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Scheduling in Time-correlated Wireless Networks
with Imperfect CSI and Stringent Constraint

Wenzhuo Ouyang, Atilla Eryilmaz, and Ness B. Shroff

Abstract

In a wireless network, the efficiency of scheduling algarithover time-varying channels depends heavily on the acgwfi
the Channel State Information (CSI), which is usually gtiétestly” in terms of consuming network resources. Schedpin such
systems is also subject to stringent constraints such asrpamd bandwidth, which limit the maximum number of simuttans
transmissions. In the meanwhile, communication chanmelgirieless systems typically fluctuate in a time-correlateghner. We
hence design schedulers to exploit the temporal-coroslatiherent in channels with memory and ARQ-styled feedtfacin
the users for better channel state knowledge, under thenasisin of Markovian channels and the stringent constramttee
maximum number of simultaneously active users. We modslghoblem under the framework of a Partially Observable Mark
Decision Processes.

In recent work, a low-complexity optimal solution was degpsd for this problem under a long-term time-average resour
constraint. However, in real systems with instantaneossuiee constraints, how to optimally exploit the tempomlrelation
and satisfy realistic stringent constraint on the insta@t@as service remains elusive. In this work, we incorposagringent
constraint on the simultaneously scheduled users and geoptow-complexity scheduling algorithm that dynamicaifplements
user scheduling and dummy packet broadcasting. We showhbahroughput region of the optimal policy under the loag
average resource constraint can be asymptotically achievihe stringent constrained scenario by the proposeditiigg in the
many users limiting regime.

I. INTRODUCTION

In wireless networks, the states of the wireless channetsutite in time. This characteristic calls for designingotese
allocation algorithms that dynamically adapt to the randesmiation of the wireless channels. Scheduling algorithares
essential components of resource allocation. A scheduwdiggrithm is designed to control a subset of users to consume
the scarce network resources (e.g., bandwidth, power)tiswethat the overall network utility (e.g., throughputirfi@ss)
is maximized subject to link interference and queue stgbdonstraints. Under the assumption that accurate iretaous
Channel State Information (CSI) is available at the schagduhaximum-weight-type scheduling algorithms (elg.;[Bl) are
known to be throughput-optimal, i.e., they can maintainteysstability for arrival rates that are supportable by attyeo
scheduler.

The performance of efficient scheduling algorithm reliesilg on the accurate instantaneous CSI at the scheduler. In
practice, however, accurate instantaneous CSl is diffioudbtain at the scheduler, i.e., a significant amount ofesgsesources
must be spent to accurately estimate the instantaneouss€Sk(g.[14]). Therefore, acquiring CSI continuously frallrusers
is resource-consuming and impractical as the size of n&timarease. Hence, in this work we consider the importamace
where the instantaneous CSI is not directly accessible g¢osttheduler, but is instead learned at the user and fed back to
the scheduler via ARQ-styled feedback after a certain dé¥&@ny scheduling algorithms have been designed that censid
imperfect CSI, where the channel state is considered apémitent and identically distributed (i.i.d.) processesrdine (e.g.,
[5]-[8]). However, although thé.i.d. channel models facilitate trackable analysis, it does apture the time-correlation of
the fading channels.

Because perfect instantaneous CSI is costly to acquiretite-correlation or channel memory inherent in the fading
channels is an important resource that can be exploited ®éystheduler to make more informed decisions, and hence to
obtain significant throughput/utility gains (e.d.] [9]8]2. Under imperfect CSI, channel memory, and resourcestcaint, the
scheduler needs to intelligently balance the intricatgleitation-exploration tradeoff’, i.e., to decide at easlht whether to
exploit the channels with more up-to-date CSI, or to exptbeechannels with outdated CSI.

We consider the downlink of a single cell, where the packestided to each user are stored in a corresponding data tpreue
transmission. Under the complicated channel memory eeolind queue evolution, traditional Dynamic Programmiagdal
approaches can be used for designing scheduling schentesehiutractable due to the well-known ‘curse of dimenslibyia
Recently, a low-complexity algorithm was proposed_in [$itthonsiders throughput-optimal downlink scheduling viritiperfect
CSI over time-correlated fading channels, under a comgtoai thelong-term averag@umber of transmissions.

Scheduling in wireless systems is typically subjectstingent instantaneousonstraints, such as instantaneous resource
limitations from bandwidth, power, interference, etc. histwork, we study scheduling with imperfect CSI over tinmerelated
channels and under stringent resource constraint wherastentaneous scheduling decision is subject to constoairthe
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Fig. 1. Two state Markov Chain model.

maximum number of scheduled users. The stringent constoaimgs with it significant challenges, and to the best of our
knowledge under the setting of imperfect CSI, no low-comipyealgorithm exists that is optimal for general scenaridader
the restrictive regime where users have identical ON/OFFkblaan channel statistics, round-robin based scheduylwigies
are shown to be throughput optimal in_[15][16]. Further, einthese settings, it has been shownlin| [17][18] that greedy
scheduling algorithms are also optimal. [n][19][20], thghput-optimal frame-based policies are proposed. Thebeigmorely
on solving a Linear Programming in each frame, which is hiedeby the curse of dimensionality where the computational
complexity grows exponentially with the network size.

In this paper, we propose a low-complexity algorithm in \Wéss downlink under stringent constraint and heterogemeou
Markovian transition statistics across users. We prove ttie proposed algorithm has asymptotical optimal proesri the
regime of a large number of users. Our contributions are ksns:

o Under stringent constraint on the instantaneous numberaofsmissions, we propose a novel low-complexaint
scheduling and broadcastinglgorithm. At each slot, the scheduler dynamically decidé®ther to schedule a subset
of users and learn their channel state feedback via AR@datidedback, or to broadcast a dummy packet to a larger set
of users to learn their channel states from ARQ-styled faekibut with no throughput gain.

« We conduct our analysis in the framework of Partially Obable Markov Decision Process, where we utilize Whittles
index analysis of Restless Multi-armed Bandit Problem (RNIERZ1]. We then use &arge-Deviation-based Lyapunov
technique over time frames to prove the throughput perfaceaf the proposed algorithm.

« We prove that, the throughput region in [9], which is achiblg an optimal policy under a relaxed constraint on the
long-term average number of transmissions, can be asyicgdtptachieved in the stringent constrained scenario gy th
proposed algorithm, in the regime of a large number of users.

Il. SYSTEM MODEL
A. Downlink Scheduling Problem

We study a wireless downlink network with one Base Statio8)(Bnd/N users. Time is slotted with each slot synchronized
among BS and users. Each userccupies a dedicated wireless channel, whose state isetkhpt;[t] at slott. The channel
stateC;[t] evolves as an ON/OFF Markov chain across time slots witle saaceS = {0, 1}, independently of other channels.
Channel state ‘1’ represents high channel gain where oneepaan be transmitted successfully through the channadreds
state ‘0’ represents deep fading state where no packet caeliverefl. The Markovian channel state evolution is depicted in
Fig.[d, represented by the transition probabilities

Pl :=Pr (Cllt]=k|Ci[t—1]=j),j, k € S.

We assume thati, > p{, for i=1,2, -, N. This assumption implies positive correlation and is comipanade in this
field (e.g., [12][15][19][22]), which means that auto-celation of the channel state process is non-negative [18].als0
assume that there exists a positive constant 0 so thatp), > andpi,>¢ for all i to allow at least minimum probability
of cross transition between the two states, which capturesandom varying nature of the wireless channels. Our tresul
however, can be extended to more general scenarios.

Data packets destined for different users are stored inraepgueues at the BS before they are successfully traesinitt
The queue length for usérat slott is denoted byy;[t]. The number of data packet that arrives at quetm the i-th user is
denoted as4;[t], which forms ani.i.d. process with mean,; and a bounded second moment.

At the beginning of every time slot, the scheduler at the BBcsg users for data transmission. Wedgt| € {0, 1} indicate
whether usei is scheduled at slat Thei-th data queue evolves agt+1]=max{0, g;[t]—a;[t]-C;[t]} + A; [t].

Due to the afore-mentioned resource constraints, the stihgddecisions are made without the exact knowledge of the
channel state in the current slot. In our model, the schediiléhe BS obtains the accurate CSI via ARQ-styled ACK/NACK
feedback, only from the scheduled usatghe end of each sldbllowing data transmission, i.e., an ACK from scheduledrus
i implies C;[t] = 1, while an NACK impliesC;]t] = 0.

We consider the class of (possibly non-stationary) scheduling policies that makheduling decisions based on the history
of observed channel states, arrival processes, and samgdidcisions. Under the aforementioned instantaneousti@ont

10ur results easily extend to general two-state scenari@semmultiple packets, different across channels, can Imsrrdted in the two states.
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Fig. 2: Belief value evolutionpi, = 0.8, pj, = 0.2, b% = 0.5.

from power, bandwidth and interference, the schedulingsas are subject to the constraint that the number of sabedul
transmissions is unde¥/ at each time slot, i.e.,

> all) < M, (1)

whereM < N, anda?[t] € {0, 1} indicates if thei-th user is scheduled at slbunder policy¢ € ®. For example, in wireless
cellular downlink,M can correspond to the number of orthogonal time-bandwilittbss where one user can be scheduled in
each slice without causing interference to other users.

B. Belief Value Evolution

The scheduler maintains a belief valugt] for each channel, defined as the probability of channebeing in statel at
the beginning oft-th slot conditioned on the past channel state observatitims belief values are hence updated according
to the scheduling decisions and accurate channel statbdeks]

pﬁl if ai[t] =1and C; [t] =
T [t + 1] = pél if ai[t] =1and C; [t] =0, (2)

whereQ;(z)=zp}, + (1—z)p, is the belief evolution operator when useis not scheduled in the current slot. In our setup,
the belief values are known to be sufficient statistics taesgnt the past scheduling decisions and channel statbafeled
[23]. In the meanwhile, the belief valug|[t] is the expected throughput for useif it is scheduled in slot.

For thei-th user, we usé_ ; to denote the state of its belief value when the most recemtrutl state was observédime
slots ago and was in statec {0, 1}. The closed form expression bjl can be calculated fronfil(2) and is given as

bélzpél—(pﬁ_l—l)zm_)l)m b= Po1+(1—piy) (Pl —P6)! .
’ L+ po1 —Pia L+ phy —phy

As depicted in Fig[R, if the scheduler is never informed df thth user's channel state, the belief value monotonically
converges to the stationary probability:=pj, /(1 + pi, — p},) of the channel being in state We assume that the belief
values of all channels are initially set to their stationaafues. It is then clear that, based am (2), each belief vallie

evolves over a countable state space, denote};By{v%, b , : c€{0,1},l€Z*}.

s17¢e,l -

C. Network Stability Regions

We adopt the following definition of queue stabilifyl [1]: quesi is stable if there exists a limiting stationary distributi6;
such thatlim,; ., P(¢;[t] < q) = F;(¢). When there aréV total downlink users and at moat users can be simultaneously
scheduled, theetwork stability reglomstTM is defined as the closure of the set of arrival rate vectorpatied by all policies
in class® that does not lead to system instability while abiding by sliingent constrainf{1).

For comparison purpose, we introduce another re@iﬁ’gM as the closure of the set of arrival rate vectors supporteallby
policies in classP that maintains queue stability and satisfies the followiglgxed constrainthat only requires amaverage

numberof M users to be activated in the long run,

lim sup %E[ Z af[t]} < M. 3

T—o0

The regionAN"M provides a benchmark for our analysis on the scenarios witihgent constraint. Note that, contrary to

the stringent constraini](1), the relaxed constrdiht (Rjval the activation of more tha®/ users in each time slot, provided
the long term average number of transmissions does not @xdedHence the corresponding regmkf’ provides an upper
bound to the reglorz\N M under the stringent constraint. In the paper propose a;ptﬂmi not only abides by the stringent

str

constraint, but also asymptotically achieves the stghitgion upper bouno\



IIl. OPTIMAL PoLICY FOR WEIGHTED SUM-THROUGHPUTMAXIMIZATION UNDER A RELAXED CONSTRAINT

We begin our analysis by introducing an optimal algorithm@ighted sum-throughput maximization under the assediat
relaxed constraint. The corresponding algorithm servesnasssential part in our main result.

Specifically, consider the following weighted sum-thropghmaximization problen¥,..;(r, N, M) for a given vector =
(r;)_,, where the expected service rate for each ussrscaled by a non-negative factoyr,

| TN
max hTHi}o%f TE[ ; ;ri-m [t]-a‘f[t]} 4)
| TN
s.t. Hjl“n—iip TIE{ ; ; af[t]} < M. (5)

The above problen¥,..;(r, N, M) is hence a constrained Partially Observable Markov DetiBimcess (CPOMDP) [24][25].

The problem[(W)E(5) can be tackled in the framework of thetlRes Multiarmed Bandit Problem (RMBR)[21] by making
use of the associated Whittle's indexability analysis.Ha test of this section, we give a brief review of the Whigtlgidices
for RMBP [21][14], and the optimal algorithms proposed!ilj {6r solving this problem. For details of our descriptiotease

refer to [9][10][14][21].

A. Whittle’s Index for Restless Multi-armed Bandit Problem

RMBPs refer to a collection of sequential dynamic resountecation problems where several independently evolving
projects compete for service. In each slot, a subset of t@speting projects is served. The state of each projedhastically
evolves over time, based on the current state of the projetioa whether the project is served in the slot. Serving aeptoj
brings a reward whose value depends on its state. Hence, BARMhe controller needs to consider the fundamental aféde
between decisions that bring high instantaneous rewastsus those decisions that bring better future rewardsamifises
the instantaneous rewards. Solving RMBPs are known to ke har

Whittle’s index analysis[[21] for RMBPs considers the faliag virtual systemin each slot, the controller makes one of
the two decisions for each proje€t (1) Serve projectP and accrue an immediate reward as a function of its statehwhic
is the same as in the original RMBP. (2) Do not serve projeand obtain an immediate rewasd for passivity. The state
evolution of the projecP is the same as in the original RMBP, depending on its curiaité @and current action. In this virtual
system, the design goal is to maximize the long-term explea®ard by balancing the ‘reward for serving’ and the ‘sdisi
for passivity’ in each slot.

Letting Z(w) denote the set of states of projeétin which the optimal action is to stay passive, the Whittie'dexability
condition is defined as follows.

Project P is Whittle indexable if the sef(w) monotonically increases frorfi to the state space& of project P, asw
increases from-oo to co. The RMBP is Whittle indexable if every project is Whittldexable.

If Indexability holds, for each state of a project, thewhittle's indexW (s) is defined as the infimum @b in which it is
optimal to stay idle in thev-subsidized system, i.e.,

W(s) =inf{w:s e Z(w)}.

Under an average constraint on the number of projects stgtegher slot, it is known that, upon the existence of the
Indexability condition, a low-complexity algorithm exisbased on the ‘Whittle’s indices’: activate the projectshwarge
Whittle’s index value[[21].

The RMBP theories and the associated Whittle'’s indices eansied in our downlink scheduling problem. Here, each down-
link user corresponds to a project in the RMBP, with the aissed state being the belief value of its channel. Corredimaty,
the project is considered served if the user is scheduleddiar transmission at a slot. Hence the Whittle’s index gpbecause
of its simplicity, is very attractive to provide optimal yltw-complexity solutions problen¥,..;(r, N, M).

B. Optimal Policy for Weighted Sum-throughput Maximizatimder a Relaxed Constraint

It was shown in that our downlink scheduling problem is Waiihdexable[[14], and, under uniform weight vectot1,
an optimal policy for problemV,..;(1, N, M) exists based on Whittle’s indexability analysis of Restldtulti-armed Bandit
Problem [[12]. Specifically, for channél a closed formWhittle's index valuéV ! (r) is assigned to each belief statec B;.
These indices intelligently capture the exploitationdexation value to be gained from scheduling the user at theesponding
belief state[[1IR]. The closed form expression of the Whitiadex valueW}! (), n € B;, is given as follows[[12][14],

T—Qi (7)) (+ 1)+ Qi (m (¥ i i
Wi (m)= 1£piﬁ<(wz)(;(,?i<w§>zfcz(i<)w> T Py <m=bo, <0 (6)

: Poi : if bt <7 <9t
(1=pi,)(1+ph; —pi1)+Ply if bs =T=Pn




It was shown that¥! (7) monotonically increases with and satisfie$V! () € [0, 1] [12][14]. The following lemma gives
an optimal algorithm to the problen,..;(r, N, M) with arbitrary non-negative weight vector The proof of the lemma can

be found in [[9][12].

Lemma 1. There exists an optimal policy:,,(r, N, M) for problemW,..;(r, N, M) (cf. (4)-(8)), parameterized by a threshold
w* and a randomization factop*, such that

(i) The scheduler maintains artweighted index valu&Vr (r;[t]) = r; - W (m;[t]) for useri.

(i) User i is scheduled iV} (m;[t]) >w*, and stays idle if W} (m;[t]) <w*. If W} (m;[t])=w*, it is scheduled with probability
pr.

(iii) The parametersv* and p* are such that the long-term average number of transmisseopmls M .

C. Approximatev* and p* by w, and p,

Note that the parametets* and p* need to be carefully chosen to satisfy the complementagkiséss condition, i.e.,
Lemmald(iii). While directly findingw* and p* may be difficult, an algorithm was proposed [ [9] to deriveomximate
values ofw* and p* based on a fictitious model oveuncated belief state spac®ver the fictitious model, the belief value
of a user is set to its steady state if the corresponding @idras not been scheduled forslots. Specifically, the algorithm
G™(r, N, M) was introduced[9][10] to calculate, and p..

AlgorithmGT™(r, N, M): Calculation ofw, andp.
1: TXTime[i| =1 forall: e {1,--- ,N}

: TotalTime= N

: struct Index

: { float value

int user

- }I[(27 + 1)N],w[(27 + 1)N]

j=0

:fori=1to N do

9: for eachm; € BT do

10: Wl-r(ﬂ'i) =7r;- Wil(ﬂi)

11: I[j].value= Wr(m;)

12: I[j].useE i

13: j—g+1

14: end for

15: end for

o U s wN

© N

16: w =sorf(I)

17: for k =1 to siz€w) do

18:  NewTimgwlk].usef = af ;) yse(W[k].value 1)

19: TimeDiff = TxTime[w|[k].usef—NewTimgw[k].usef
20: TotalTime= TotalTime— TimeDiff

21 if TotalTime< M then

22: w,; = wlk—1].value

23: TxTimelw[k—1].uset = M— 5 TxTime[i]
i#w([k—1].user

24: pr = Bwlk—1].uselwr, TXTime[w[k—1].use)

25: Break

26: end if

27.  TxTimew[k].uset=NewTimgw|k].usef

28: end for

29: return w;, pr

D. Policy with approximate parametets,, p-

The next policy, denoted ag’_,(r, N, M), uses the approximated parametets and p, over theoriginal untruncated
model
Remark: The computational complexity of the initialization phaseatgorithm ¢7_,(r, N, M) is dominated by sorting the

rel

index values in AlgorithnG™ (r, N, M) (line 16), which has complexity)((27 + 1)N - log ((27 + 1)N)).



Algorithm ¢7_,(r, N, M): r-weighted Index Policy
1: Initialization phase: The parameters, andp, are calculated by algorithi&™ (r, N, M).
2: At dot t: user: is scheduled if ther-weighted index valuéVy (r;[t]) > w,, and stays passive iV (m;[t]) < w,. If
WF(m;[t]) = w,, useri is scheduled with probability. .

We letV*(r, N, M) be the weighted sum-throughput under the optimal pafity(r, NV, M), and letV-(r, N, M) be that
under policy¢T,,(r, N, M), i.e

r*el ( )

T—-1 N

_hm inf — IE{ Z Z it f”l =N, M) [t]], (7

T—o0
t=0 i=1

Vﬂéz (I‘, Nv J\/[)
T—-1 N

— lminf - A OTa (e NM) }
_11}11)1021’ T]E{ 2 ;7’1 milt]-a; [t]]. ®)

The policy ¢7.,(r, N, M) provides throughput arbitrarily close 6, (r, N, M) as the truncation size increases, while
abiding the long-term average number of transmissionst@ing which was shown i [9][10] and recorded below.

Lemma 2. For 7 > 79 := |4max {710% (25) Tog2(28) 25)}

(i) The throughput performance difference between thecigdip’ ,(r, N, M) and ¢7 ,(r, N, M) is bounded by

rel

| rel( 7N?J\/[)_ rel( N]\/[|<f Zrla (9)

where f(7)= Zfil fi(7), which satisfiesf(7)—0 as 7— oo with
1+ b%),r - plil
b67+(1_p111) T

(i) The long-term average number of transmissions unddicpa@’ ,(r, N, M) satisfies the relaxed constraini (5).

rel

fil) = (10)

IV. WEIGHTED SUM-THROUGHPUTMAXIMIZATION PROBLEM UNDER STRINGENT CONSTRAINT

Note that, although the algorithiy_, (r,N, M) in last section abides by the relaxed long term average i@ns{3) on
the number of users scheduled, the number of users schadudegh instantaneous slean violate the stringent interference
constraint[(1L) that requires no more th&husers scheduled at a slot. Hence the corresponding ata‘eigtonAfi’lM provides
an upper bound oA .

In this section, we also consider theweighted sum throughput optimization problem as in thé &&stion where the
throughput of user is scaled by a factor;, but under the stringent constraint, i.e., no more tlidnusers are scheduled
for data transmission at each time slot. we propose a joimeduding and broadcasting algorithm that leverages thi&yol
in the previous section for the stringent constrained moblThis algorithm has novelty of incorporating the positjbbf
broadcastinga dummy packet at a slot, and can provide performance asyicgity close to algorithmp?, (r, N, M) for the
relaxed problem in the regime of large values/of

A. Policy with Joint Scheduling and Broadcasting

The proposed policy, denoted by, (r, N, M, K) with K < M, builds on the policy¢?,,(r, N, M) for the relaxed
problem. However, it fundamentally differs frorzriel( N, M) in the following way. At the beglnnlng of each slot, algonith
¢7(r, N, M, K) carefully makes one of two choices: 1) transmit data packetso more than\/ users and receive ARQ-
type feedback from them, or Yroadcasta dummy packet to more thall users, and learn their channel states from their
ARQ-type feedback. Note that, the dummy packet is known ¢outbers and contains no new information and hence does not
bring throughput gains if it is broadcasted. However, theesaler still receive ARQ-styled feedback from the cantidaand
hence obtain CSI update from possibly more tldnusers.

The parametek controls how aggressively the dummy packets are broadtastgewe will see next, intelligently tuning
this parameter is important for the asymptotic optimaliégult of the proposed algorithm.

Recall that ther-weighted index value is defined in Lemina 1. Algorithif,. (r,N, M, K) is proposed next.



Algorithm ¢7,,.(r, N, M, K) under stringent constraint

1: Initialization phase: The parameters, andp, are calculated by algorith&™ (r, N, K).

2: At dot t, candidate selection: user: is called a tandidate, represented by;[t|=1, if the r-weighted index value
Wr(m;[t]) >w-, and is not a candidate, i.&,;[t]=0, if WF(m;[t]) < w,. If WF(m;[t]) = wr, useri becomes a ‘candidate’
with probability p...

3: At dot ¢, transmission: If the total number(of cand)idates is undaf, i.e., Zf;l 0;[t] < M, then all the candidates

A7, (v, N, MK

are scheduled for data transmission, i [t] = 6;]t] for all 7. If there are more thad/ candidates, then

aqu(r AL K)[ t] = 0 for all 4, and dummy packet ibroadcasted

4: At slot ¢, feedback: At the end of each slot, if data packets are transmitted, theduled users send ARQ feedback to
the BS; if the dummy packet is broadcasted, thadidatessend ARQ feedback to the BS. The belief values are updated
based on the feedback.

We next give a step-by-step explanation of this algorithm.

Remarks:
(1) Steps 1-2 of algorithmbstr( N, M, K) is exactly algorithme?, (r,N, K), where the scheduled users in algorithm
¢, (r, N, K) becomes the candldatesmtr( N, M, K).
(2) Step 3 ensures that the stringent interference constimimet so that data packets are transmitted to no more ifhan
users. Hence if the number of candidates exceddsa dummy packet is broadcasted for the scheduler to learcttaenel
states of the candidates and no throughput is accrued.
(3) Because of step 4, the scheduler receives channel sedbdck from all the candidates, although data packets @y n
be transmitted. By taking this approach, the channel meraeojution in the relaxed constrained algoritkf, (r,N7 K) is
maintained in the stringent constrained algorit(bm( N, M, K) which facilities much more trackable performance analysi
(4) In step 4, only the candidates (instead of all users) $eedback to the BS if dummy packet is broadcasted. By allgwin
only the candidates to feedbfckhe algorithm not only helps maintain the tractability dfannel memory evolution, more
importantly, it fits with the realistic scenario where it isstly (in terms of time, power, bandwidth, etc.) to obtaiedback
from all users, especially when user number is large.

We henceforth leV;,. (r, N, M, K) be the weighted sum-throughput under poligy,. (r, N, M, K), i.e

str

Vi (e, N, M, K)
=X 67, (1N, M.K)
—hmlnf E{E Erz milt]a, N [t]} (11)
T— o0
t=0 i=1

B. Performance of the algorithm under stringent constraint

From the algorithm and Remark (1) thereafter, in each sldhe number of scheduled users exceddsunder algorithm
¢7,,(r, N, K) for the relaxed problem, the number of candidates underithgo ¢7,, (r, N, M, K ) exceeds\/ and a dummy
packet is broadcasted, otherwise all candidates are sldtethr data transmission. Hence in the regime wiérns close to
M, the larger thel, the more aggressively are dummy packets broadcastedhwhiocg more updated system-level channel
state information, but with a tradeoff that no throughpublstained in these broadcasting slots. On the other handein t
regime whenk is away fromM, the smaller the', on average there are less candidates and hence schedetedwisich
also brings down the throughput.

The next lemma bounds the difference between the througtesfdarmance’;, (r, N, M, K) of algorithmgZ,,. (r, N, M, K)
for the stringent constrained problem, and the throughpUt(r, N, M) of ¢rel( M) for the problem under relaxed
constraint. Recall that},. (r, N, M, K) andV,", (r, N, M) were deflned in[{8) andﬂll) ardwas defined in the introduction

str rel

so thatp}, > ¢ andpi, > ¢ for all i.
Lemma 3. If K > M/2, then the following bounds hold for the valuesidf, (r, N, M, K) and V", (r, N, M),
Vr(t, N, M, K)

10 < Bt < 12)
where
—_K)? _
(0, 10)=[1=exp(~ S 1 (13)

2This can be achieved by marking the corresponding bits irdtiramy packet.
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Fig. 3: lllustration of algorithm FraméT', N, M, K).

and [-]* representanax{0, -}.

Proof: In the proof, we first bound the steady state probability thanmy packets are transmitted using Large Deviation
techniques, from which we obtain the first multiplicand [8)1We next bound the effect & in the throughput different
betweenV, (r, N, M, K) and V,",(r, N, M), which brings us the second multiplicand [013). Detailstfwd proof can be
found in AppendixA. [ |
The previous lemma is important to derive the asymptotioughput performance of the stringent constrained policy,
captured in the next proposition. The proposition shows &dsabothN and A become large, if the parametéf is kept an
appropriate distancey(M) from M, then the throughput performance of poligy,, (r,N, M, K) becomes asymptotically

close tog?,, (r, N, M) of the relaxed policy.

Proposition 1. SupposeX = M — g(M) whenM of them can be simultaneously scheduled, whgfd) > 0 is a function
of M.

If g(M) satisfiedim o0 g(M)/M = 0,limps—,0 g*(M) /M =00, the throughput performance of poligy,,. (r, N, M, M —
g(M)) is asymptotically close to that ef,, (r, N, M), i.e.,

‘G’;,,(I‘,N,M,M—Q(M))

lim =1. (14)
M—c0 V7, (r,N,M)
Proof: Since K = M — g(M), from (I2)-[13) we have, it > M /2,
VSL,(I‘,N,M,M—Q(M))
1>
B Via (r,N, M)
>p(M, M — g(M))
Nexp(e— 9D @) g*
_[1 exp( 3(M — g(M)) )} { bg(M—g(M)—l)} ' (15)
Sincelim s 00 g(M)/M = 0 andlim oo g*(M)/M = oo, we have
. 9*(M) g(M) T
A}%[l_e)‘p(_gw —g(JV[)))H _bé(M—g(M)—l)} =1L (16)

Sincelim ;o0 g(M)/M = 0 andlimy; . g*(M)/M = oo, we also havéim ;o K/M = limp;—oo (M —g(M))/M =
1 > 1/2. Hence from[(Ib)E(T6), the proposition holds. [

Remark: Propositior[]L states that, if the distance betwéemnd M grows at an order larger thadl(v/M) but lower than
O(M), the performance of the proposed algorith,. (r, N, M, M — g(N)) is asymptotically close t@’_,(r, N, M), which

is optimal for the relaxed problem. This is an interestinglifiig, as it quantities the trade-off between scheduling gaickets
and broadcasting of dummy packets. Wheris less tharO(v/M) to M, excessive training leaves insufficient slots for data
transmission. IfK is more tharO (M) from M, the scheduler is over-conservative on data transmissgibich in turn reduces
the throughput.

V. QUEUE-BASED JOINT SCHEDULING AND BROADCASTING PoLICY OVER TIME FRAMES

Note that, in the two last sections, we considered weightea-throughput. In this section, we consider the system mode
with data queues whergueue stabilityis taking into account. In the presence of queue evolutiba,groblem get much
more complicated. Note that, in the sum-throughput op@tign problem, the reward of scheduling a user is capturethéy
Whittle’s index value. Under the additional consideratmnqueue stability, the queue lengths need to be jointly akeo
account for scheduling, i.e., a user is scheduled for trégssom not only because it has a high index value, but may also
because of it has a large queue lengths.

In our setup, a simple max-weight-type scheduler (i.e.edale theM users with the highest[t] - 7;[t]) can be used, but
is no longer optimal. This is because it only exploits thercted condition in the instantaneous slot, i#;t], but will lose
performance since it does not consider exploring outdatedimels. Another heuristic scheme is to schedule\thasers with
the highest multiplication of instantaneous queue length ladex valuey;[t] - W1 (x;[t]) at each slot. However, it is hard to
provide a performance guarantee for this policy, mainlyalse the Whittle’s indexability analysis, which does notsider
gueue evolution, breaks down if the Whittle’s indices ardtiplied by queueing length at each instantaneous slot.



Next, we propose a joint scheduling and broadcasting algarbased on the algorithi,.(r, V, M, K) in the last section.
The policy is implemented over separate time-frames anddwasomplexity.

We divide the time slotg0, 1,2, - - -} into separatéime framef lengthT', i.e., thek-th frame,k € {0,1,2,---}, includes
time slotskT,- - -, (k + 1)T—1. The scheduling decisions in theth frame are made based on the queue length information
q|kT] at the beginning of that frame. During tleth frame, the policyZ,,. (q[kT], N, M, K), developed in the last section, is
implemented. This algorithm is illustrated in Fid. 3. Fotipawith N users in the network and under stringe¥t constraint,
the T-frame queue-based policy Fran&N,M,K) is introduced next.

Algorithm Frame(T, N, M, K): T-Frame Queue-based Policy

1: The time slots are divided into frames of lendgth Slot ¢ is in the k-th frame if kT <t < (k+ 1)T, k € {0,1,--- }.

2: At the beginning of the k-th frame: At the beginning of slokT’, implement the algorithnd'™ (q[£T], N, K) that outputs
w, andp, for the frame.

3: At dot ¢, candidate selection: Each user becomes aandidateif the q[kT]-weighted index valué/Viq[kT] (m3[t]) >we,
and is not a candidate in‘[kT} (mi[t]) < wo. If Wiq[kT] (m;[t]) = wr, useri becomes a ‘candidate’ with probabiligy.

4. At dot ¢, transmission: If there are no more thaf/ total candidates, then all the candidates are scheduleddiar
transmission. If there are more than candidates, then a dummy packebi®adcasted

5: At dlot ¢, feedback: At the end of each slot, if data packets are transmitted, theduled users send ARQ feedback to
the BS; if the dummy packet is broadcasted, thadidatessend ARQ feedback to the BS. The belief values are updated
correspondingly.

Remarks: We next describe the intuition behind designing the abdgerahm.

(1) Note that, for queue stability, instead of using queuwtle information in every slot, it is sufficient only to codsr
the sampled queue length information at the periodic slas,q(k7],k = 0,1,---. The queue is stable if and only if the
periodically sampled queue length evolution process islata

(2) Within each frame, we wish to maximize the weighted shnotghput, where each user’s throughput is weighted by its
queue length sample value at the beginning of the time fratarce, in step 2-3, we implement the algorithfp. (q[kT], N, M, K)
developed in the previous section. The rationale is beg¢dirsg we would like to schedule the users to achieve the drigh
throughput promised by algorith®,,.(q[kT], N, M, K) that exploits the temporal correlated channels. Moredeergqueue
stability, we would like to choose users with large queusgths.

(3) Dividing the time slots into different frames brings ws/antages in the realm of large frame len@thSince we implement
the algorithm¢?,,. (q[kT], N, M, K') within each finite-horizon frame, if the frame length is stnake lose from exploiting the

channel correlation because the optimality of the algoritequires infinite horizon. As the frame length scales, fre-6lot)
loss of exploiting the channel correlation diminishes.

The next proposition establishes that the throughput regiff;lM, which is achieved by the optimal policy under a relaxed
constraint on the long-term average number of transmissioan be asymptotically achieved in the stringent comstchi
scenario by the frame-based algorithm, in the regime of gelasumber of users. In the propositiah,is an all 1 vector,
7o, f(7) are given in Lemma&l2, angd(M), u(M, K) are given in Propositiofl 1.

Proposition 2. We letl(M,K) =1 — u(M, K), if 7>79, we have

(i) if K>M/2, for all arrival rate X with X + (f(r) +21(M, M — g(M)))1 € AY;M, there existsTy such that, if7 > Ty,
all queues are stable under tHE-frame queue-based polic§'rame, (T, N, M, M — g(M)). The functionf(r) satisfies
lim,; o f(7) = 0.

(ii) if Timay oo 280 = 0 and im0 £00 = oo, then the functior(M, M — g(M)) satisfies

M
lim 1(M, M — g(M)) = 0. (17)
N—o00

Proof: We prove the proposition using a Large-Deviation-baseguyav technique over time frames. Specifically, we combine
the Large Deviation result in Lemnid 3 with uniform convergermf the finite horizon throughput to the infinite horizon
throughput performance. We then prove that the averageun@pdrift of the queue lengths in each time frames is negativ
which leads to the stability of the queues. Details of theopare included in Appendix . |

Remark:

(1) Note that, in Propositionl 2, the parametéris kept a distancg (M) from M. This mechanism is optimally controls the
trade-off between transmitting data packets and broaidgagtmmy packets so that we can apply Proposffion 1 to gteean
the supportable stability region is asymptotic close torthaxed constrained regianfi’lM, if (M) scales up at an appropriate
rate.

(2) In the proposed algorithm, a user is selected based offifs]-weighted Whittle’s index value in step 3. Since the Whitle
index value measures the importance of scheduling a usearuhd time-correlated channel, this multiplication capsuthe
importance of scheduling a user under both queue evolutidntize time correlation.
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3) In each frame of algorithm Fram@’, N, M, M — g(M)), implementation ofG™ (q[kT], N, M, M — g(M)) in step2 has
computational complexity)((27 + 1)N log(27 + 1)N), while implementing stel3 over the frame has complexit(TN)
(see the remark in Sectign 1} D). Hence tper-framecomplexity isO((27 + 1) N log(27 +1)N +TN). As the frame length
T scales up, theer-slotcomplexity decreases towatd(N )

VI. CONCLUSION

In this work, we study downlink scheduling algorithm desmrer Markovian ON/OFF channels, where the scheduler does
not possess accurate instantaneous channel state infommglhe scheduler instead exploits the Markovian chanrexhory
and channel state feedback from users to make schedulingiatex We proposed a low-complexity frame-based algorith
in downlink queuing networks with stringent constraint dre thumber of simultaneously scheduled users. The proposed
algorithm dynamically determines whether to schedule ttarasmission or broadcast a dummy packet in a slot. By ciiyefu
choosing its parameter, the proposed algorithm stably atpprrival rates in a region asymptotically close to thatler a
relaxed constraint, when the number of users is large. Owgaimg work involves comparison of the proposed algorithithw
naive/greedy algorithms, as well as designing throughptitral scheduler under stringent constraint for arbitramynber of
users.
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APPENDIXA
PrROOF OFLEMMA [3

Note that
N

e (t, N, M K) = ZTZ hm — {Zm me NMK)[] , (18)
i=1
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where;[t] evolves according to policy’,, (r, N, M, K). Next consider the-th summand

ri lim —ZEim[t] (]

T—oo T

=r; lim ZE: (0000103 0301] < A1)

T—oo T

J#i
_ [ . . Tel NK) ¢:—el(r NK
=r; ll_rgoTZE_m[t] a; ga <M)}
VE]
—ri lim o ZE_m[t] drer(r N’K)[t]}E[l(z aPra Ny M)] (19)
T—oo T =0 - K i !

where the first equality is from the third step algoritlif,.(r, N, M, K), Wherea ser(m N M, K)[ t] = 1if and only if 6;[t] =

andy_,, 0;[t] < M. The second equality is becaus%:‘ l(”’N"K)[ t] = 0,[t], seen from the first remark after the algorithm.
The Iast equahty is because each user is scheduled indepyndnder policyy? ,(r, N, K).
Note that, from ergodicity

Bttt s e
t=
Jim B[1(3 a0 < )] = ) m - Z B3 af ™M < ). (21)
i J#i

Therefore, from[(Z9)E(21) we have

r; lim — Z E _m [t]-afg“‘(r’N’M’K)[t]}

T—oo T

[ Toa(r . 1 Ta(r
=r; lim — Z E wi[t]-af”l( "N"K)[t]} - lim TE{l(Z af””( ’N’K)[t] < M)

T—oo T T—o0

JFi
— [ . ?:el(l‘wNK } ¢, (r, NK
=r; h_r)noo T Z E _Wz[t] Q; tlig)lo P’f' a; < M) (22)
J#i
Therefore we have
3 1 - ¢Lep(r,N,M,K)
Vi (r 7N7M7K)—;TiTlg{l)oTE{t_om[t]'aZ”r B H}

- 1 o7 (r.N,K) N

- 1 1 — . . el 1 Prel r,V,

_ZTZ:A%TZE[WW a; 1] Jim Pr(y_ o] [t] < M)
= =0 J#i
N 1 T-1 N

< i o ‘7‘el r
Z T Th_{I(l)O T E[m [t]-a; [t]}
=1 t=0

= Tel (I‘, Na K)

which proves the second inequality [n112).

We leta? e (N-K) [ ] be a random variable, which has the same distribution weétstationary distribution crtf:”(r’N’K)[t].
Smcea‘%( NK)[ ] >0, we have
N
Pr( > al "N oo) < M) > Pr( Y ol TN o) < M), (23)
=1

i#j
We next bound the right hand side of the above inequality.
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Lemma 4. If K > M/2,

(M—K)Q).

N
Pr( af:”(r"N"K)[oo] <M)>1—exp( —
> T

Proof: See Appendix . [ |
Therefore

. 1 e M)
Vi (r, N, M, K) Zrz Jim z;E[m ! 1]

N T-1

>(1-e (- L)) St 1S B[l
=1 t=0
_ 2
:(1_exp(_ W:;TIQ)) rel( N, K) (24)
From LemmdH, and (18)(22)(P3) we have
1>‘/S7£’I"( N’M’K)_Vvs‘li—fr( N7M7K) rel( )
B V;"’;:'l( ’N’M) V;j;:'l( ’N’K) rel( )
M—K?A\ V™ (r,N, K

> (1-ew (- : 3K : ))V:elz(( ,N,M)) (29)

If the total number of user with non-negative weights, i.e., withh > 0, is no more thari<, then all the users are scheduled
to transmit at each slot in both poliey.,(r, N, M) and ¢~ (r, N, K), we hence have

Vel( NM) rel( NK)

T

Now consider the scenario where the total number of useith »; > 0 is more thank. We define the se® = {i :
Pr(a; Grei(r:V, M)[ ] =1) > 0}, i.e., the se® consists the index of all users that contributes to the gteatate throughput
under policy¢?,,(r, N, M). Hence|©| > K. We order the indices i® so thatr,) < r,2) < - < ry(0))-

We let x = min{}M, |©|} andx be such thab "7, Pr(a; Grer (1N, M) [co] = 1) = x — K. Now consider another heuristic
policy ¢7.,(r, N, M) which is exactly the same as PO“Wel( r,N, M) except that uset,--- ,z are no longer scheduled.
The time-average amount of users scheduled ugdg(r, N, M) is henceK. Therefore, he long-term average throughput

VT, (r, N, M) of policy ¢, (r, N, M) satisfies
Vi (e, N, M) 2 Vi (e, N, M) = (M = K)ro(), (26)
V(e N, K) = Vi (e, N, M). (27)
From [26)427) we have
Via (e, N, K) 2 Vi (e, N, M) = (M = K)o (). (28)

Note that, under the poIich;el(r, N, M), the total number of users, in steady state, that contisbtstehroughput equals
|©| — , therefore|©| — 2 > K. Now consider another policy ,(r, N, K) that only schedules th& users with the highest
weights, i.e., users(|0]),c(|©|—1),--- ,0(]©| — K +1). Therefore the corresponding long-term average througsgtisfies

|O]
‘/}rtzl (I‘, N, K) > Z TU(i)bg(i)
i=|0|—K+1
|©]
>0 Z To(d)
i=|0|—x+1

20(x — D)ro(je|—x+1)
>0(K — 1)7‘0(96).

Therefore

Vi (e, N, M) > Vi (v, Ny M) > §(K — 1)7 (0 (29)
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From [28) and[{29) we have

Vrel( N M K) _Vr‘;l( 7N M)_(M_K)Ta(z)
‘/rel( NM) ‘/7‘el( NM)
(M = K)ro(a)
>(1 - Ve wan)
(M — K)o
Z( B 5(K—1)ra(w))
M- K
2(1_5(1(—1))' (30)
Substituting [(3D) in[(Z5), we have
1>‘/s71-€7‘( NMK) ‘/s;r( aNaMK) ‘/rTel( NvaK)
B Vrel( NM) Vr‘;l( ’NanK) ‘/7‘7—el( 7N7M)
(M—K) M- K
2[1_6Xp(_ 3K )Hl_é(K—l)}

+
We let u(M, K) = [1 - exp(—(M;KK)z)} {1 - %gfi)} . The Lemma is thus proven.

APPENDIXB
PrROOF OFPROPOSITIONZ|

Define Lyapunov functior.(q) = 35 ZZ 1 ¢?. We considetthe T-frame average Lyapunov drif\L(q[kT]) over thek-th
frame expressed as,

AL( (kT)),T
T [L [(k + 1)T]) — L(a[kT))| q[kT],vr[kT]}

N N
<BT+ S kT N — > qlkT) - =
; gi z; gi T
— o7, (alkT),N, M M—g(M))
E[ 3 mlkT ] ag [kT+t]’7r[kT]}, (31)
t=0

where B is a constant whose value is determined by the second moniéhé @rrival process [26]. Because-+ (f(’?') +
21(M, M — g(M)))1 € T, for any non-negative vectay, we have

qu )\ + +2Z(M M — (M)))) = rel(an M)
whereV*,(q[kT], N, M) is defined in[(¥). The Lyapunov drift (B1) now becomes,
N
AL(q[kT))/T < BT—(f(r) + 21(M, M — g(M))) qu-[kTH

*
‘/rel

(q[kT), N, M)— VTT( [kT),N, M, M—g(M))

= BT—(f(r) + 21(M, M — qu [kT)+V, (q[kT], N, M)—=V (q[kT], N, M)

+ Via(alkT], N, M)=V,.(q [/fT] NM,M—Q(M))
S v

G (@kT], N, M—g(M))=V5T (q[kT], N, M, M—g(M)). (32)

str
where V7, (q[kT], N, M) and V7, (q[kT], N, M—g(M)) are defined in[{8) and(L1), ard} (q[kT], N, M, M—g(M)) is

the T-horizon expected transmission rate achieved under thieypol,, (q[k77], N, M, M — (M)) ie.,
VTT( [kT] N, M, M—g(M))

str

_qu T = {Zw T t] e (ARTLNALM =000 KT+ (kT
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Note that, in[(3R), the differencE*,(q[kT], N, M)—V",(q[kT], N, M) is bounded in Lemmgl2 as follows,
rel( [kT] N? M) rel( [kT] N M < f Zqz kT (33)

The differenceV”

rel

rel ( [kT] ) Vit

str

(q[kT), N, M)—V, (a[kT], N, M, M—g(M)) is bounded in Lemmg]3 as

( [kT]vaMvM_g(M)) S[I_N(M M_g( ))]VT ( [kT]vaMvM_g(M))

:l(MvM_g( ))Vs;r( [kT]vNa MvM_g(M)) (34)

The following bound is from[[9][10], which states that, a® tlength of the time horizon tends to infinity, the expected
achieved rate in finite horizon asymptotically convergemfmite horizon achievable rate.

Lemma 5. For any M andx > 0, we have, uniformly oveq, M, and the initial stater[kT], there exist positive constants
c1 and ¢y such that

-
Vstr

N
(q, N, M,M—g(M)) VTT(q, N, M,M—g(M))‘ < (H+Cl exp(—CQT)) ZQi‘

str
i=1

From LemmdR and (33)(84), the Lyapunov drift(32) can behfertbounded as follows,

AL(q[kT))/T

<BT+
N

[ (/) = 20(M, M = (M) + f(7) + UM, M = g(M)) + (5 + cr exp(—e2T)) | - 3 i [KT]

N =1
=BT+ |~U(M, M = g(M))+(k+cr exp(—eT)) | D a:lkT]. (35)
=1

For fixedr, by choosings sufficiently small andl” sufficiently large, sayi” > Ty, the Lyapunov drift is negative whenever the
sum of the queue lengths gets sufficiently large. Therethiee queues are stable according to the Foster-Lyapunariorit
Part (ii) of the proposition follows directly from Propdsin [.

APPENDIXC
PROOF OFLEMMA [4]

The proof is in line with Large Deviation principles [27]. Mothat traditional Large Deviation techniques, in our esht
holds for linear growth ofK’. Here, instead, we identify the growth rate &f that leads to our desired result.
For notational convenience, we useatprepresentzf"el (r, N, K)[cc]. Note that, from Lemm&]2(ii), we have

N

S Ela) < K. (36)

i=1
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From Markov’s inequality, we have for arbitraty> 0,
N E|exp (t XN a;)
Pr(;ai > M) < | o (1) |
T E[ew (ta)|
exp (t : M)
I [(1- Pr(a =1)) + Pr(a; = 1)¢!]
exp (t : M)

=exXp (W(t)) ) (37)

where the first inequality is from Markov’s inequality, arftetsecond inequality is because- x < e” for z > 0, and the last
inequality is from [[3B). The function(t) is defined as follows,

n(t) = exp [exp [(e" —1)K] —t- M} (38)
We lett* to be the minimal point ofy(¢), i.e.,n'(t*) = 0, we then have
. M
t* =log (E) (39)

Therefore
N
PT(ZCM > M) < exp (n(t*))
=1

Substituting the expression of to 7/(¢*) in (38), we have

* M M
n(t") =exp [(f - 1)K - M'log(})}
M
=exp {M—K—M-log(?)}
M- K M- K
:exp[(M—K)—K(l—i— e ) -log (1+ i )} (40)
Note that, for0 < ¢ < 1, we havelog(1l + ) = Z;’f:l(—l)"“”jl—n and hence
= nail 1 1
(1+ 8)log(1 + ) =5+n§(—1) 5 (n_1 _ﬁ)
1z L
>+ 25 65

>6 1 %52. (41)
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Since K > M /2, we have(M — K)/K < 1. From [40) and[{41),

) e oK - KL OO

3K

=exp [ — (42)

From [3T) we have

N N
Pr(;ai <M) ZPT‘(;ai <M)
>1—exp (n(tY))
2
2o [ QLK)

which proves the lemma.
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