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Scheduling in Time-correlated Wireless Networks
with Imperfect CSI and Stringent Constraint

Wenzhuo Ouyang, Atilla Eryilmaz, and Ness B. Shroff

Abstract

In a wireless network, the efficiency of scheduling algorithms over time-varying channels depends heavily on the accuracy of
the Channel State Information (CSI), which is usually quite“costly” in terms of consuming network resources. Scheduling in such
systems is also subject to stringent constraints such as power and bandwidth, which limit the maximum number of simultaneous
transmissions. In the meanwhile, communication channels in wireless systems typically fluctuate in a time-correlatedmanner. We
hence design schedulers to exploit the temporal-correlation inherent in channels with memory and ARQ-styled feedbackfrom
the users for better channel state knowledge, under the assumption of Markovian channels and the stringent constraint on the
maximum number of simultaneously active users. We model this problem under the framework of a Partially Observable Markov
Decision Processes.

In recent work, a low-complexity optimal solution was developed for this problem under a long-term time-average resource
constraint. However, in real systems with instantaneous resource constraints, how to optimally exploit the temporal correlation
and satisfy realistic stringent constraint on the instantaneous service remains elusive. In this work, we incorporatea stringent
constraint on the simultaneously scheduled users and propose a low-complexity scheduling algorithm that dynamicallyimplements
user scheduling and dummy packet broadcasting. We show thatthe throughput region of the optimal policy under the long-term
average resource constraint can be asymptotically achieved in the stringent constrained scenario by the proposed algorithm, in the
many users limiting regime.

I. I NTRODUCTION

In wireless networks, the states of the wireless channels fluctuate in time. This characteristic calls for designing resource
allocation algorithms that dynamically adapt to the randomvariation of the wireless channels. Scheduling algorithmsare
essential components of resource allocation. A schedulingalgorithm is designed to control a subset of users to consume
the scarce network resources (e.g., bandwidth, power, time), so that the overall network utility (e.g., throughput, fairness)
is maximized subject to link interference and queue stability constraints. Under the assumption that accurate instantaneous
Channel State Information (CSI) is available at the scheduler, maximum-weight-type scheduling algorithms (e.g., [1]-[3]) are
known to be throughput-optimal, i.e., they can maintain system stability for arrival rates that are supportable by any other
scheduler.

The performance of efficient scheduling algorithm relies heavily on the accurate instantaneous CSI at the scheduler. In
practice, however, accurate instantaneous CSI is difficultto obtain at the scheduler, i.e., a significant amount of system resources
must be spent to accurately estimate the instantaneous CSI (see e.g., [4]). Therefore, acquiring CSI continuously fromall users
is resource-consuming and impractical as the size of network increase. Hence, in this work we consider the important scenario
where the instantaneous CSI is not directly accessible to the scheduler, but is instead learned at the user and fed back to
the scheduler via ARQ-styled feedback after a certain delay. Many scheduling algorithms have been designed that consider
imperfect CSI, where the channel state is considered as independent and identically distributed (i.i.d.) processes over time (e.g.,
[5]-[8]). However, although thei.i.d. channel models facilitate trackable analysis, it does not capture the time-correlation of
the fading channels.

Because perfect instantaneous CSI is costly to acquire, thetime-correlation or channel memory inherent in the fading
channels is an important resource that can be exploited by the scheduler to make more informed decisions, and hence to
obtain significant throughput/utility gains (e.g., [9]-[20]). Under imperfect CSI, channel memory, and resources constraint, the
scheduler needs to intelligently balance the intricate ‘exploitation-exploration tradeoff’, i.e., to decide at eachslot whether to
exploit the channels with more up-to-date CSI, or to explorethe channels with outdated CSI.

We consider the downlink of a single cell, where the packets destined to each user are stored in a corresponding data queuefor
transmission. Under the complicated channel memory evolution and queue evolution, traditional Dynamic Programming based
approaches can be used for designing scheduling schemes, but are intractable due to the well-known ‘curse of dimensionality’.
Recently, a low-complexity algorithm was proposed in [9] that considers throughput-optimal downlink scheduling withimperfect
CSI over time-correlated fading channels, under a constraint on thelong-term averagenumber of transmissions.

Scheduling in wireless systems is typically subject tostringent instantaneousconstraints, such as instantaneous resource
limitations from bandwidth, power, interference, etc. In this work, we study scheduling with imperfect CSI over time-correlated
channels and under stringent resource constraint where theinstantaneous scheduling decision is subject to constraint on the
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Fig. 1: Two state Markov Chain model.

maximum number of scheduled users. The stringent constraint brings with it significant challenges, and to the best of our
knowledge under the setting of imperfect CSI, no low-complexity algorithm exists that is optimal for general scenarios. Under
the restrictive regime where users have identical ON/OFF Markovian channel statistics, round-robin based schedulingpolicies
are shown to be throughput optimal in [15][16]. Further, under these settings, it has been shown in [17][18] that greedy
scheduling algorithms are also optimal. In [19][20], throughput-optimal frame-based policies are proposed. These policies rely
on solving a Linear Programming in each frame, which is hindered by the curse of dimensionality where the computational
complexity grows exponentially with the network size.

In this paper, we propose a low-complexity algorithm in wireless downlink under stringent constraint and heterogeneous
Markovian transition statistics across users. We prove that the proposed algorithm has asymptotical optimal properties in the
regime of a large number of users. Our contributions are as follows:

• Under stringent constraint on the instantaneous number of transmissions, we propose a novel low-complexityjoint
scheduling and broadcastingalgorithm. At each slot, the scheduler dynamically decideswhether to schedule a subset
of users and learn their channel state feedback via ARQ-styled feedback, or to broadcast a dummy packet to a larger set
of users to learn their channel states from ARQ-styled feedback but with no throughput gain.

• We conduct our analysis in the framework of Partially Observable Markov Decision Process, where we utilize Whittles
index analysis of Restless Multi-armed Bandit Problem (RMBP) [21]. We then use aLarge-Deviation-based Lyapunov
technique over time frames to prove the throughput performance of the proposed algorithm.

• We prove that, the throughput region in [9], which is achieved by an optimal policy under a relaxed constraint on the
long-term average number of transmissions, can be asymptotically achieved in the stringent constrained scenario by the
proposed algorithm, in the regime of a large number of users.

II. SYSTEM MODEL

A. Downlink Scheduling Problem

We study a wireless downlink network with one Base Station (BS) andN users. Time is slotted with each slot synchronized
among BS and users. Each useri occupies a dedicated wireless channel, whose state is denoted byCi[t] at slott. The channel
stateCi[t] evolves as an ON/OFF Markov chain across time slots with state spaceS = {0, 1}, independently of other channels.
Channel state ‘1’ represents high channel gain where one packet can be transmitted successfully through the channel, whereas
state ‘0’ represents deep fading state where no packet can bedelivered1. The Markovian channel state evolution is depicted in
Fig. 1, represented by the transition probabilities

pijk := Pr
(
Cl[t]=k

∣∣Ci[t−1]=j
)
, j, k ∈ S.

We assume thatpi11 > pi01 for i=1, 2, · · · , N . This assumption implies positive correlation and is commonly made in this
field (e.g., [12][15][19][22]), which means that auto-correlation of the channel state process is non-negative [13]. We also
assume that there exists a positive constantδ > 0 so thatpi01>δ and pi10>δ for all i to allow at least minimum probability
of cross transition between the two states, which captures the random varying nature of the wireless channels. Our result,
however, can be extended to more general scenarios.

Data packets destined for different users are stored in separate queues at the BS before they are successfully transmitted.
The queue length for useri at slot t is denoted byqi[t]. The number of data packet that arrives at queuei for the i-th user is
denoted asAi[t], which forms ani.i.d. process with meanλi and a bounded second moment.

At the beginning of every time slot, the scheduler at the BS selects users for data transmission. We letai[t] ∈ {0, 1} indicate
whether useri is scheduled at slott. The i-th data queue evolves asqi[t+1]=max{0, qi[t]−ai[t]·Ci[t]}+Ai[t].

Due to the afore-mentioned resource constraints, the scheduling decisions are made without the exact knowledge of the
channel state in the current slot. In our model, the scheduler at the BS obtains the accurate CSI via ARQ-styled ACK/NACK
feedback, only from the scheduled usersat the end of each slotfollowing data transmission, i.e., an ACK from scheduled user
i impliesCi[t] = 1, while an NACK impliesCi[t] = 0.

We consider the classΦ of (possibly non-stationary) scheduling policies that make scheduling decisions based on the history
of observed channel states, arrival processes, and scheduling decisions. Under the aforementioned instantaneous constraint

1Our results easily extend to general two-state scenarios where multiple packets, different across channels, can be transmitted in the two states.
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Fig. 2: Belief value evolution,pi11 = 0.8, pi01 = 0.2, bis = 0.5.

from power, bandwidth and interference, the scheduling schemes are subject to the constraint that the number of scheduled
transmissions is underM at each time slott, i.e.,

N∑

i=1

aφi [t] ≤M, (1)

whereM ≤ N , andaφi [t] ∈ {0, 1} indicates if thei-th user is scheduled at slott under policyφ ∈ Φ. For example, in wireless
cellular downlink,M can correspond to the number of orthogonal time-bandwidth slices, where one user can be scheduled in
each slice without causing interference to other users.

B. Belief Value Evolution

The scheduler maintains a belief valueπi[t] for each channeli, defined as the probability of channeli being in state1 at
the beginning oft-th slot conditioned on the past channel state observations. The belief values are hence updated according
to the scheduling decisions and accurate channel state feedbacks,

πi[t+ 1] =





pi11 if ai[t] = 1 andCi[t] = 1,

pi01 if ai[t] = 1 andCi[t] = 0,

Qi(πi[t]) if ai[t] = 0,

(2)

whereQi(x)=xpi11 + (1−x)pi01 is the belief evolution operator when useri is not scheduled in the current slot. In our setup,
the belief values are known to be sufficient statistics to represent the past scheduling decisions and channel state feedback
[23]. In the meanwhile, the belief valueπi[t] is the expected throughput for useri if it is scheduled in slott.

For thei-th user, we usebic,l to denote the state of its belief value when the most recent channel state was observedl time
slots ago and was in statec ∈ {0, 1}. The closed form expression ofbic,l can be calculated from (2) and is given as

bi0,l=
pi01−(pi11−pi01)lpi01

1 + pi01 − pi11
, bi1,l=

pi01+(1−pi11)(pi11−pi01)l
1 + pi01 − pi11

.

As depicted in Fig. 2, if the scheduler is never informed of the i-th user’s channel state, the belief value monotonically
converges to the stationary probabilitybis:=pi01/(1 + pi01 − pi11) of the channel being in state1. We assume that the belief
values of all channels are initially set to their stationaryvalues. It is then clear that, based on (2), each belief valueπi[t]
evolves over a countable state space, denoted byBi={bis, bic,l : c∈{0, 1}, l∈Z+}.

C. Network Stability Regions

We adopt the following definition of queue stability [1]: queue i is stable if there exists a limiting stationary distribution Fi

such thatlimt→∞ P (qi[t] ≤ q) = Fi(q). When there areN total downlink users and at mostM users can be simultaneously
scheduled, thenetwork stability regionΛN,M

str is defined as the closure of the set of arrival rate vectors supported by all policies
in classΦ that does not lead to system instability while abiding by thestringent constraint (1).

For comparison purpose, we introduce another regionΛ
N,M
rel as the closure of the set of arrival rate vectors supported byall

policies in classΦ that maintains queue stability and satisfies the followingrelaxed constraintthat only requires anaverage
numberof M users to be activated in the long run,

lim sup
T→∞

1

T
E

[ T−1∑

t=0

N∑

i=1

aφi [t]
]
≤M. (3)

The regionΛN,M
rel provides a benchmark for our analysis on the scenarios with stringent constraint. Note that, contrary to

the stringent constraint (1), the relaxed constraint (3) allows the activation of more thanM users in each time slot, provided
the long term average number of transmissions does not exceed M . Hence the corresponding regionΛN,M

rel provides an upper
bound to the regionΛN,M

str under the stringent constraint. In the paper propose a policy that not only abides by the stringent
constraint, but also asymptotically achieves the stability region upper boundΛN,M

rel .
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III. O PTIMAL POLICY FOR WEIGHTED SUM-THROUGHPUTMAXIMIZATION UNDER A RELAXED CONSTRAINT

We begin our analysis by introducing an optimal algorithm for weighted sum-throughput maximization under the associated
relaxed constraint. The corresponding algorithm serves asan essential part in our main result.

Specifically, consider the following weighted sum-throughput maximization problemΨrel(r, N,M) for a given vectorr =
(ri)

N
i=1, where the expected service rate for each useri is scaled by a non-negative factorri,

max
φ∈Φ

lim inf
T→∞

1

T
E

[ T−1∑

t=0

N∑

i=1

ri·πi[t]·aφi [t]
]

(4)

s.t. lim sup
T→∞

1

T
E

[ T−1∑

t=0

N∑

i=1

aφi [t]
]
≤M. (5)

The above problemΨrel(r, N,M) is hence a constrained Partially Observable Markov Decision Process (CPOMDP) [24][25].
The problem (4)-(5) can be tackled in the framework of the Restless Multiarmed Bandit Problem (RMBP) [21] by making

use of the associated Whittle’s indexability analysis. In the rest of this section, we give a brief review of the Whittle’s indices
for RMBP [21][14], and the optimal algorithms proposed in [9] for solving this problem. For details of our description, please
refer to [9][10][14][21].

A. Whittle’s Index for Restless Multi-armed Bandit Problem

RMBPs refer to a collection of sequential dynamic resource allocation problems where several independently evolving
projects compete for service. In each slot, a subset of thesecompeting projects is served. The state of each project stochastically
evolves over time, based on the current state of the project and on whether the project is served in the slot. Serving a project
brings a reward whose value depends on its state. Hence, in RMBPs, the controller needs to consider the fundamental tradeoff
between decisions that bring high instantaneous rewards, versus those decisions that bring better future rewards but sacrifices
the instantaneous rewards. Solving RMBPs are known to be hard.

Whittle’s index analysis [21] for RMBPs considers the following virtual system: in each slot, the controller makes one of
the two decisions for each projectP : (1) Serve projectP and accrue an immediate reward as a function of its state which
is the same as in the original RMBP. (2) Do not serve projectP and obtain an immediate rewardω for passivity. The state
evolution of the projectP is the same as in the original RMBP, depending on its current state and current action. In this virtual
system, the design goal is to maximize the long-term expected reward by balancing the ‘reward for serving’ and the ‘subsidy
for passivity’ in each slot.

Letting I(ω) denote the set of states of projectP in which the optimal action is to stay passive, the Whittle’sindexability
condition is defined as follows.

Project P is Whittle indexable if the setI(ω) monotonically increases from∅ to the state spaceS of project P , as ω
increases from−∞ to∞. The RMBP is Whittle indexable if every project is Whittle indexable.

If Indexability holds, for each states of a project, theWhittle’s indexW (s) is defined as the infimum ofω in which it is
optimal to stay idle in theω-subsidized system, i.e.,

W (s) = inf{ω : s ∈ I(ω)}.
Under an average constraint on the number of projects scheduled per slot, it is known that, upon the existence of the

Indexability condition, a low-complexity algorithm exists based on the ‘Whittle’s indices’: activate the projects with large
Whittle’s index value [21].

The RMBP theories and the associated Whittle’s indices can be used in our downlink scheduling problem. Here, each down-
link user corresponds to a project in the RMBP, with the associated state being the belief value of its channel. Correspondingly,
the project is considered served if the user is scheduled fordata transmission at a slot. Hence the Whittle’s index policy, because
of its simplicity, is very attractive to provide optimal yetlow-complexity solutions problemΨrel(r, N,M).

B. Optimal Policy for Weighted Sum-throughput Maximization under a Relaxed Constraint

It was shown in that our downlink scheduling problem is Whittle indexable [14], and, under uniform weight vectorr=1,
an optimal policy for problemΨrel(1, N,M) exists based on Whittle’s indexability analysis of Restless Multi-armed Bandit
Problem [12]. Specifically, for channeli, a closed formWhittle’s index valueW 1

i (π) is assigned to each belief stateπ ∈ Bi.
These indices intelligently capture the exploitation-exploration value to be gained from scheduling the user at the corresponding
belief state [12]. The closed form expression of the Whittle’s index valueW 1

i (π), π ∈ Bi, is given as follows [12][14],

W 1
i (π)=





(π−Qi(π))(l+1)+Qi(π)

1−pi

11
+(π−Qi(π))l+Qi(π)

if pi01≤π=bi0,l<bis
pi

01

(1−pi

11
)(1+pi

01
−pi

11
)+pi

11

if bis ≤ π ≤ pi11
(6)
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It was shown thatW 1
i (π) monotonically increases withπ and satisfiesW 1

i (π) ∈ [0, 1] [12][14]. The following lemma gives
an optimal algorithm to the problemΨrel(r, N,M) with arbitrary non-negative weight vectorr. The proof of the lemma can
be found in [9][12].

Lemma 1. There exists an optimal policyφ∗
rel(r, N,M) for problemΨrel(r, N,M) (cf. (4)-(5)), parameterized by a threshold

ω∗ and a randomization factorρ∗, such that
(i) The scheduler maintains anr-weighted index valueW r

i (πi[t]) = ri ·W 1
i (πi[t]) for user i.

(ii) User i is scheduled ifW r
i (πi[t])>ω∗, and stays idle ifW r

i (πi[t])<ω∗. If W r
i (πi[t])=ω∗, it is scheduled with probability

ρ∗.
(iii) The parametersω∗ and ρ∗ are such that the long-term average number of transmissionsequalsM .

C. Approximateω∗ and ρ∗ by ωτ and ρτ

Note that the parametersω∗ and ρ∗ need to be carefully chosen to satisfy the complementary slackness condition, i.e.,
Lemma 1(iii). While directly findingω∗ and ρ∗ may be difficult, an algorithm was proposed in [9] to derive approximate
values ofω∗ andρ∗ based on a fictitious model overtruncated belief state space. Over the fictitious model, the belief value
of a user is set to its steady state if the corresponding channel has not been scheduled forτ slots. Specifically, the algorithm
Gτ (r, N,M) was introduced [9][10] to calculateωτ andρτ .

AlgorithmGτ (r, N,M): Calculation ofωτ andρτ
1: TxTime[i] = 1 for all i ∈ {1, · · · , N}
2: TotalTime= N
3: struct Index
4: { float value
5: int user
6: } I[(2τ + 1)N ],w[(2τ + 1)N ]

7: j = 0
8: for i = 1 to N do
9: for eachπi ∈ Bτ

i do
10: W r

i (πi) = ri ·W 1
i (πi)

11: I[j].value= W r
i (πi)

12: I[j].user= i
13: j ← j + 1
14: end for
15: end for

16: w =sort(I)
17: for k = 1 to size(w) do

18: NewTime[w[k].user] = ατ
w[k].user(w[k].value, 1)

19: TimeDiff = TxTime[w[k].user]−NewTime[w[k].user]
20: TotalTime= TotalTime− TimeDiff
21: if TotalTime< M then
22: ωτ = w[k−1].value
23: TxTime[w[k−1].user] = M− ∑

i6=w[k−1].user
TxTime[i]

24: ρτ = βw[k−1].user(ωτ ,TxTime[w[k−1].user])
25: Break
26: end if
27: TxTime[w[k].user]=NewTime[w[k].user]
28: end for
29: return ωτ , ρτ

D. Policy with approximate parametersωτ , ρτ

The next policy, denoted asφτ
rel(r, N,M), uses the approximated parametersωτ and ρτ over theoriginal untruncated

model.
Remark: The computational complexity of the initialization phase of algorithm φτ

rel(r, N,M) is dominated by sorting the
index values in AlgorithmGτ (r, N,M) (line 16), which has complexityO

(
(2τ + 1)N · log

(
(2τ + 1)N

))
.
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Algorithm φτ
rel(r, N,M): r-weighted Index Policy

1: Initialization phase: The parametersωτ andρτ are calculated by algorithmGτ (r, N,M).
2: At slot t: user i is scheduled if ther-weighted index valueW r

i (πi[t]) > ωτ , and stays passive ifW r
i (πi[t]) < ωτ . If

W r
i (πi[t]) = ωτ , useri is scheduled with probabilityρτ .

We let V ∗(r, N,M) be the weighted sum-throughput under the optimal policyφ∗
rel(r, N,M), and letVτ (r, N,M) be that

under policyφτ
rel(r, N,M), i.e.,

V ∗
rel(r, N,M)

= lim inf
T→∞

1

T
E

[ T−1∑

t=0

N∑

i=1

ri·πi[t]·aφ
∗

rel
(r,N,M)

i [t]
]
, (7)

V τ
rel(r, N,M)

= lim inf
T→∞

1

T
E

[ T−1∑

t=0

N∑

i=1

ri·πi[t]·aφ
τ

rel
(r,N,M)

i [t]
]
. (8)

The policy φτ
rel(r, N,M) provides throughput arbitrarily close toV ∗

rel(r, N,M) as the truncation size increases, while
abiding the long-term average number of transmissions constraint, which was shown in [9][10] and recorded below.

Lemma 2. For τ ≥ τ0 :=
⌈
4max

{
1

− log(2δ) ,
1

log2(2δ)

}⌉
,

(i) The throughput performance difference between the policiesφ∗
rel(r, N,M) andφτ

rel(r, N,M) is bounded by

|V ∗
rel(r, N,M)− V τ

rel(r, N,M)| ≤ f(τ)

N∑

i=1

ri, (9)

wheref(τ)=
∑N

i=1 fi(τ), which satisfiesf(τ)→0 as τ→∞ with

fi(τ) =
1 + bi0,τ − pi11

bi0,τ+(1−pi11) · τ
. (10)

(ii) The long-term average number of transmissions under policy φτ
rel(r, N,M) satisfies the relaxed constraint (5).

IV. W EIGHTED SUM-THROUGHPUTMAXIMIZATION PROBLEM UNDER STRINGENT CONSTRAINT

Note that, although the algorithmφτ
rel

(
r, N,M

)
in last section abides by the relaxed long term average constraint (5) on

the number of users scheduled, the number of users scheduledin each instantaneous slotcan violate the stringent interference
constraint (1) that requires no more thanM users scheduled at a slot. Hence the corresponding stability regionΛN,M

rel provides
an upper bound onΛN,M

str .
In this section, we also consider ther-weighted sum throughput optimization problem as in the last section where the

throughput of useri is scaled by a factorri, but under the stringent constraint, i.e., no more thanM users are scheduled
for data transmission at each time slot. we propose a joint scheduling and broadcasting algorithm that leverages the policy
in the previous section for the stringent constrained problem. This algorithm has novelty of incorporating the possibility of
broadcastinga dummy packet at a slot, and can provide performance asymptotically close to algorithmφτ

rel

(
r, N,M

)
for the

relaxed problem in the regime of large values ofN .

A. Policy with Joint Scheduling and Broadcasting

The proposed policy, denoted byφτ
str

(
r, N,M,K

)
with K ≤ M , builds on the policyφτ

rel

(
r, N,M

)
for the relaxed

problem. However, it fundamentally differs fromφτ
rel

(
r, N,M

)
in the following way. At the beginning of each slot, algorithm

φτ
str

(
r, N,M,K

)
carefully makes one of two choices: 1) transmit data packetsto no more thanM users and receive ARQ-

type feedback from them, or 2)broadcasta dummy packet to more thanM users, and learn their channel states from their
ARQ-type feedback. Note that, the dummy packet is known to the users and contains no new information and hence does not
bring throughput gains if it is broadcasted. However, the scheduler still receive ARQ-styled feedback from the candidates, and
hence obtain CSI update from possibly more thanM users.

The parameterK controls how aggressively the dummy packets are broadcasted. As we will see next, intelligently tuning
this parameter is important for the asymptotic optimality result of the proposed algorithm.

Recall that ther-weighted index value is defined in Lemma 1. Algorithmφτ
str

(
r, N,M,K

)
is proposed next.
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Algorithm φτ
str

(
r, N,M,K

)
under stringent constraint

1: Initialization phase: The parametersωτ andρτ are calculated by algorithmGτ (r, N,K).
2: At slot t, candidate selection: user i is called a ‘candidate’, represented byθi[t]=1, if the r-weighted index value

W r
i (πi[t])>ωτ , and is not a candidate, i.e.,θi[t]=0, if W r

i (πi[t]) < ωτ . If W r
i (πi[t]) = ωτ , useri becomes a ‘candidate’

with probabilityρτ .
3: At slot t, transmission: If the total number of candidates is underM , i.e.,

∑N

i=1 θi[t] ≤ M , then all the candidates

are scheduled for data transmission, i.e.,a
φτ

str

(
r,N,M,K

)
i [t] = θi[t] for all i. If there are more thanM candidates, then

a
φτ

str

(
r,N,M,K

)
i [t] = 0 for all i, and dummy packet isbroadcasted.

4: At slot t, feedback: At the end of each slot, if data packets are transmitted, the scheduled users send ARQ feedback to
the BS; if the dummy packet is broadcasted, thecandidatessend ARQ feedback to the BS. The belief values are updated
based on the feedback.

We next give a step-by-step explanation of this algorithm.

Remarks:
(1) Steps 1-2 of algorithmφτ

str

(
r, N,M,K

)
is exactly algorithmφτ

rel

(
r, N,K

)
, where the scheduled users in algorithm

φτ
rel

(
r, N,K

)
becomes the candidates inφτ

str

(
r, N,M,K

)
.

(2) Step 3 ensures that the stringent interference constraint is met so that data packets are transmitted to no more thanM
users. Hence if the number of candidates exceedsM , a dummy packet is broadcasted for the scheduler to learn thechannel
states of the candidates and no throughput is accrued.
(3) Because of step 4, the scheduler receives channel state feedback from all the candidates, although data packets may not
be transmitted. By taking this approach, the channel memoryevolution in the relaxed constrained algorithmφτ

rel

(
r, N,K

)
is

maintained in the stringent constrained algorithmφτ
str

(
r, N,M,K

)
, which facilities much more trackable performance analysis.

(4) In step 4, only the candidates (instead of all users) sendfeedback to the BS if dummy packet is broadcasted. By allowing
only the candidates to feedback2, the algorithm not only helps maintain the tractability of channel memory evolution, more
importantly, it fits with the realistic scenario where it is costly (in terms of time, power, bandwidth, etc.) to obtain feedback
from all users, especially when user number is large.

We henceforth letV τ
str

(
r, N,M,K

)
be the weighted sum-throughput under policyφτ

str

(
r, N,M,K

)
, i.e.,

V τ
str

(
r, N,M,K

)

= lim inf
T→∞

1

T
E

[ T−1∑

t=0

N∑

i=1

ri·πi[t]·a
φτ

str

(
r,N,M,K

)
i [t]

]
. (11)

B. Performance of the algorithm under stringent constraint

From the algorithm and Remark (1) thereafter, in each slot, if the number of scheduled users exceedsM under algorithm
φτ
rel

(
r, N,K

)
for the relaxed problem, the number of candidates under algorithm φτ

str

(
r, N,M,K

)
exceedsM and a dummy

packet is broadcasted, otherwise all candidates are scheduled for data transmission. Hence in the regime whenK is close to
M , the larger theK, the more aggressively are dummy packets broadcasted, which bring more updated system-level channel
state information, but with a tradeoff that no throughput isobtained in these broadcasting slots. On the other hand, in the
regime whenK is away fromM , the smaller theK, on average there are less candidates and hence scheduled users, which
also brings down the throughput.

The next lemma bounds the difference between the throughputperformanceV τ
str

(
r, N,M,K

)
of algorithmφτ

str

(
r, N,M,K

)

for the stringent constrained problem, and the throughputV τ
rel

(
r, N,M

)
of φτ

rel

(
r, N,M

)
for the problem under relaxed

constraint. Recall thatV τ
str

(
r, N,M,K

)
andV τ

rel

(
r, N,M

)
were defined in (8) and (11), andδ was defined in the introduction

so thatpi01 > δ andpi10 > δ for all i.

Lemma 3. If K > M/2, then the following bounds hold for the values ofV τ
str(r, N,M,K) andV τ

rel

(
r, N,M

)
,

µ(M,K) ≤ V τ
str(r, N,M,K)

V τ
rel

(
r, N,M

) ≤ 1, (12)

where

µ(M,K)=
[
1− exp(− (M−K)2

3K
)
]
·
[
1− M−K

δ(K−1)
]+

, (13)

2This can be achieved by marking the corresponding bits in thedummy packet.
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str
q N M K

τφ ( [ ], , , )
str
qT N M K

τφ

Fig. 3: Illustration of algorithm Frameτ(T,N,M,K).

and [·]+ representsmax{0, ·}.
Proof: In the proof, we first bound the steady state probability thatdummy packets are transmitted using Large Deviation
techniques, from which we obtain the first multiplicand in (13). We next bound the effect ofK in the throughput different
betweenV τ

str(r, N,M,K) andV τ
rel

(
r, N,M

)
, which brings us the second multiplicand in (13). Details ofthe proof can be

found in Appendix A. �

The previous lemma is important to derive the asymptotic throughput performance of the stringent constrained policy,
captured in the next proposition. The proposition shows that as bothN andM become large, if the parameterK is kept an
appropriate distanceg(M) from M , then the throughput performance of policyφτ

str

(
r, N,M,K

)
becomes asymptotically

close toφτ
rel

(
r, N,M

)
of the relaxed policy.

Proposition 1. SupposeK = M − g(M) whenM of them can be simultaneously scheduled, whereg(M) ≥ 0 is a function
of M .

If g(M) satisfieslimM→∞ g(M)/M = 0, limM→∞ g2(M)/M=∞, the throughput performance of policyφτ
str

(
r, N,M,M−

g(M)
)

is asymptotically close to that ofφτ
rel

(
r, N,M

)
, i.e.,

lim
M→∞

V τ
str

(
r, N,M,M−g(M)

)

V τ
rel

(
r, N,M

) = 1. (14)

Proof: SinceK = M − g(M), from (12)-(13) we have, ifk > M/2,

1 ≥V τ
str(r, N,M,M − g(M))

V τ
rel

(
r, N,M

)

≥µ(M,M − g(M))

=
[
1− exp(− g2(M)

3
(
M − g(M)

) )
][
1− g(M)

bis(M−g(M)−1)
]+

. (15)

SincelimM→∞ g(M)/M = 0 and limM→∞ g2(M)/M =∞, we have

lim
M→∞

[
1− exp(− g2(M)

3
(
M − g(M)

))
][
1− g(M)

bis(M−g(M)−1)
]+

= 1. (16)

SincelimM→∞ g(M)/M = 0 andlimM→∞ g2(M)/M =∞, we also havelimM→∞ K/M = limM→∞

(
M−g(M)

)
/M =

1 > 1/2. Hence from (15)-(16), the proposition holds. �

Remark: Proposition 1 states that, if the distance betweenK andM grows at an order larger thanO(
√
M) but lower than

O(M), the performance of the proposed algorithmφτ
str(r, N,M,M − g(N)) is asymptotically close toφτ

rel(r, N,M), which
is optimal for the relaxed problem. This is an interesting finding, as it quantities the trade-off between scheduling data packets
and broadcasting of dummy packets. WhenK is less thanO(

√
M) to M , excessive training leaves insufficient slots for data

transmission. IfK is more thanO(M) from M , the scheduler is over-conservative on data transmission,which in turn reduces
the throughput.

V. QUEUE-BASED JOINT SCHEDULING AND BROADCASTING POLICY OVER TIME FRAMES

Note that, in the two last sections, we considered weighted sum-throughput. In this section, we consider the system model
with data queues wherequeue stabilityis taking into account. In the presence of queue evolution, the problem get much
more complicated. Note that, in the sum-throughput optimization problem, the reward of scheduling a user is captured bythe
Whittle’s index value. Under the additional considerationof queue stability, the queue lengths need to be jointly taken into
account for scheduling, i.e., a user is scheduled for transmission not only because it has a high index value, but may also
because of it has a large queue lengths.

In our setup, a simple max-weight-type scheduler (i.e., schedule theM users with the highestqi[t] · πi[t]) can be used, but
is no longer optimal. This is because it only exploits the channel condition in the instantaneous slot, i.e.,πi[t], but will lose
performance since it does not consider exploring outdated channels. Another heuristic scheme is to schedule theM users with
the highest multiplication of instantaneous queue length and Index valueqi[t] ·W 1

i (πi[t]) at each slott. However, it is hard to
provide a performance guarantee for this policy, mainly because the Whittle’s indexability analysis, which does not consider
queue evolution, breaks down if the Whittle’s indices are multiplied by queueing length at each instantaneous slot.
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Next, we propose a joint scheduling and broadcasting algorithm based on the algorithmV τ
str(r, N,M,K) in the last section.

The policy is implemented over separate time-frames and haslow-complexity.
We divide the time slots{0, 1, 2, · · · } into separatetime framesof lengthT , i.e., thek-th frame,k ∈ {0, 1, 2, · · · }, includes

time slotskT, · · ·, (k + 1)T−1. The scheduling decisions in thek-th frame are made based on the queue length information
q[kT ] at the beginning of that frame. During thek-th frame, the policyφτ

str(q[kT ], N,M,K), developed in the last section, is
implemented. This algorithm is illustrated in Fig. 3. Formally, with N users in the network and under stringentM constraint,
the T -frame queue-based policy Frameτ (T,N,M,K) is introduced next.

Algorithm Frameτ(T,N,M,K):T -Frame Queue-based Policy

1: The time slots are divided into frames of lengthT . Slot t is in thek-th frame if kT ≤ t < (k + 1)T , k ∈ {0, 1, · · · }.
2: At the beginning of the k-th frame: At the beginning of slotkT , implement the algorithmGτ (q[kT ], N,K) that outputs

ωτ andρτ for the frame.
3: At slot t, candidate selection: Each useri becomes acandidateif the q[kT ]-weighted index valueWq[kT ]

i (πi[t])>ωτ ,
and is not a candidate ifWq[kT ]

i (πi[t]) < ωτ . If W
q[kT ]
i (πi[t]) = ωτ , useri becomes a ‘candidate’ with probabilityρτ .

4: At slot t, transmission: If there are no more thanM total candidates, then all the candidates are scheduled fordata
transmission. If there are more thanM candidates, then a dummy packet isbroadcasted.

5: At slot t, feedback: At the end of each slot, if data packets are transmitted, the scheduled users send ARQ feedback to
the BS; if the dummy packet is broadcasted, thecandidatessend ARQ feedback to the BS. The belief values are updated
correspondingly.

Remarks: We next describe the intuition behind designing the above algorithm.
(1) Note that, for queue stability, instead of using queue length information in every slot, it is sufficient only to consider
the sampled queue length information at the periodic slots,i.e., q[kT ], k = 0, 1, · · · . The queue is stable if and only if the
periodically sampled queue length evolution process is stable.
(2) Within each frame, we wish to maximize the weighted sum-throughput, where each user’s throughput is weighted by its
queue length sample value at the beginning of the time frame.Hence, in step 2-3, we implement the algorithmφτ

str(q[kT ], N,M,K)
developed in the previous section. The rationale is because, first, we would like to schedule the users to achieve the higher
throughput promised by algorithmφτ

str(q[kT ], N,M,K) that exploits the temporal correlated channels. Moreover,for queue
stability, we would like to choose users with large queue-lengths.
(3) Dividing the time slots into different frames brings us advantages in the realm of large frame lengthT . Since we implement
the algorithmφτ

str(q[kT ], N,M,K) within each finite-horizon frame, if the frame length is small, we lose from exploiting the
channel correlation because the optimality of the algorithm requires infinite horizon. As the frame length scales, the (per-slot)
loss of exploiting the channel correlation diminishes.

The next proposition establishes that the throughput region Λ
N,M
rel , which is achieved by the optimal policy under a relaxed

constraint on the long-term average number of transmissions, can be asymptotically achieved in the stringent constrained
scenario by the frame-based algorithm, in the regime of a large number of users. In the proposition,1 is an all 1 vector,
τ0, f(τ) are given in Lemma 2, andg(M), µ(M,K) are given in Proposition 1.

Proposition 2. We letl(M,K) = 1− µ(M,K), if τ≥τ0, we have
(i) if K>M/2, for all arrival rate λ with λ +

(
f(τ) + 2l(M,M − g(M))

)
1 ∈ Λ

N,M
rel , there existsT0 such that, ifT > T0,

all queues are stable under theT -frame queue-based policyFrameτ (T,N,M,M − g(M)). The functionf(τ) satisfies
limτ→∞ f(τ) = 0.
(ii) if limM→∞

g(M)
M

= 0 and limM→∞
g2(M)

M
=∞, then the functionl(M,M − g(M)) satisfies

lim
N→∞

l(M,M − g(M)) = 0. (17)

Proof: We prove the proposition using a Large-Deviation-based Lyapunov technique over time frames. Specifically, we combine
the Large Deviation result in Lemma 3 with uniform convergence of the finite horizon throughput to the infinite horizon
throughput performance. We then prove that the average Lyapunov drift of the queue lengths in each time frames is negative,
which leads to the stability of the queues. Details of the proof are included in Appendix . �

Remark:
(1) Note that, in Proposition 2, the parameterK is kept a distanceg(M) from M . This mechanism is optimally controls the
trade-off between transmitting data packets and broadcasting dummy packets so that we can apply Proposition 1 to guarantee
the supportable stability region is asymptotic close to therelaxed constrained regionΛN,M

rel , if g(M) scales up at an appropriate
rate.
(2) In the proposed algorithm, a user is selected based on itsq[kT ]-weighted Whittle’s index value in step 3. Since the Whittle’s
index value measures the importance of scheduling a user under the time-correlated channel, this multiplication captures the
importance of scheduling a user under both queue evolution and the time correlation.
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3) In each frame of algorithm Frameτ (T,N,M,M − g(M)), implementation ofGτ (q[kT ], N,M,M − g(M)) in step2 has
computational complexityO((2τ + 1)N log(2τ + 1)N), while implementing step3 over the frame has complexityO(TN)
(see the remark in Section III-D). Hence theper-framecomplexity isO((2τ +1)N log(2τ +1)N +TN). As the frame length
T scales up, theper-slotcomplexity decreases towardO

(
N
)
.

VI. CONCLUSION

In this work, we study downlink scheduling algorithm designover Markovian ON/OFF channels, where the scheduler does
not possess accurate instantaneous channel state information. The scheduler instead exploits the Markovian channel memory
and channel state feedback from users to make scheduling decisions. We proposed a low-complexity frame-based algorithm
in downlink queuing networks with stringent constraint on the number of simultaneously scheduled users. The proposed
algorithm dynamically determines whether to schedule datatransmission or broadcast a dummy packet in a slot. By carefully
choosing its parameter, the proposed algorithm stably supports arrival rates in a region asymptotically close to that under a
relaxed constraint, when the number of users is large. Our on-going work involves comparison of the proposed algorithm with
naive/greedy algorithms, as well as designing throughput optimal scheduler under stringent constraint for arbitrarynumber of
users.
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APPENDIX A
PROOF OFLEMMA 3

Note that

V τ
str(r, N,M,K) =

N∑

i=1

ri lim
T→∞

1

T
E

[ T−1∑

t=0

πi[t]·aφ
τ

str
(r,N,M,K)

i [t]
]
, (18)
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whereπi[t] evolves according to policyφτ
str(r, N,M,K). Next consider thei-th summand

ri lim
T→∞

1

T

T−1∑

t=0

E

[
πi[t]·aφ

τ

str
(r,N,M,K)

i [t]
]

=ri lim
T→∞

1

T

T−1∑

t=0

E

[
πi[t]·θi[t] · 1(

∑

j 6=i

θj [t] < M)
]

=ri lim
T→∞

1

T

T−1∑

t=0

E

[
πi[t]·aφ

τ

rel
(r,N,K)

i [t] · 1(
∑

j 6=i

a
φτ

rel
(r,N,K)

i [t] < M)
]

=ri lim
T→∞

1

T

T−1∑

t=0

E

[
πi[t]·aφ

τ

rel
(r,N,K)

i [t]
]
E
[
1(
∑

j 6=i

a
φτ

rel
(r,N,K)

i [t] < M)
]
. (19)

where the first equality is from the third step algorithmφτ
str(r, N,M,K), whereaφ

τ

str
(r,N,M,K)

i [t] = 1 if and only if θi[t] = 1

and
∑

j 6=i θj [t] < M . The second equality is becauseaφ
τ

rel
(r,N,K)

i [t] = θi[t], seen from the first remark after the algorithm.
The last equality is because each user is scheduled independently under policyφτ

rel(r, N,K).
Note that, from ergodicity

lim
t→∞

E

[
πi[t]·aφ

τ

rel
(r,N,K)

i [t]
]
= lim

T→∞

1

T

T−1∑

t=0

E

[
πi[t]·aφ

τ

rel
(r,N,K)

i [t]
]
, (20)

lim
t→∞

E
[
1(
∑

j 6=i

a
φτ

rel
(r,N,K)

i [t] < M)
]
= lim

T→∞

1

T

T−1∑

t=0

E
[
1(
∑

j 6=i

a
φτ

rel
(r,N,K)

i [t] < M)
]
. (21)

Therefore, from (19)-(21) we have

ri lim
T→∞

1

T

T−1∑

t=0

E

[
πi[t]·aφ

τ

str
(r,N,M,K)

i [t]
]

=ri lim
T→∞

1

T

T−1∑

t=0

E

[
πi[t]·aφ

τ

rel
(r,N,K)

i [t]
]
· lim
T→∞

1

T
E
[
1(
∑

j 6=i

a
φτ

rel
(r,N,K)

i [t] < M)
]

=ri lim
T→∞

1

T

T−1∑

t=0

E

[
πi[t]·aφ

τ

rel
(r,N,K)

i [t]
]
· lim
t→∞

Pr(
∑

j 6=i

a
φτ

rel
(r,N,K)

i [t] < M). (22)

Therefore we have

V τ
str(r, N,M,K) =

N∑

i=1

ri lim
T→∞

1

T
E

[ T−1∑

t=0

πi[t]·aφ
τ

str
(r,N,M,K)

i [t]
]

=
N∑

i=1

ri lim
T→∞

1

T

T−1∑

t=0

E

[
πi[t]·aφ

τ

rel
(r,N,K)

i [t]
]
· lim
t→∞

Pr(
∑

j 6=i

a
φτ

rel
(r,N,K)

i [t] < M)

≤
N∑

i=1

ri lim
T→∞

1

T

T−1∑

t=0

E

[
πi[t]·aφ

τ

rel
(r,N,K)

i [t]
]

=V τ
rel(r, N,K)

which proves the second inequality in (12).
We letaφ

τ

rel
(r,N,K)

i [∞] be a random variable, which has the same distribution with the stationary distribution ofaφ
τ

rel
(r,N,K)

i [t].
Sinceaφ

τ

rel
(r,N,K)

i [∞] ≥ 0, we have

Pr
(∑

i6=j

a
φτ

rel
(r,N,K)

i [∞] < M
)
≥ Pr

( N∑

i=1

a
φτ

rel
(r,N,K)

i [∞] < M
)
. (23)

We next bound the right hand side of the above inequality.
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Lemma 4. If K > M/2,

Pr
( N∑

i=1

a
φτ

rel
(r,N,K)

i [∞] < M
)
≥ 1− exp

(
− (M −K)2

3K

)
.

Proof: See Appendix C. �

Therefore

V τ
str(r, N,M,K) =

N∑

i=1

ri lim
T→∞

1

T

T−1∑

t=0

E

[
πi[t]·aφ

τ

str
(r,N,M,K)

i [t]
]

≥
(
1− exp

(
− (M −K)2

3K

)) N∑

i=1

ri lim
T→∞

1

T

T−1∑

t=0

E

[
πi[t]·aφ

τ

rel
(r,N,K)

i [t]
]

=
(
1− exp

(
− (M −K)2

3K

))
V τ
rel(r, N,K). (24)

From Lemma 4, and (18)(22)(23) we have

1 ≥ V τ
str(r, N,M,K)

V τ
rel(r, N,M)

=
V τ
str(r, N,M,K)

V τ
rel(r, N,K)

· V
τ
rel(r, N,K)

V τ
rel(r, N,M)

≥
(
1− exp

(
− (M −K)2

3K

)) V τ
rel(r, N,K)

V τ
rel(r, N,M)

(25)

If the total number of useri with non-negative weights, i.e., withri > 0, is no more thanK, then all the users are scheduled
to transmit at each slot in both policyφτ

rel(r, N,M) andφτ
rel(r, N,K), we hence have

V τ
rel(r, N,M) = V τ

rel(r, N,K).

Now consider the scenario where the total number of useri with ri > 0 is more thanK. We define the setΘ = {i :

Pr
(
a
φτ

rel
(r,N,M)

i [∞] = 1
)
> 0}, i.e., the setΘ consists the index of all users that contributes to the steady state throughput

under policyφτ
rel(r, N,M). Hence|Θ| ≥ K. We order the indices inΘ so thatrσ(1) ≤ rσ(2) ≤ · · · ≤ rσ(|Θ|).

We let χ = min{M, |Θ|} andx be such that
∑x

i=1 Pr
(
a
φτ

rel
(r,N,M)

i [∞] = 1
)
= χ − K. Now consider another heuristic

policy φ̃τ
rel(r, N,M) which is exactly the same as policyφτ

rel(r, N,M) except that user1, · · · , x are no longer scheduled.
The time-average amount of users scheduled underφ̃τ

rel(r, N,M) is henceK. Therefore, he long-term average throughput
Ṽ τ
rel(r, N,M) of policy φ̃τ

rel(r, N,M) satisfies

Ṽ τ
rel(r, N,M) ≥ V τ

rel(r, N,M)− (M −K)rσ(x), (26)

V τ
rel(r, N,K) ≥ Ṽ τ

rel(r, N,M). (27)

From (26)-(27) we have

V τ
rel(r, N,K) ≥ V τ

rel(r, N,M)− (M −K)rσ(x). (28)

Note that, under the policỹφτ
rel(r, N,M), the total number of users, in steady state, that contributes to throughput equals

|Θ| − x, therefore|Θ| − x ≥ K. Now consider another policŷφτ
rel(r, N,K) that only schedules theK users with the highest

weights, i.e., usersσ(|Θ|), σ(|Θ|−1), · · · , σ(|Θ|−K+1). Therefore the corresponding long-term average throughput satisfies

V̂ τ
rel(r, N,K) ≥

|Θ|∑

i=|Θ|−K+1

rσ(i)b
σ(i)
s

≥δ
|Θ|∑

i=|Θ|−χ+1

rσ(i)

≥δ(χ− 1)rσ(|Θ|−χ+1)

≥δ(K − 1)rσ(x).

Therefore

V τ
rel(r, N,M) ≥ V̂ τ

rel(r, N,M) ≥ δ(K − 1)rσ(x). (29)
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From (28) and (29) we have

V τ
rel(r, N,M,K)

V τ
rel(r, N,M)

=
V τ
rel(r, N,M)− (M −K)rσ(x)

V τ
rel(r, N,M)

≥
(
1− (M −K)rσ(x)

V τ
rel(r, N,M)

)

≥
(
1− (M −K)rσ(x)

δ(K − 1)rσ(x)

)

≥
(
1− M −K

δ(K − 1)

)
. (30)

Substituting (30) in (25), we have

1 ≥V τ
str(r, N,M,K)

V τ
rel(r, N,M)

=
V τ
str(r, N,M,K)

V τ
rel(r, N,M,K)

· V
τ
rel(r, N,M,K)

V τ
rel(r, N,M)

≥
[
1− exp(− (M −K)2

3K
)
][
1− M −K

δ(K − 1)

]+
.

We letµ(M,K) =
[
1− exp(− (M−K)2

3K )
][
1− M−K

δ(K−1)

]+
. The Lemma is thus proven.

APPENDIX B
PROOF OFPROPOSITION2

Define Lyapunov functionL(q) = 1
2

∑N

i=1 q
2
i . We considerthe T -frame average Lyapunov drift∆L(q[kT ]) over thek-th

frame, expressed as,

∆L(q[kT ])/T

=
1

T
E

[
L(q[(k + 1)T ])− L(q[kT ])

∣∣ q[kT ],π[kT ]
]

≤BT +

N∑

i=1

qi[kT ] · λi −
N∑

i=1

qi[kT ] ·
1

T

· E
[ T−1∑

t=0

πi[kT+t]·aφ
τ

str

(
q[kT ],N,M,M−g(M)

)
i [kT+t]

∣∣∣π[kT ]
]
, (31)

whereB is a constant whose value is determined by the second moment of the arrival process [26]. Becauseλ +
(
f(τ) +

2l(M,M − g(M))
)
1 ∈ Γ, for any non-negative vectorq, we have

N∑

i=1

qi · (λi +
(
f(τ) + 2l(M,M − g(M))

)
) ≤ V ∗

rel(q, N,M),

whereV ∗
rel(q[kT ], N,M) is defined in (7). The Lyapunov drift (31) now becomes,

∆L(q[kT ])/T ≤ BT−
(
f(τ) + 2l(M,M − g(M))

) N∑

i=1

qi[kT ]+

V ∗
rel(q[kT ], N,M)−V τ,T

str (q[kT ], N,M,M−g(M))

= BT−
(
f(τ) + 2l(M,M − g(M))

) N∑

i=1

qi[kT ]+V ∗
rel(q[kT ], N,M)−V τ

rel(q[kT ], N,M)

+ V τ
rel(q[kT ], N,M)−V τ

str(q[kT ], N,M,M−g(M))

+ V τ
str(q[kT ], N,M−g(M))−V τ,T

str (q[kT ], N,M,M−g(M)). (32)

whereV τ
rel(q[kT ], N,M) andV τ

str(q[kT ], N,M−g(M)) are defined in (8) and (11), andV τ,T
str (q[kT ], N,M,M−g(M)) is

the T -horizon expected transmission rate achieved under the policy φτ
str

(
q[kT ], N,M,M − g(M)

)
, i.e.,

V τ,T
str (q[kT ], N,M,M−g(M))

=
N∑

i=1

qi[kT ]
1

T
E

[ T−1∑

t=0

πi[kT+t]·aφ
τ

str

(
q[kT ],N,M,M−g(M)

)
i [kT+t]

∣∣∣π[kT ]
]
.
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Note that, in (32), the differenceV ∗
rel(q[kT ], N,M)−V τ

rel(q[kT ], N,M) is bounded in Lemma 2 as follows,

V ∗
rel(q[kT ], N,M)−V τ

rel(q[kT ], N,M) ≤ f(τ) ·
N∑

i=1

qi[kT ]. (33)

The differenceV τ
rel(q[kT ], N,M)−V τ

str

(
q[kT ], N,M,M−g(M)

)
is bounded in Lemma 3 as

V τ
rel(q[kT ], N,M)−V τ

str

(
q[kT ], N,M,M−g(M)

)
≤[1− µ

(
M,M−g(M)

)
]V τ

str

(
q[kT ], N,M,M−g(M)

)

=l(M,M−g(M))V τ
str

(
q[kT ], N,M,M−g(M)

)
(34)

The following bound is from [9][10], which states that, as the length of the time horizon tends to infinity, the expected
achieved rate in finite horizon asymptotically converges toinfinite horizon achievable rate.

Lemma 5. For any M andκ > 0, we have, uniformly overq, M , and the initial stateπ[kT ], there exist positive constants
c1 and c2 such that

∣∣∣V τ
str

(
q, N,M,M−g(M)

)
−V τ,T

str

(
q, N,M,M−g(M)

)∣∣∣ <
(
κ+c1 exp(−c2T )

) N∑

i=1

qi.

From Lemma 2 and (33)(34), the Lyapunov drift (32) can be further bounded as follows,

∆L(q[kT ])/T

≤BT+

[
−
(
f(τ) − 2l(M,M − g(M)) + f(τ) + l(M,M − g(M)) +

(
κ+ c1 exp(−c2T )

)]
·

N∑

i=1

qi[kT ]

=BT+
[
−l(M,M − g(M))+

(
κ+c1 exp(−c2T )

)] N∑

i=1

qi[kT ]. (35)

For fixedτ , by choosingκ sufficiently small andT sufficiently large, sayT > T0, the Lyapunov drift is negative whenever the
sum of the queue lengths gets sufficiently large. Therefore,the queues are stable according to the Foster-Lyapunov criterion.
Part (ii) of the proposition follows directly from Proposition 1.

APPENDIX C
PROOF OFLEMMA 4

The proof is in line with Large Deviation principles [27]. Note that traditional Large Deviation techniques, in our context,
holds for linear growth ofK. Here, instead, we identify the growth rate ofK that leads to our desired result.

For notational convenience, we use toai representaφ
τ

rel

i (r, N,K)[∞]. Note that, from Lemma 2(ii), we have

N∑

i=1

E[ai] ≤ K. (36)
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From Markov’s inequality, we have for arbitraryt ≥ 0,

Pr
( N∑

i=1

ai ≥M
)
≤
E

[
exp

(
t
∑N

i=1 ai
)]

exp
(
t ·M

)

=

∏N

i=1 E

[
exp

(
t · ai

)]

exp
(
t ·M

)

=

∏N

i=1

[(
1− Pr

(
ai = 1

))
+ Pr

(
ai = 1

)
et
]

exp
(
t ·M

)

=

∏N

i=1

[
1 + Pr

(
ai = 1

)(
et − 1

)]

exp
(
t ·M

)

≤
∏N

i=1 exp
[
Pr

(
ai = 1

)(
et − 1

)]

exp
(
t ·M

)

=
exp

[
(et − 1)E

[∑N

i=1 ai
]]

exp
(
t ·M

)

≤
exp

[
(et − 1)K

]

exp
(
t ·M

)

=exp
(
η(t)

)
, (37)

where the first inequality is from Markov’s inequality, and the second inequality is because1+ x ≤ ex for x ≥ 0, and the last
inequality is from (36). The functionη(t) is defined as follows,

η(t) = exp
[
exp

[
(et − 1)K

]
− t ·M

]
. (38)

We let t∗ to be the minimal point ofη(t), i.e., η′(t∗) = 0, we then have

t∗ = log
(M
K

)
. (39)

Therefore

Pr
( N∑

i=1

ai ≥M
)
≤ exp

(
η(t∗)

)
.

Substituting the expression oft∗ to η′(t∗) in (38), we have

η(t∗) = exp
[(M

K
− 1

)
K −M · log

(M
K

)]

=exp
[
M −K −M · log

(M
K

)]

=exp
[(
M −K

)
−K

(
1 +

M −K

K

)
· log

(
1 +

M −K

K

)]
(40)

Note that, for0 ≤ δ < 1, we havelog(1 + δ) =
∑∞

n=1(−1)n+1 xn

n
and hence

(1 + δ) log(1 + δ) =δ +

∞∑

n=2

(−1)nδi
( 1

n− 1
− 1

n

)

≥δ + 1

2
δ2 − 1

6
δ3

≥δ + 1

3
δ2. (41)
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SinceK > M/2, we have(M −K)/K < 1. From (40) and (41),

η(t∗) ≤ exp
[
M −K −K

(M −K

K
+

(M −K)2

3K2

)]

=exp
[
− (M −K)2

3K

]
. (42)

From (37) we have

Pr
( N∑

i=1

ai < M
)
≥ Pr

( N∑

i=1

ai < M
)

≥ 1− exp
(
η(t∗)

)

≥ exp
[
− (M −K)2

3K

]
,

which proves the lemma.
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