0
αi2 + β = 0

. (36)

In this case α and β vanish. This is a contradiction because

we have α 6= 0 or β 6= 0. Control ui then vanishes only once

during the horizon length n and the two time instants i1 and

i2 are equal (i1 = i2). Hence, the parameters α and β are

equal to zero if and only if the initial state is identical to the

desired state ζd = ζ0. We are now sure that if an initial state

is different from the desired state, one element of U can be

canceled.

The dimension of matrix Ψn is clearly 2m×n. If we choose

the horizon length n two times larger than the dimension

of Σ2 (n > 2m), we can ensure that there is at least 2m
time periods where ui 6= 0. In this case we can guarantee

the existence of at least 2m controllable pairs [A2i, B2i] of

the matrix Ψn. So we can conclude that Ψn is full rank if

ζd 6= ζ0 and n > 2m.

APPENDIX III

PROOF OF THE MAIN RESULT

In order to state the main result, we need the following

proposition

Proposition 1: For δ positive and constant there exists a

scalar function L : Rn → R
+ with the following properties

1) (L(y) = 0) ⇔ (y = yd).
2) L is radially unbounded.

3) ∀k ∈ N

L(ycl(k + 1))− L(ycl(k)) ≤ −δ once L(ycl(k)) > δ

The state ycl(.) denotes the trajectories in closed-loop by

applying the control of theorem 1.
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Fig. 3. The convergence of the extended chained form system starting
from a singular initial state x0 = [0,0,1.75,0,0.5,0,2,0]T to a final
desired state xd = [0, 0, 0, 0, 0, 0, 0, 0]T with the saturation constraints on
the control inputs [umax, vmax] = [5, 5] and qmax = 2 with δ = 0.1
sec.
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Fig. 4. The control inputs u (in blue) and v (in red) applied for
steering the extended chained form system from a singular initial

state x0 = [0,0,1.75,0,0.5,0,2,0]T to a final desired state xd =
[0, 0, 0, 0, 0, 0, 0, 0]T with the saturation constraints on the control inputs
[umax, vmax] = [5, 5] and qmax = 2with δ = 0.1 sec.

Proof: In our case, it will be shown that L defined by

L(y) = min
i∈{1,...,n}

{topti (y) | (37)

X(topti (y); 0;x;W (., topt(y0), w
opt(y0))) = 0}

satisfies proposition 1. Note that from the definitions of

(topt(y), wopt(y)) (equations (22) and (23)), we know that

L(y) is well defined such that L(y) ≤ toptn (y). The charac-

teristics of L(y) of Proposition 1 are proved as follows:

1) (L(y) = 0) ⇔ (y = yd) results directly of the fact

that under bounded control, the system state cannot be

oriented from y0 6= yd to yd infinitely fast.

2) L is radially unbounded results from the fact that under

bounded control, the necessary time to steer the state

from y0 to yd tends to ∞ when ‖y0‖ tends to ∞.

3) We use the solution of the optimization problem

(q̂(y0), ε̂(y0)) = Arg min
(q,ε)∈A(x0)

qδ + t̂n̂(yf (y0, q, ε))

and as a cost function

J(q, ε, y0) = qδ + t̂n(yf (y0, q, ε)) (38)

We use (q̂k, ε̂k) to denote (q̂(ycl(k)), ε̂(ycl(k))). Two

cases must be considered:

Case 1: In this case where q̂k > 0, we define

y+(k) := X(q̂kδ; 0; ycl(k);uq̂k,ε̂k(.))

Par definition, L(ycl(k)) is given by:

L(ycl(k)) = q̂kδ + t̂i0(y
+(k)) for i0 ≤ n (39)

Knowing that

X(q̃k+1δ; 0; ycl(k + 1);wq̃k+1,ε̃k+1
(.)) = y+(k) (40)

with the suboptimal solutions (q̃k+1, ε̃k+1) = (q̂k −
1, ε̂k). Therefore, with (39)

L(ycl(k + 1)) ≤ J(q̃k+1, ε̃k+1, ycl(k + 1))

≤ (q̂k − 1)δ + t̂i0(y
+(k)))

≤ L(ycl(k))− δ

The inequality (37) is then verified.

Case 2: In the case where q̂k = 0, the next state of

the closed-loop trajectory is clearly given by

ycl(k+1) = X
(

δ; 0; ycl(k);W (0, topt(yk), w
opt
0 (yk))

)

Now one can see that choosing the suboptimal solution

(q̃k+1, ε̃k+1) = (0, ε̂k) implies that:

J(q̃k+1, ε̃k+1, ycl(k + 1)) = t̂n(ycl(k + 1)) (41)

But one has

t̂n(ycl(k + 1)) = t̂n(ycl(k))− δ (42)

This with (41) prove that in all the cases where

L(xcl(k)) > δ, the necessary time to go from ycl(k+1)
to yd is less by at least one period δ the time required

to go from ycl(k) to yd. Here again inequality (37) is

verified.
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