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Cloud-Based Optimization: A Quasi-Decentralized Approach to
Multi-Agent Coordination

M.T. Hale and M. Egerstedt†

Abstract— New architectures and algorithms are needed to
reflect the mixture of local and global information that is
available as multi-agent systems connect over the cloud. We
present a novel architecture for multi-agent coordinationwhere
the cloud is assumed to be able to gather information from all
agents, perform centralized computations, and disseminate the
results in an intermittent manner. This architecture is used
to solve a multi-agent optimization problem in which each
agent has a local objective function unknown to the other
agents and in which the agents are collectively subject to global
inequality constraints. Leveraging the cloud, a dual problem
is formulated and solved by finding a saddle point of the
associated Lagrangian.

I. I NTRODUCTION

Distributed optimization and algorithms have received
significant attention during the last decade, e.g., [1], [20],
[10], [8], [15], [22], [6], due to the emergence of a number
of application domains in which individual decision makers
have to collectively arrive at a decision in a distributed man-
ner. Examples of these applications include communication
networks [12], [5], sensor networks [13], [23], [2], multi-
robot systems [26], [21], and smart power grids [3].

Distributed algorithms are needed mainly because the
scale of large distributed systems is such that no central,
global decision maker can collect all relevant information,
perform all required computations, and then disseminate the
results back to individual nodes in the network in a timely
fashion. However, one can envision a scenario in which such
globally obtained information can be used in conjunction
with local computations performed across the network. This
could, for example, be the case when a cloud computer is
available to collect information, as was envisioned in [9].
The question then becomes that of designing the appropriate
architecture and algorithms that can leverage this mix of
prompt decentralized computations with intermittent central-
ized computations.

One approach to multi-agent optimization that will prove
useful towards achieving this hybrid architecture is basedon
primal-dual methods to find saddle points of a problem’s La-
grangian [19], [7]. In fact, the study of saddle point dynamics
in optimization can be traced back to earlier results from
Uzawa in [24], which will provide the starting point for the
work in this paper. The primary difference between this paper
and the established literature is the cloud-based architecture
used to solve the problem; indeed the architecture is this
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paper’s main contribution. The architecture we introduce
uses a cloud computer in order to receive information from
each agent, perform global computations, and transmit this
information to other agents. We will see that this division of
labor results in globally asymptotic convergence to anǫ-ball
about a Lagrangian’s saddle point.

The goal of this paper is to serve as a first attempt
at understanding how centralized, cloud-based information
might be injected in an intermittent but useful manner into a
network of agents where such information would otherwise
be absent. In order to highlight how the cloud might prove
useful to such a system, we choose to consider an extreme
case where no inter-agent communication occurs at all,
in contrast to existing distributed multi-agent optimization
techniques, e.g., [14], [16], [17], [18]. Under this architecture
the cloud handles all communications, and computations are
divided between the cloud and the agents in the network.

The rest of the paper is organized as follows: Section II
gives a detailed problem statement and describes the cloud
architecture, and then Section III provides the convergence
analysis for the given problem. Next, Section IV provides nu-
merical results to demonstrate the viability of this approach,
and finally Section V concludes the paper.

II. PROBLEM STATEMENT AND ARCHITECTURE

A. Architecture Motivation

We now explain the interplay between the cloud architec-
ture and the problem under consideration here. A detailed
explanation is given below, with a summary and example
following at the end of this section. Consider a collection of
N agents indexed byi ∈ A, A = {1, . . . , N}, where each
agent is associated with a scalar statexi ∈ R and where
there is no communication at all between the agents. Let
the task agenti is trying to solve be encoded in a strictly
convex objective functions inC2, fi : R → R. Each agent
is assumed to have no knowledge of other agents’ objective
function and each agent’s only goal is to minimize its own
objective function.

To that end, agenti is assumed to have immediate ac-
cess to its own state, which seemingly makes this problem
very simple. However, what prevents agenti from simply
computing dfi

dxi

and setting this equal to zero – a completely
decentralized operation asfi only depends onxi – is that
the agents need to coordinate their actions through a globally
defined constraint, that can, for example, represent finite
resources that must be shared across the team. In this paper
it is assumed that agenti cannot measure the state of
any other agents and, as mentioned above, that there is
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no communication between agents. Instead, this information
must be obtained in some other manner, which is where the
cloud will enter into the picture.

The team-wide coordination is encoded through the global
constraint

g(x) =











g1(x)
g2(x)

...
gm(x)











≤ 0, (1)

wherex = (x1, . . . , xN )T is a state vector containing the
states of all agents in the network. It is further assumed
that eachgj(x) ∈ C2 is convex. The cloud architecture
discussed here applies to any problem in which the user has
selected functionsfi andgj that meet the above criteria and
the forthcoming analysis fully characterizes all such problem
formulations.

Let

F (x) =
N
∑

i=1

fi(xi). (2)

ThenF is strictly convex and the problem under considera-
tion becomes that of minimizingF subject tog. The Kuhn-
Tucker Theorem on concave programming (e.g., [25]) states
that the optimum of this constrained problem is a saddle
point of the Lagrangian

L(x, µ) = F (x) + µT g(x), (3)

where the Kuhn-Tucker (KT) multipliersµj satisfyµj ≥ 0
for all j ∈ {1, . . . ,m}. We assume that the minimizer ofL
with respect tox, denotedx̂, is a regular point ofg so that
there is a unique saddle point,(x̂, µ̂), of L [4]. Using thatL
is convex inx and concave inµ, the saddle point(x̂, µ̂) can
be shown to satisfy the inequalities

L(x̂, µ) ≤ L(x̂, µ̂) ≤ L(x, µ̂) (4)

for all admissiblex andµ.
Using Uzawa’s algorithm [24], the problem of finding

(x̂, µ̂) can be solved from the initial point(x(0), µ(0)) using
the difference equations

x(k) = x(k − 1)− ρ
∂L

∂x
(x(k − 1), µ(k − 1)) (5)

µ(k) = max

{

0, µ(k − 1) + ρ
∂L

∂µ
(x(k − 1), µ(k − 1))

}

(6)
whereρ > 0 is a constant, and where the maximum defining
µ is taken component-wise so that each component ofµ is
projected onto the non-negative orthant ofR

m, denoted by
R

m
+ . In the context of Uzawa’s algorithm, theith element of

the state vectorx is updated according to

xi(k) = xi(k − 1)− ρ
∂L

∂xi
(x(k − 1), µ(k − 1)). (7)

Under the envisioned organization of the agents and the
lack of inter-agent communication, Uzawa’s algorithm can-
not be directly applied. To see this, observe that if agent
i is to compute its own state update using Equation (7),

a fundamental problem is encountered: computing∂L
∂xi

will
require knowledge of states of (possibly all) other agents and
agenti cannot directly access this information. Furthermore,
determiningµ at each timestep using (6) will also require the
full state vectorx, which no single agent has direct access
to.

To account for the need of each agent for global infor-
mation in applying Equation (7) and to computeµ using
aggregated global information, the cloud computer is used.
The cloud computer is taken to be capable of large batch
computations and receives periodic transmissions from each
agent containing each agent’s own state. The cloud computer
uses the agents’ states to compute the next value ofµ using
Equation (6) and then transmits the states it received and
the newly computedµ vector to each agent. Each agent then
uses the information from the cloud to update its own state
in the vein of (7).

B. Formal Architecture Description

We first describe the actions taken to initialize the system
and then explain its operation. Let the agents each be pro-
grammed with their objective functions onboard and let them
either be programmed with an initial state or else be able to
sense it (e.g., if it corresponds to some physical quantity).
The agents are assumed to be identifiable according to their
indices in A so that the cloud knows the source of each
transmission it receives. Each agent stores and manipulates
a state vector onboard and we denote the state vector stored
onboard agenti by xi; agent i’s copy of its own state is
denotedxi

i and when we are referring to a specific point in
time, say timestepk, we denote agenti’s copy of its own
state at this time byxi

i(k). The vector of KT multipliers
stored onboard agenti at time k is denotedµi(k), though
we emphasize that agenti does not compute any KT vectors
but instead relies on the cloud for these computations.

Before the optimization process begins, let agenti send
its initial state,xi

i(0), to the cloud and let the cloud store
these states in the vectorxc(0) ∈ R

N , with the superscript
’c’ denoting “cloud” and the timestep0 reflecting that this
is the initial state. In this notation, the cloud’s copy of agent
i’s state at timek is denotedxc

i (k). Similarly, we denote
the KT vector stored in the cloud at timek by µc(k). Let
the cloud be programmed by the user with the constraint
functions,g(xc). Upon receiving the each agent’s state, the
cloud symbolically computes∂g∂xc

i

and sends this function to
agenti along with some initial KT multiplier vector,µ(0),
a stepsizeρ > 0, and the vectoryi ∈ R

N−1 defined as

y
i =





















xc
1
...

xc
i−1

xc
i+1
...

xc
N





















. (8)

This vector contains states stored by the cloud in the vector
xc and contains information originally from time0 (though



in Equation (8) explicit timesteps are intentionally omitted).
The subscripts in (8) denote that agenti does not receive its
own old state value from the cloud, which is logical since
agenti always knows its own most recent state. Iny

i, then,
the cloud sends to agenti the most recent state information
it has about eachother agent. In this notation, agentj’s state
in y

i is denotedyi
j . In the forthcoming analysis,yi always

refers to the most recent state information that agenti has
received from the cloud and it will not be written as an
explicit function of any time step. Similarly, the notationµi

refers to the most recent KT vector sent to agenti and will be
written without an explicit timestep. We use the notationz

i

to denote the most recent transmission to agenti containing
bothy

i andµi.
After receivingzi for this first time, allN agents and the

cloud have the same information onboard, and each agent
begins the optimization process. At timestep0, each agent
takes one gradient step to update its own state according
to Equation (7). Simultaneously, and also at timestep0, the
cloud takes one gradient step to update the KT multipliers
in the cloud according to Equation (6). Then at timestep1,
agenti sends its state,xi

i(1), to the cloud. These transmis-
sions are received at timestep2. In timestep2, the cloud
sendsyi andµc(1) to agenti. These vectors are received in
timestep3 at which point the cloud updatesµc as before and
each agent takes a step to update its own state as before, thus
repeating this cycle of communication and computation. It is
important to note that communications cycles do not overlap
and that the agents do not send their states to the cloud
at every timestep, but instead do so every3rd timestep. In
addition, we emphasize that each agent’s objective function
is assumed to be private throughout this process.

Due to the communications structure of the system, it is
often the case thatxi

i(k) 6= xj
i (k), namely that agentsi and

j will have different values for agenti’s state beacuse agent
j must wait to received agenti’s state from the cloud. Due
these differences, Equation (5) is modified to reflect that each
agent stores and manipulates a local copy of the problem.
The global system therefore containsN copies of the system
in Equations (5) and (6) and the state vector of agenti at
time k, xi(k), is assumed to be different from that of agent
j at timek, xj(k), wheni 6= j.

Using the fact that agenti will only update its state in
timesteps just after it receives an update from the cloud,
Equation (5) is modified so that onboard agenti it is

xi(k) =

{

ȳ
i − ρ∇iL(ȳi,µi) zi received at timek−1 (9a)

xi(k − 1) else, (9b)

where we define

∇iL(ȳi,µi) =

















0
...

dfi
dxi

(xi
i(k − 1)) + (µi)T ∂g

∂xi

(ȳi)
...
0

















. (10)

Here, ȳi is defined as a vector onboard agenti which
containsyi and the most recent state of agenti inserted in
the appropriate place. In essence,ȳ

i is the most up-to-date
information about all of the agents that agenti has access
to and contains the correct value of each other agent’s state
when it is received. Note that∇iL is simply ∂L

∂x with all
entries except theith set to0. This is because agenti does
not itself compute any updates for the other agents’ states
which it stores onboard, but instead waits for the cloud to
provide such updates.

Under the architecture of this problem, only the cloud
computes values ofµ and there is therefore only a single
update equation needed forµ. Bearing in mind that updates
to µ are only made in timesteps immediately after those in
which the cloud receives each agent’s state, Equation (6) is
modified to take the form

µc(k) =







[

µc(k−1)+ρ
∂L

∂µ
(xc(k−1), µc(k−1))

]

+

update
at k−1(11a)

µc(k − 1) else, (11b)

where [·]+ denotes the projection ontoRm
+ and the update

referred to in Equation (11a) is an update of each state’s
value sent to the cloud.

We note that Equation (11) is not indexed on a per-agent
basis since only the cloud computes values ofµ. However,
we will continue to use the notationµi(k) to denote theµ
vector stored on agenti at timek (which may be different
from the µ vector stored in the cloud at timek). It is
important to note that the argument ofµi(k) is intended to
reflect the time at which agenti hasµi onboard anddoes
not imply that µi was computed at timek or that agenti
computed it. In this notationµi represents theµ vector most
recently sent from the cloud to agenti, while µi represents
the µ vector stored on agenti.

With this model in mind, instead of considering the system
defined in Equations (5) and (6), we considerN copies of
the system defined by (9) and (11). Using the notation that
µi(k) represents the vectorµ as stored on agenti at timek,
we can write the full update equations onboard agenti as

xi(k)=

{

ȳ
i − ρ∇iL(ȳi,µi) zi received at timek−1 (12a)

xi(k − 1) else, (12b)

µi(k) =

{

µ
i

z
i was received at timek − 1 (13a)

µi(k − 1) else, (13b)

where all changes inµ will result from the cloud using
Equation (11).

To illustrate the communications cycle described above,
Table 1 contains a sample schedule for a single cycle. Each
timestep is listed on the left and the corresponding actions
taken at that timestep are listed on the right.

III. C ONVERGENCEANALYSIS

A. Ultimate Boundedness of Solutions

In this section we will examine the evolution of the
sequence

zi(k) =

(

xi(k)
µi(k)

)

(14)



Timestep Actions

k Each agent receives a transmission from the cloud and
then takes1 step in its own copy of the problem to
update (only) its own state using Equation (12a). At the
same time, the cloud computes updatedµ values using
(11a).

k + 1 Each agent sends it state to the cloud. Equation (12b)
is used by the agents and Equation (11b) is used by the
cloud so that no further computations are carried out
during this timestep.

k + 2 The cloud receives the agents’ transmissions from time
k+ 1 and stores them inxc. It then sendsyi to agent
i, along withµc(k + 1), the most recently computed
vector of KT multipliers (computed in timestepk+1).
As in timestepk + 1, Equations (12b) and (11b) are
used so that no further computations take place across
the network.

k + 3 This step is identical to stepk. Agent i receiveszi and
then takes1 step in its own copy of the problem to
update (only) its own state using Equation (12a). At the
same time, the cloud computes updatedµ values using
(11a).

Table 1: A sample schedule for one communications cycle usedby the
agents and cloud to exchange information.

for an arbitraryi ∈ A in order to show that each agent’s
local copy of the problem converges to anǫ-ball about the
point ẑ = (x̂, µ̂).

Specifically, the goal here is two-fold: to prove that the
state of each agent’s optimization problem enters a ball
of radius ǫ about the saddle point̂z in finite time and to
show that it does not leave that ball thereafter. Our approach
will differ from that of [24] because we use the notion of
ultimate boundedness, published after Uzawa, to simplify
certain components of proof. We restate the definition of
ultimate boundedness here for general discrete-time systems
of the form

w(k) = f(w(k − 1)). (15)

Lemma 1: Let G ⊆ R
N and let V (w) be a Lyapunov

candidate function for the system in Equation (15) defined
on G such that for allw ∈ G

∆V (w) = V (f(w)) − V (w) ≤ a (16)

for somea ≥ 0. Let Ḡ denote the closure ofG and letS be
the set

S = {w ∈ Ḡ : ∆V (w) ≥ 0}. (17)

Let b = sup{V (w) : w ∈ S} and define the setA by

A = {z ∈ Ḡ : V (w) ≤ a+ b}. (18)

Then any solution{w(k)} to Equation (15) which remains
in G for all time and entersA at some point is contained in
A for all time thereafter.
Proof: See [11], Theorem 5. �

We also state a corollary to this result which will be used
below.

Corollary 1: Let the conditions of Lemma 1 hold. Sup-
pose that

sup{−∆V (w) : w ∈ Ḡ\A} > 0 (19)

and thatG is of the form

G = {w : V (w) ≤ r}. (20)

Then every solution{w(k)} of Equation (15) which starts in
G remains inG for all time and entersA in a finite number
of steps.
Proof: See [11], Corollaries 3 and 4. �

Below, we will combine Lemma 1 and Corollary 1 to show
that each agent’s state trajectory enters a ball of radiusǫ
about ẑ, denotedBǫ(ẑ), and stays within that ball. Before
proving the main convergence result, we prove the following
lemma which establishes a positive upper bound on the
stepsizes that can be used. We will proceed in the vein of
[24] and consider the Lyapunov function

V (x, µ) = ‖x− x̂‖2 + ‖µ− µ̂‖2. (21)

Lemma 2: Let L denote the Lagrangian in Equation (3)
and setR = max{ǫ, V (x(0), µ(0))}. Define the constants
γ1 andγ2 by

γ1 = min
(x,µ)











√

√

√

√

ǫ/2
∥

∥

∂L
∂x

∥

∥

2
+
∥

∥

∥

∂L
∂µ

∥

∥

∥

2

∣

∣

∣

∣

∣

V (x, µ) ≤
ǫ

2











(22)

and

γ2 = min
(x,µ)











−(x̂− x)T ∂L
∂x + (µ̂− µ)T ∂L

∂µ

∥

∥

∂L
∂x

∥

∥

2
+
∥

∥

∥

∂L
∂µ

∥

∥

∥

2

∣

∣

∣

∣

∣

ǫ

2
≤ V (x, µ) ≤ R











(23)
where ∂L

∂x and ∂L
∂µ above are (implicitly) functions of anyx

andµ satisfying the conditions onV pertaining to each set.
Then setting

ρmax = min{γ1, γ2} (24)

providesρmax > 0.
Proof: It suffices to show thatγ1 andγ2 are both positive.
The denominator ofγ1 is always positive and tends to zero
as (x, µ) → (x̂, µ̂) so that the minimum definingγ1 does
not go to zero at(x̂, µ̂). The numerator ofγ1 is positive
by insepction andγ1 itself is therefore the square root of a
positive real number.

For γ2, we note thatL is convex inx and concave inµ.
The term−(x̂ − x)T ∂L

∂x is the negation of the directional
derivative ofL(·, µ) with respect tox pointing toward its
minimizer, and the term(µ̂ − µ)T ∂L

∂µ is the directional
derivative of L(x, ·) with respect toµ pointing toward
its maximizer. Both terms are therefore non-negative and
because the definition ofγ2 precludes(x, µ) = (x̂, µ̂), the
sum of these two terms is strictly positive. The denominator
in the definition ofγ2 is positive as well so thatγ2 itself is.
�

The above Lemmata and Corollaries are stated in terms
of the Lagrangian defined in Equation (3). While each agent
in the network stores and manipulates its own state vector
and thus has its own (unique) Lagrangian, after each gradient



descent step is taken and all states and KT multipliers are
shared across the network, every agent ends up with the same
information before taking its next step. In addition, every
agent and the cloud use the same stepsize,ρ. Then despite the
distribution of information and computation throughout the
network, the effective outcome of each cycle of communica-
tion and computation as described in Section II-B is one step
in each of Equations (5) and (6) performed simultaneously.

Therefore, the analysis of the algorithm can be carried out
for Equations (5) and (6), and for simplicity we choose to use
Equations (5) and (6) in the forthcoming analysis with the
understanding that it applies equally well to all agents. Due
to the centrality of the convergence of Uzawa’s algorithm
to this paper and in order to make use of results published
after the algorithm’s original publication, we now presentthe
main result on the ultimate boundedness of solutions to the
problem at hand.

Theorem 1: Let every agent use a strictly convex objective
functionfi : R → R, fi ∈ C2 and let the global constraints,
g : RN → R

m, be convex withgj ∈ C2 for eachj. Then for
any stepsizeρ such that0 < ρ ≤ ρmax used by all agents
and the cloud, each agent’s local copy of the problem enters
an ǫ-ball aboutẑ in a finite number of steps and stays within
that ball for all time thereafter.

Proof: In addition to usingV as defined in Equation (21),
we equivalently use thatz(k) = (x(k), µ(k))T to write

V (z(k)) = ‖z(k)− ẑ‖2. (25)

When it is convenient, we will also use the more concise
notationV (k) = V (z(k)).

We further define

∆V (k) = ‖z(k + 1)− ẑ‖2 − ‖z(k)− ẑ‖2 (26)

=
(

‖µ(k + 1)− µ̂‖2 − ‖µ(k)− µ̂‖2
)

(27)

+
(

‖x(k + 1)− x̂‖2 − ‖x(k)− x̂‖2
)

. (28)

As in Lemma 2, we define

R = max
{

ǫ, V
(

x(0), µ(0)
)}

. (29)

Let gradient steps be taken at timestepk so that Equation
(12a) is used by all agents to update their states and Equation
(11a) is used by the cloud to updateµ. From Equation (5)
we see that

‖x(k + 1)‖2 = ‖x(k)‖2

− 2ρx(k)T
∂L

∂x
(x(k), µ(k)) + ρ2

∥

∥

∥

∥

∂L

∂x
(x(k), µ(k))

∥

∥

∥

∥

2

,

(30)

and multiplying both sides of Equation (5) by−2x̂T gives

− 2x̂Tx(k + 1) = −2x̂Tx(k)− 2x̂T ∂L

∂x
(x(k), µ(k)). (31)

Using Equations (30) and (31) we see that

‖x(k + 1)− x̂‖2 = ‖x(k)− x̂‖2

+2ρ(x̂−x(k))T
∂L

∂x
(x(k), µ(k))+ρ2

∥

∥

∥

∥

∂L

∂x
(x(k), µ(k))

∥

∥

∥

∥

2

.

(32)

Carrying out the same steps forµ using Equation (6) gives

‖µ(k + 1)− µ̂‖2 = ‖µ(k)− µ̂‖2

−2ρ(µ̂−µ(k))T
∂L

∂µ
(x(k), µ(k))+ρ2

∥

∥

∥

∥

∂L

∂µ
(x(k), µ(k))

∥

∥

∥

∥

2

.

(33)

Summing Equations (32) and (33) gives

‖x(k + 1)− x̂‖2 + ‖µ(k + 1)− µ̂‖2

= ‖x(k)− x̂‖2 + ‖µ(k)− µ̂‖2

− ρ

[

2

(

−
(

x̂− x(k)
)T ∂L

∂x
+
(

µ̂− µ(k)
)T ∂L

∂µ

)

− ρ

(

∥

∥

∥

∥

∂L

∂x

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∂L

∂µ

∥

∥

∥

∥

2
)]

, (34)

and hence

∆V (k) =

− ρ

[

2

(

−
(

x̂− x(k)
)T ∂L

∂x
+
(

µ̂− µ(k)
)T ∂L

∂µ

)

− ρ

(

∥

∥

∥

∥

∂L

∂x

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∂L

∂µ

∥

∥

∥

∥

2
)]

. (35)

Suppose now thatǫ2 ≤ V (k) ≤ R. Then using the fact
that ρ ≤ γ2 we see that

∆V (k) ≤ ρ

[

(

x̂−x(k)
)T ∂L

∂x
−
(

µ̂−µ(k)
)T ∂L

∂µ

]

< 0 (36)

where the right-hand side is negative becauseρ is positive
and the term inside brackets is negative. The negativity of
the term in the brackets is established by observing that it
is the numerator of the term definingγ2 multiplied by −1
and, because the numerator of the fraction definingγ2 was
shown to be positive, we see here that this term is negative. In
fact, the term in brackets is bounded above by some negative
constant, i.e., there existsδ > 0 such that

(

x̂− x(k)
)T ∂L

∂x
−
(

µ̂− µ(k)
)T ∂L

∂µ
≤ −δ < 0 (37)

which is seen to be true because the additive inverse of this
term was shown to be bounded below by a positive constant
whenγ2 was defined. Then for anyk satisfying ǫ

2 ≤ V (k) ≤
R, we see that∆V (k) ≤ −ρδ for someδ > 0.

Now suppose thatV (k) ≤ ǫ
2 . Then using Equation (35)

and the fact thatρ ≤ γ1 we see that

∆V (k) ≤
ǫ

2
. (38)

Here we see that∆V (k) ≥ 0 only for z(k) ∈ Bǫ/2(ẑ) and
that∆V (k) ≤ ǫ

2 in the setBǫ/2(ẑ). Then the conditions of
Lemma 1 are satisfied witha = b = ǫ

2 andA = Bǫ(ẑ). In
addition, for Corollary 1 we see that for anyz(k) satisfying
ǫ
2 ≤ V (z(k)) ≤ R, there is someδ > 0 such that
sup{−∆V (k)} ≥ ρδ > 0. Moreover, the setG takes the
form {z : V (z) ≤ R}. Then the conditions of Corollary
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Fig. 1. The states onboard agent1 over time. Since this is a gradient-based
method with a fixed stepsize, we see larger changes in earlieriterations,
followed by smaller steps taken at later iterations.
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Fig. 2. The Kuhn-Tucker multipliers onboard agent1 over time. As with the
states, we see larger changes generally coming earlier in the time-evolution
of the problem because they are computed using a gradient-based method
using fixed stepsizes.

1 are satisfied as well. Thenz(k) entersBǫ(ẑ) in a finite
number of steps and does not ever leave thereafter. �

To summarize, a radially unbounded, discrete-time Lya-
punov function was constructed. The Lyapunov function
was shown to satisfy the conditions needed for ultimate
boundedness and the system’s trajectory was shown to come
within ǫ of the Lagrangian’s saddle point in finite time and
never to be more thanǫ away thereafter.

B. Extension to Private Optimization

While above only each agent’s objective function is as-
sumed to be private, we can extend this problem to the
case where individual states are kept private. To do this, we
modify the initialization of the system. When the cloud sends
to agenti the function ∂g

∂xc

i

, rather than initializing agenti

with ∂g
∂xc

i

as a function of, e.g.,(x2, x6, x7), it can instead

initialize agenti with ∂g
∂xc

i

as a function ofηi = (η1, η2, η3),
where, unbeknownst to agenti, η1 = x2, η2 = x6, and
η3 = x7. By hiding the labels of each state which will be
later sent to agenti, these states are kept private in the sense
that agenti does not know which agent they belong to.

IV. SIMULATION RESULTS

A numerical implementation of the above cloud architec-
ture was run for a particular choice of simulation example.
The problem simulated was chosen to useN = 6 agents,
each associated with a scalar state as above. The objective
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Fig. 3. The value ofV (x1(k), µ1(k)) over time. As was proven in the
Lyapunov analysis in Section III, the Lyapunov function is non-increasing
over time.

function of each agent was chosen to befi(xi) = (xi− x̃i)
4,

where

x̃ =

















−3.0
6.0

−5.0
4.0
2.0

−6.0

















. (39)

The constraints in this problem were chosen to be

g(x) =







3x2
1 + x4

4 − 50

x6
3 + x4

6 − 100

9x2 + x6
5 − 100






≤ 0. (40)

The Lagrangian of the full problem is

L(x, µ) =

6
∑

i=1

fi(xi) + µT g(x) (41)

whereµ ∈ R
3
+.

For this example,γ1 was found to be approximately
0.003799 andγ2 was found to be approximately0.001968.
Accordingly, the stepsize used wasρ = 0.0017. The gradient
descent algorithm described above was initialized with all
agents and the cloud having all states set to0. All agents
and the cloud had all Kuhn-Tucker multipliers initialized to
0 as well. Here the valueǫ = 0.3 was chosen.

For the purposes of analyzing and verifying the algorithm
presented here, the pointsx̂ and µ̂ were computed ahead of
time to be

x̂ =

















−2.1278
5.7178

−1.7745
2.4566
1.6395

−2.8798

















(42)

and

µ̂ =





0.2462
1.2718

0



 . (43)

The cloud algorithm was run for50, 000 total iterations.
It took 1, 524 iterations to enter a ball of radiusǫ about ẑ,



of which 508 were spent taking gradient descent steps and
1, 016 were spent communicating values across the network.

The value ofxc(50, 000) was

xc =

















−2.0887
5.6219

−1.7744
2.4649
1.6271

−2.8799

















(44)

and the final value ofµc(50, 000) was

µc =





0.24158
1.27176
0.00000



 . (45)

The final value of V in the cloud was
V (xc(50, 000), µc(50, 000)) = 0.0110. Based on the
definition ofV , this means that the square of the Euclidean
distance from(xc(50, 000), µc(50, 000)) to (x̂, µ̂) is just
0.0110. This result confirms both thatzc(k) comes withinǫ
of ẑ in finite time and that it does not go more thanǫ away
from ẑ after that.

To further illustrate the convergence of this problem, the
histories of the states, Kuhn-Tucker multipliers, and value of
V over time onboard agent 1 for all50, 000 timesteps are
shown in Figures 1, 2, and 3, respectively. ThatV is non-
increasing in time was verified numerically in the MATLAB
implementation and is evident in graph shown in Figure 3.

V. CONCLUSION

We presented a cloud architecture for coordinating a team
of mobile agents in a distributed optimization task. Each
agent has direct knowledge only of its own local objective
function and its own influence upon the global constraint
functions but receives occasional updates from the cloud
computer containing values of each other agent’s state and
updated Kuhn-Tucker multipliers. Using this architecture, in-
equality constrained multi-agent optimization problems were
proven to come withinǫ of the constrained minimum in
finite time and to never be more thanǫ away thereafter.
Simulation results were provided to attest to the viability
of this approach.
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