arXiv:1404.0098v5 [math.OC] 23 Sep 2014

Cloud-Based Optimization: A Quasi-Decentralized Approat to
Multi-Agent Coordination

M.T. Hale and M. Egerstedit

Abstract— New architectures and algorithms are needed to paper’s main contribution. The architecture we introduce
reflect the mixture of local and global information that is yses a cloud computer in order to receive information from
available as multi-agent systems connect over the cloud. We each agent, perform global computations, and transmit this

present a novel architecture for multi-agent coordinationwhere . f tion 1o oth ts. We will that this divisid
the cloud is assumed to be able to gather information from all Information to other agents. We will see that this division o

agents, perform centralized computations, and disseminatthe ~ 1abor results in globally asymptotic convergence to-drall
results in an intermittent manner. This architecture is used about a Lagrangian’s saddle point.

to solve a multi-agent optimization problem in which each The goal of this paper is to serve as a first attempt
agent has a local objective function unknown to the other ¢ nderstanding how centralized, cloud-based informatio
agents and in which the agents are collectively subject to gibal
inequality constraints. Leveraging the cloud, a dual probem might be injected in an mtermltt_ent but qseful manner mtq a
is formulated and solved by finding a saddle point of the network of agents where such information would otherwise
associated Lagrangian. be absent. In order to highlight how the cloud might prove
useful to such a system, we choose to consider an extreme
case where no inter-agent communication occurs at all,

Distributed optimization and algorithms have receivedn contrast to existing distributed multi-agent optiminat
significant attention during the last decade, e.g., [1]],[20techniques, e.g., [14], [16], [17], [18]. Under this areluiture
[10], [8], [15], [22], [6], due to the emergence of a numbethe cloud handles all communications, and computations are
of application domains in which individual decision makerslivided between the cloud and the agents in the network.
have to collectively arrive at a decision in a distributedhma The rest of the paper is organized as follows: Section I
ner. Examples of these applications include communicatiayives a detailed problem statement and describes the cloud
networks [12], [5], sensor networks [13], [23], [2], multi- architecture, and then Section Il provides the convergenc
robot systems [26], [21], and smart power grids [3]. analysis for the given problem. Next, Section IV provides nu

Distributed algorithms are needed mainly because thweerical results to demonstrate the viability of this appioa
scale of large distributed systems is such that no centrand finally Section V concludes the paper.
global decision maker can collect all relevant information
perform all required computations, and then disseminate th
results back to individual nodes in the network in a timely Architecture Motivation
fashion. However, one can envision a scenario in which suchWe now explain the interplay between the cloud architec-
globally obtained information can be used in conjunctioure and the problem under consideration here. A detailed
with local computations performed across the network. Thisxplanation is given below, with a summary and example
could, for example, be the case when a cloud computer fsllowing at the end of this section. Consider a collectidn o
available to collect information, as was envisioned in [9]N agents indexed by € A, A ={1,..., N}, where each
The question then becomes that of designing the appropriatgent is associated with a scalar statec R and where
architecture and algorithms that can leverage this mix dhere is no communication at all between the agents. Let
prompt decentralized computations with intermittent calnt the task agent is trying to solve be encoded in a strictly
ized computations. convex objective functions i€?, f; : R — R. Each agent

One approach to multi-agent optimization that will provdas assumed to have no knowledge of other agents’ objective
useful towards achieving this hybrid architecture is based function and each agent’s only goal is to minimize its own
primal-dual methods to find saddle points of a problem’s Lasbjective function.
grangian [19], [7]. In fact, the study of saddle point dynesni To that end, agent is assumed to have immediate ac-
in optimization can be traced back to earlier results fromess to its own state, which seemingly makes this problem
Uzawa in [24], which will provide the starting point for the very simple However, what prevents agentrom simply
work in this paper. The primary difference between this pap@omputlngd £ and setting this equal to zero — a completely
and the established literature is the cloud-based arthitec decentralized operation g% only depends om; — is that
used to solve the problem; indeed the architecture is thike agents need to coordinate their actions through a dyobal

defined constraint, that can, for example, represent finite
_ TThe authors are with the School of Electrical and Computagii@er- resources that must be shared across the team. In this paper
ing, Georgia Institute of Technology, Atlanta, GA 30332, AJEmail: . .
it is assumed that agent cannot measure the state of

{matthale, magnus}@gatech.edu. Research supported in part by 8)
the NSF under Grant CNS-1239225. any other agents and, as mentioned above, that there is

|. INTRODUCTION

II. PROBLEM STATEMENT AND ARCHITECTURE

http://arxiv.org/abs/1404.0098v5

no communication between agents. Instead, this informati@ fundamental problem is encountered: computgjg will
must be obtained in some other manner, which is where thequire knowledge of states of (possibly all) other agents a

cloud will enter into the picture. agent; cannot directly access this information. Furthermore,
The team-wide coordination is encoded through the globaleterminingu at each timestep usingl(6) will also require the
constraint full state vectorz, which no single agent has direct access
91() to.
ga(x) To account for the need of each agent for global infor-
9(x) = : <0, @) 9 g

mation in applying Equation[7) and to compuyteusing
aggregated global information, the cloud computer is used.
The cloud computer is taken to be capable of large batch
wherez = (z1,...,zn)" is a state vector containing the computations and receives periodic transmissions frorh eac
states of all agents in the network. It is further assumeggent containing each agent’s own state. The cloud computer
that eachg,(z) € C? is convex. The cloud architecture yses the agents’ states to compute the next valyeaing
discussed here applies to any problem in which the user hgguation [6) and then transmits the states it received and
selected fUnCti0n$i andgj that meet the above criteria andthe new|y Computequ vector to each agent_ Each agent then
the forthcoming analysis fully characterizes all such fgob yses the information from the cloud to update its own state

formulations. in the vein of [T).
Let

gm(2)
)T

N B. Formal Architecture Description

F(z) = Z filws). 2) We first describe the actions taken to initialize the system
) _ _ and then explain its operation. Let the agents each be pro-
Then I is strictly convex and the problem under considerag s mmed with their objective functions onboard and let them
tion becomes that of minimizing' subject tog. The Kuhn- giher e programmed with an initial state or else be able to
Tucker Theorem on concave programming (e.g., [25]) Stalg3nse it (e.g., if it corresponds to some physical quantity)
that the optimum of this constrained problem is a saddigy,o agents are assumed to be identifiable according to their
point of the Lagrangian indices in A so that the cloud knows the source of each
Lz, p) = F(z) + u"g(), (3) transmission it receives. Each agent stores and manipulate
a state vector onboard and we denote the state vector stored
where the Kuhn-Tucker (KT) multipliers; satisfy;; > 0 onpoard ageni by zi; agenti’s copy of its own state is
for all j € {1,...,m}. We assume that the minimizer & gdenotedzi and when we are referring to a specific point in
with respect tor, denotedz, is a regular point ofy so that time, say timestek, we denote agents copy of its own
there is a unique saddle poirtt; /i), of L [4]. Using thatl state at this time byri(k). The vector of KT multipliers
is convex inz and concave in, the saddle pointz, i) can stored onboard ageritat time k& is denotedy’(k), though

be shown to satisfy the inequalities we emphasize that agentioes not compute any KT vectors
L(i,p) < L(, 1) < L(x, 1) (4) but instead relles_ on th_e cloud for thesg computapons.
o Before the optimization process begins, let agesend

for all admissibler and . its initial state,x!(0), to the cloud and let the cloud store

Using Uzawa’s algorithm [24], the problem of findingthese states in the vectaf(0) € RY, with the superscript
(2, 1) can be solved from the initial poirit:(0), 4(0)) using 'c’ denoting “cloud” and the timestep reflecting that this
the difference equations is the initial state. In this notation, the cloud’s copy okat

oL i's state at timek is denotedz$(k). Similarly, we denote
z(k) =z(k—1) — Py @k =1),ulk=1)) (3) the KT vector stored in the cloud at timeby (k). Let
oL the cloud be programmed by the user with the constraint
(k) = max {0, wlk —1) + p=—(z(k — 1), u(k — 1))} functions,g(z¢). Upon receiving the each agent’s state, the
Iz cloud symbolically computegﬁ and sends this function to
@gentz‘ along with some initial KT multiplier vector(0),

wherep > 0 is a constant, and where the maximum definin ¢ \)
a stepsizep > 0, and the vectogy’ € RV~! defined as

1 is taken component-wise so that each component &f
projected onto the non-negative orthantiif, denoted by z§
R™. In the context of Uzawa’s algorithm, thé" element of
the state vector: is updated according to

oL y=| Tt 8)
zi(k) = @ik = 1) = pa—(a(k = 1), pu(k = 1)) (7) T
Under the envisioned organization of the agents and the e
N

lack of inter-agent communication, Uzawa'’s algorithm can-
not be directly applied. To see this, observe that if agerthis vector contains states stored by the cloud in the vector
1 is to compute its own state update using Equatldn (7)° and contains information originally from time (though

in Equation [(8) explicit timesteps are intentionally omit). Here, ¢° is defined as a vector onboard agenthich

The subscripts i {8) denote that agémtoes not receive its containsy’ and the most recent state of agénhserted in

own old state value from the cloud, which is logical sincahe appropriate place. In essengé,is the most up-to-date

agenti always knows its own most recent stateyi) then, information about all of the agents that agéritas access

the cloud sends to agenthe most recent state informationto and contains the correct value of each other agent’s state

it has about eachbther agent. In this notation, agesis state when it is received. Note tha?’L is simply g—i with all

iny'is denotedy§. In the forthcoming analysig® always entries except thé" set to0. This is because agentdoes

refers to the most recent state information that ageimhs not itself compute any updates for the other agents’ states

received from the cloud and it will not be written as arwhich it stores onboard, but instead waits for the cloud to

explicit function of any time step. Similarly, the notatipg®i provide such updates.

refers to the most recent KT vector sent to ageartd will be Under the architecture of this problem, only the cloud

written without an explicit timestep. We use the notatisn computes values of. and there is therefore only a single

to denote the most recent transmission to agemantaining update equation needed far Bearing in mind that updates

both y* and u’. to p are only made in timesteps immediately after those in
After receivingz’ for this first time, allN agents and the which the cloud receives each agent's state, Equafiion (6) is

cloud have the same information onboard, and each agenodified to take the form

begins the optimization process. At timest@épeach agent oL

takes one gradient step to update its own state accordi@g(k) — “C(k_1)+pa_ﬂ(xc(k_1)v“C(k_U) +:tpigit16(113)

to Equation[(7). Simultaneously, and also at timesiethe (k—1) else, (11b)

cloud takes one gradient step to update the KT multipliers H o '

in the cloud according to Equatiofll (6). Then at timestep Where[-]. denotes the projection onf&! and the update

agenti sends its stateyi(1), to the cloud. These transmis- "éferred to in Equation[(1la) is an update of each state's

sions are received at timestép In timestep2, the cloud Value sent to the cloud. _ _

sendsy’ and (1) to agenti. These vectors are received in W& note that Equatior_(11) is not indexed on a per-agent

timestep3 at which point the cloud updates as before and Pasis since only the cloud computes values.oHowever,

each agent takes a step to update its own state as before, t§sWill continue to use the notation’ (k) to denote theu

repeating this cycle of communication and computatiors It iVE€Ctor stored on ageritat time & (which may be different

important to note that communications cycles do not overldf®m the x vector stored in the cloud at timg). It is

and that the agents do not send their states to the cloljgPortant to note that the argument af(k) is intended to

at every timestep, but instead do so ever§ timestep. In "eflect the time at which agernithas .* onboard andioes

addition, we emphasize that each agent's objective functid'et imply that u* was colmplthed at timé or that agent
is assumed to be private throughout this process. computed it. In this notatiop” represents thg vector most
SR
Due to the communications structure of the system, it iE£Cently sent from the cloud to agentwhile " represents

often the case thati(k) # 27 (k), namely that agentsand "€ 4« vector stored on agent

j will have different values for ageriis state beacuse agent Wit this model in mind, instead of considering the system
 must wait to received ageris state from the cloud. Due 9€fined in Equationd [5) an@ll(6), we considercopies of

these differences, Equatidt (5) is modified to reflect thahea te System defined by|(9) and {11). Using the notation that
(k) represents the vecter as stored on ageritat timek,

agent stores and manipulates a local copy of the problev‘r‘ll. : _ ;
The global system therefore contaiNscopies of the system we can write the full update equations onboard ageas

in Equations[(b) and{6) and the state vector of ageat ¥y — pV'L(g', u') z° received at timek—1 (12a)
time k, z*(k), is assumed to be different from that of agent’ ():{ 2i(k—1) else (12b)
j attimek, 27 (k), wheni # j. ’

Using the fact that agent will only update its state in i(k) = { p' 2" was received at timé —1 (13a)
timesteps just after it receives an update from the cloud, p'(k—1) else, (13b)
Equation [(5) is modified so that onboard ageitis where all changes in: will result from the cloud using

Equation [(I1).

To illustrate the communications cycle described above,
Table 1 contains a sample schedule for a single cycle. Each

2t (k) _{ y' — pV'L(y', p') =" received at timet—1(9a)
timestep is listed on the left and the corresponding actions

ik —1) else, (9b)

where we define taken at that timestep are listed on the right.
0 IIl. CONVERGENCEANALYSIS
: A. Ultimate Boundedness of Solutions
VLG,) = jﬁ (zi(k — 1))+(Hi)T§_§i(Qi) . (10) In this section we will examine the evolution of the
' sequence

(E) (k) = < k)) (14)

[Timestep | Actions | and thatG is of the form
k Each agent receives a transmission from the cloud gnd
then takesl step in its own copy of the problem tp G = {w : V(w) < 7‘}- (20)
update (only) its own state using Equatifn (|12a). At the)]))
same time, the cloud computes updatedalues using Then every solutiodw(k)} of Equation [Ib) which starts in
@1a).] G remains inG for all time and enterst in a finite number
k+1 Each agent sends it state to the cloud. Equafion](1j2b) f st
is used by the agents and Equatibn_{11b) is used by|the or steps.)
cloud so that no further computations are carried put Proof: See [11], Corollaries 3 and 4. [|
a— i‘:}””gl th('js "me_StePih — R Below, we will combine Lemm@l1 and Corolldry 1 to show
+ e cloud receives the agents’ transmissions from time , . .
k+ 1 and stores them in. It then sendsy’ to agent that E?Ch agent’s stf;lte trajectory e_nt_ers a ball of radius
i, along with uc(k + 1), the most recently computed ~ aboutz, denotedB.(z), and stays within that ball. Before
Xect_ortpf KTt mzltlplllerfz (COTpUt?ldIgb;lmeStdmb?' proving the main convergence result, we prove the following
s in timestepk + 1, Equations and_(IlLb) are . . .
used so that no further computations take place across lemm_a which establishes a p05|t|ye upper b_ound On_ the
the network. stepsizes that can be used. We will proceed in the vein of
k+3 This step is identical to step. Agents: receivesz® and [24] and consider the Lyapunov function
then takesl step in its own copy of the problem tp
update (only) its own state using Equatifn {|12a). At the V(I H) — ||a: _ jj”? 4 ||u _ ﬂHQ (21)
same time, the cloud computes updaedalues using ’
(T13).

Lemma 2: Let L denote the Lagrangian in Equatidd (3)

Table 1: A sample schedule for one communications cycle bgettie .
and setR = max{e, V(2(0), 1(0))}. Define the constants

agents and cloud to exchange information.

71 andyz by

for an arbitraryi € A in order to show that each agent's E/ 6
local copy of the problem converges to aiball about the "= (fglm) < 3 (22)
point Z = (&, fi). ’ H + H H

Specifically, the goal here is two-fold: to prove that the d
state of each agent's optimization problem enters a bt
of radiuse about the saddle point in finite time and to — (3 —z)T oL OL 4 (i —)T 8L aL .
show that it does not leave that ball thereafter. Our approae, = min — < V(x,p) <
will differ from that of [24] because we use the notion of (@.10) H?)_H + HB_H 2

. . . . x 1
ultimate boundedness, published after Uzawa, to simplify (23)

certam components of proof. We restate the def|n|t|0n Qfihere 2L oL and L above are (implicitly) funcnons of any

of the form Then setting
w(k) = f(w(k - 1)).

Lemma 1: Let G € RY and letV(w) be a Lyapunov

candidate function for the system in Equatiénl(15) defineBrovidesp,az > 0. N
on G such that for alkw € G Proof: It suffices to show that; and-~. are both positive.

The denominator ofy; is always positive and tends to zero
AV(w) =V(f(w)) = V(w) <a as (z,) — (&, /1) so that the minimum defining; does
not go to zero at(z, 1). The numerator ofy; is positive
by insepction andy; itself is therefore the square root of a

(15)

Pmaz = min{Vla '72} (24)

(16)

for somea > 0. Let G denote the closure af and letS be

the set positive real number
§={weG:AV(w) 2 0}. (17) For 2, we note thatL is convex inz and concave in.
Let b = sup{V(w) : w € S} and define the set by The term —(z — x)Tg—ﬁ is the negation of the directional
_ derivative of L(-,) with respect toz pointing toward its
A={z€eG:V(w) <a+b} (18) ' minimizer, and the term(i —)" G5 is the directional

Then any solution{w(k)} to Equation [Z) which remains _derivative of L(x,-) with respect tou pointing toward

in ¢ for all time and enters! at some point is contained in its maximizer. Both terms are therefore non-negative and
A for all time thereafter. because the definition of, precludes(z,) = (&, /i), the
Proof: See [11], Theorem 5. sum of these two terms is strictly positive. The denominator

[
We also state a corollary to this result which will be use(’.ln the definition ofy is positive as well so that, itself is.
below.

Corollary 1: Let the conditions of Lemmgl 1 hold. Sup-
pose that

The above Lemmata and Corollaries are stated in terms
of the Lagrangian defined in Equatidd (3). While each agent
in the network stores and manipulates its own state vector
and thus has its own (unique) Lagrangian, after each gradien

sup{—AV(w) : w € G\A} >0 (19)

descent step is taken and all states and KT multipliers are Carrying out the same steps fousing Equation{6) gives
shared across the network, every agent ends up with the same
information before taking its next step. In addition, every |[lu(k+1) —al* = |lu(k) — al?

agent and the cloud use the same stepgiZzEhen despite the R 0L , ||oL
distribution of information and computation throughoue th —2,(i—u(k)) %(I(/ﬂ),u(kﬁ)ﬂp %(I(k),u(k))
network, the effective outcome of each cycle of communica- (33)

tion and computation as described in Secfionlll-B is one ste) _ _

in each of Equation§15) anfll(6) performed simultaneously2Umming Equations (32) and {33) gives
Therefore, the analysis of the algorithm can be carried out o o

for Equations[{(b) and16), and for simplicity we choose to use ok +1) = & + [|p(k + 1) = 4]

Equations[(b) and{6) in the forthcoming analysis with the = ||lz(k) — &|* + ||u(k) —)|
understanding that it applies equally well to all agentse Du oL L
to the centrality of the convergence of Uzawa’s algorithm — — p[2< — (& —z(k)) a2 T (fi — p(k)) a—)
to this paper and in order to make use of results published * H
after the algorithm'’s original publication, we now prestre L% oL
main result on the ultimate boundedness of solutions to the -r H% + Ha_u . (34)
problem at hand.
Theorem 1: Let every agent use a strictly convex objectiveand hence
function f; : R — R, f; € C? and let the global constraints,
g: RN — R™ be convex withy; € C? for eachj. Thenfor ~ AV(k) =
any stepsizep such thatd < p < pnq. Used by all agents 0L 0L
and the cloud, each agent’s local copy of the problem enters — 2 l2< — (& — =(k)) o (2 — (k) a—>
ane-ball aboutz in a finite number of steps and stays within K
that ball for all time thereafter. oL oL
Proof: In addition to usingl” as defined in Equation (21), -r H% Ha_u (35)

we equivalently use that(k) = (z(k), u(k))? to write
Suppose now thaf < V(k) < R. Then using the fact

V(z(k)) = |l=(k) = 2II* (25) that p < ~» we see that
When it is convenient, we will also use the more concise 2oL 1oL
notationV (k) = V (z(k)). AV (k) < p[(:ﬁ—x(k)) — — (p—p(k)) —] <0 (36)
We further define Oz
_ a2 2 where the right-hand side is negative becapde positive
AV(E) = l=(k+1) ZHA 5 I (k) ZHA 9 (26) and the term inside brackets is negative. The negativity of
= (ke + 1) = ll” = ll (k) = 2l1*) (27) " the term in the brackets is established by observing that it

+ (Jlw(k +1) — &> — la(k) — £[|*) . (28) is the numerator of the term defining multiplied by —1
As in Lemma®, we define and, because the numerator of the fraction definingvas
' shown to be positive, we see here that this term is negative. |

R = max {¢, V (2(0), u(0)) } . (29) fact, the term in brackets is bounded above by some negative
Let gradient steps be taken at timestepo that Equation constant, i.e., there exists> 0 such that
(124) is used by all agents to update their states and Equatio 0L . 0L
(II3) is used by the cloud to update From Equation[{5) (& — (k) 97 (A — n(k)) Em <-6<0 (37)
we see that L e :
which is seen to be true because the additive inverse of this
lz(k + 1)|12 = ||lz(k)||? term was shown to be bounded below by a positive constant
0L ,110L 2 when+, was defined. Then for any satisfyings < V' (k) <
—2px(k) %(x(k),u(k)) +p a—x(x(k),u(k)) , R, we see tha\V (k) < —pd for somed > 0.

30 Now suppose thaV’(k) < §. Then using Equatiorl (85)
(30)
and the fact thap < v; we see that
and multiplying both sides of Equatiofl (5) by22” gives c
oL AV (k) < —. (38)
28w (k+ 1) = ~28"a(k) - 227 5 (x(k), (k). (31) 2
)) . Here we see thaAV (k) > 0 only for z(k) € B,/2(2) and
Using Equationsi(30) and (B1) we see that that AV (k) < § in the setB,3(2). Then the conditions of
lz(k + 1) — &||? = [Jz(k) — 2|2 Lemmall are satisfied with = b = £ and A = B.(2). In

2
oL 9 addition, for CorollaryL we see that for anyk) satisfying
T_
ox

oL

a_(x(k)’u(k)) 5 < Vi(z(k)) < R, there is somed > 0 such that
xX

sup{—AV(k)} > pé > 0. Moreover, the seti takes the
(32) form {#z : V(2) < R}. Then the conditions of Corollary

+2p(2— (k)" o (a(k), u(k))+p?

Fig. 1. The states onboard agdnover time. Since this is a gradient-based Fig. 3. The value ofV’ (2! (k), u' (k)) over time. As was proven in the
method with a fixed stepsize, we see larger changes in ed#dimations, Lyapunov analysis in Section Ill, the Lyapunov function @nrincreasing

followed by smaller steps taken at later iterations. over time.
i EA function of each agent was chosen tofer;) = (z; —7;)%,
| where
i 1 —-3.0
‘\ 1 6.0
1 - —5.0
T= . (39)

‘] 4.0

The constraints in this problem were chosen to be

Fig. 2. The Kuhn-Tucker multipliers onboard agérdgver time. As with the 322 + 24 — 50
states, we see larger changes generally coming earlieeitirtte-evolution 1 4
of the problem because they are computed using a gradisetibmethod g(z) = :Cg + :Cé — 100 <0. (40)

using fixed stepsizes. 9y + xg — 100
The Lagrangian of the full problem is
[are satisfied as well. Then(k) entersB.(2) in a finite
number of steps and does not ever leave thereafter. B

To summarize, a radially unbounded, discrete-time Lya-
punov function was constructed. The Lyapunov function
was shown to satisfy the conditions needed for ultimateherep e R3.
boundedness and the system’s trajectory was shown to coméd-or this example,y; was found to be approximately
within ¢ of the Lagrangian’s saddle point in finite time and0.003799 and~, was found to be approximately:001968.

6

L(z,p) =Y filzi) + n"g(x) (41)

i=1

never to be more thaa away thereafter. Accordingly, the stepsize used was= 0.0017. The gradient
_ _ o descent algorithm described above was initialized with all
B. Extension to Private Optimization agents and the cloud having all states seb.t@ll agents

While above only each agent’s objective function is asand the cloud had all Kuhn-Tucker multipliers initializeal t
sumed to be private, we can extend this problem to tHeas well. Here the value = 0.3 was chosen.
case where individual states are kept private. To do this, we For the purposes of analyzing and verifying the algorithm
modify the initialization of the system. When the cloud sendpresented here, the pointsand /i were computed ahead of

to agenti the function 2%, rather than initializing agent ~ time to be 5 1978
with aafg as a function of, e.g.(z2, 26, x7), it can instead _5.7178
initialize agent; with 63‘5‘75 as a function ofy’ = (11,12, 13), | —17745 »
where, unbeknownst to agent 7, = z2, 72 = x4, and v 2.4566 (42)
ns = x7. By hiding the labels of each state which will be 1.6395
later sent to agent these states are kept private in the sense —92.8798
that agent does not know which agent they belong to.)
an
IV. SIMULATION RESULTS 0.2462
. . . . [= 1.2718 | . 43

A numerical implementation of the above cloud architec- " 0 (43)
ture was run for a particular choice of simulation example.
The problem simulated was chosen to uge= 6 agents, The cloud algorithm was run fo50, 000 total iterations.

each associated with a scalar state as above. The objectivéook 1,524 iterations to enter a ball of radiusaboutz,

of which 508 were spent taking gradient descent steps ang]
1,016 were spent communicating values across the network.
The value ofz¢(50,000) was [5]

—2.0887
5.6219

. —1.7744
- 2.4649
1.6271

—2.8799

(6]

(44)
[7]

8l
and the final value of.¢(50,000) was

0.24158
pf=| 1.27176
0.00000

The final value of V in the cloud was
V (2¢(50,000), 12°(50, 000)) 0.0110. Based on the [11]
definition of V, this means that the square of the Euclideaﬂz]
distance from(x¢(50,000), x°(50,000)) to (Z, /) is just
0.0110. This result confirms both that’(k) comes withine
of Z in finite time and that it does not go more thamaway
from % after that.

To further illustrate the convergence of this problem, the

[€]
(45)
[10]

[13]

histories of the states, Kuhn-Tucker multipliers, and eadi 14!
V over time onboard agent 1 for &b, 000 timesteps are
shown in Figures 1, 2, and 3, respectively. Thatis non- [15]

increasing in time was verified numerically in the MATLAB
implementation and is evident in graph shown in Figure 31¢)

V. CONCLUSION

We presented a cloud architecture for coordinating a teaft’!
of mobile agents in a distributed optimization task. Eaclug]
agent has direct knowledge only of its own local objective
function and its own influence upon the global constraint 4
functions but receives occasional updates from the cloud
computer containing values of each other agent’s state and
updated Kuhn-Tucker multipliers. Using this architectune
equality constrained multi-agent optimization problenesev
proven to come withine of the constrained minimum in
finite time and to never be more thanaway thereafter.
Simulation results were provided to attest to the viability

[21]

of this approach. [22]
REFERENCES

[1] Dimitri P. Bertsekas and John N. Tsitsikli®arallel and Distributed ~ [23]
Computation: Numerical Methods. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[2] L. Carlone, V. Srivastava, F. Bullo, and G. C. CalafioreistBbuted
random convex programming via constraints consensus.):62@- [24]
662, 2014.

[3] S. Caron and G. Kesidis. Incentive-based energy consamgchedul- [25]
ing algorithms for the smart grid. I@mart Grid Communications
(SmartGridComm), 2010 First IEEE International Conference on, [26]

pages 391-396, Oct 2010.

20] H.D. Simon.

Benoit Chachuat. Nonlinear and dynamic optimizationor® theory
to practice. Technical report, Automatic Control LaborgtdEPFL,
Switzerland, 2007.

Mung Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyleyéring
as optimization decomposition: A mathematical theory ofwoek
architectures.Proceedings of the |IEEE, 95(1):255-312, Jan 2007.
Greg Droge and Magnus Egerstedt. Proportional intedistributed
optimization for dynamic network topologies. IFEEE American
Control Conference (ACC), 2014, June 2014.

Diego Feijer and Fernando Paganini. Stability of prirdahl gradient
dynamics and applications to network optimizationAutomatica,
46(12):1974-1981, December 2010.

B. Gharesifard and J. Cortes. Distributed continudoeet convex
optimization on weight-balanced digraph&utomatic Control, IEEE
Transactions on, 59(3):781-786, March 2014.

Ken Goldberg and Ben Kehoe. Cloud robotics and automati®
survey of related work. Technical Report UCB/EECS-201E&ECS
Department, University of California, Berkeley, Jan 2013.

Bruce Hendrickson and Tamara G. Kolda. Graph pariiigrmodels
for parallel computingParallel Comput., 26(12):1519-1534, Novem-
ber 2000.

James Hurt. Some stability theorems for ordinary diffeee equations.
SAM Journal on Numerical Analysis, 4(4):582-596, 1967.

F. Kelly, A. Maulloo, and D. Tan. Rate control in commaation
networks: shadow prices, proportional fairness and styhbih Journal
of the Operational Research Society, volume 49, 1998.

M. Khan, G. Pandurangan, and V.S.A. Kumar. Distribuddgbrithms
for constructing approximate minimum spanning trees ineless
sensor networksParallel and Distributed Systems, |EEE Transactions
on, 20(1):124-139, Jan 2009.

A. Nedic and A. Ozdaglar. Distributed subgradient noelh for
multi-agent optimization.Automatic Control, IEEE Transactions on,
54(1):48-61, Jan 2009.

Angelia Nedic and Alex Olshevsky. Distributed optimion over
time-varying directed graphs. IDBecision and Control (CDC), 2013
IEEE 52nd Annual Conference on, pages 6855-6860, Dec 2013.
Angelia Nedic and Asuman Ozdaglar. On the rate of caygece
of distributed subgradient methods for multi-agent opation. In
Proceedings of |IEEE CDC, pages 4711-4716, 2007.

Angelia Nedi¢ and Asuman Ozdaglar. Convergence @tednsensus
with delays. Journal of Global Optimization, 47(3):437-456, 2010.
Angelia Nedic, Asuman Ozdaglar, and Pablo A Parrilo.n§mined
consensus and optimization in multi-agent networksAutomatic
Control, |IEEE Transactions on, 55(4):922-938, 2010.

] Sikandar Samar, Stephen Boyd, and Dimitry Gorinevdhgtributed

estimation via dual decomposition.
Conference, pages 1511-1519, 2007.
Partitioning of unstructured problems fparallel
processing. Computing Systems in Engineering, 2(23):135 — 148,
1991. Parallel Methods on Large-scale Structural AnalgsisPhysics
Applications.

Daniel E Soltero, Mac Schwager, and Daniela Rus. Deakred path
planning for coverage tasks using gradient descent aéaptwtrol.
The International Journal of Robotics Research, 2013.

Andre Teixeira, Euhanna Ghadimi, Iman Shames, HengkdBerg,
and Mikael Johansson. Optimal scaling of the admm algoritm
distributed quadratic programming. Decision and Control (CDC),
2013 IEEE 52nd Annual Conference on, pages 6868—6873, Dec 2013.
Niki Trigoni and Bhaskar Krishnamachari. Sensor netalgorithms
and applications Introduction. Philosophical Transactions of the
Royal Scoeity A - Mathematical, Physical, and Engineering Sciences,
370(1958, SI):5-10, JAN 13 2012.

H. Uzawa. lterative methods in concave programmirfudies in
Linear and Non-Linear Programming, 1958.

H. Uzawa. The kuhn-tucker theorem in concave programgniitudies

in Linear and Non-Linear Programming, 1958.

Minyi Zhong and C.G. Cassandras. Asynchronous disteith opti-
mization with event-driven communicatiodutomatic Control, |IEEE
Transactions on, 55(12):2735-2750, Dec 2010.

IRroc. European Control

	I Introduction
	II Problem Statement and Architecture
	II-A Architecture Motivation
	II-B Formal Architecture Description

	III Convergence Analysis
	III-A Ultimate Boundedness of Solutions
	III-B Extension to Private Optimization

	IV Simulation Results
	V Conclusion
	References

