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Abstract

Recently we studied communication delay in distributed control of untimed discrete-event systems

based on supervisor localization. We proposed a property called delay-robustness: the overall system

behavior controlled by distributed controllers with communication delay is logically equivalent to its

delay-free counterpart. In this paper we extend our previous work to timed discrete-event systems, in

which communication delays are counted by a special clock event tick. First, we propose a timed channel

model and define timed delay-robustness; for the latter, a polynomial verification procedure is presented.

Next, if the delay-robust property does not hold, we introduce boundeddelay-robustness, and present

an algorithm to compute themaximaldelay bound (measured by number ofticks) for transmitting a

channeled event. Finally, we demonstrate delay-robustness on the example of an under-load tap-changing

transformer.
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I. INTRODUCTION

For distributed control of discrete-event systems (DES), supervisor localization was recently proposed

[1–4] which decomposes a monolithic supervisor or a heterarchical array of modular supervisors into

local controllers for individual agents. Collective localcontrolled behavior is guaranteed to be globally

optimal and nonblocking, assuming that the shared events among local controllers are communicated

instantaneously, i.e. with no delay. In practice, however,local controllers are linked by a physical

communication network in which delays may be inevitable. Hence, for correct implementation of the

local controllers obtained by localization, it is essential to model and appraise communication delays.

In [5] and its conference precursor [6], we studied communication delays among local controllers

for untimed DES. In particular, we proposed a new concept called delay-robustness, meaning that the

systemic behavior of local controllers interconnected by communication channels subject to unbounded

delays is logically equivalent to its delay-free counterpart. Moreover, we designed an efficient procedure

to verify for which channeled events the system is delay-robust. If for a channeled eventr the system

fails to be delay-robust, there may still exist a finite boundfor which the system can tolerate a delay in

r. In unitimed DES, however, there lacks atemporalmeasure for the delay bound (except for counting

the number of occurrences of untimed events).

In this paper and its conference antecedent[7], we extend our study on delay-robustness to the timed

DES (or TDES) framework proposed by Brandin and Wonham [8, 9]. In this framework, the special

clock eventtick provides a natural way of modeling communication delay as temporal behavior. We

first propose a timed channel model for transmitting each channeled event, which effectively measures

communication delay by the number oftick occurrences, with noa priori upper bound, so that the channel

modelsunboundeddelay. We then define timed delay-robustness with respect tothe timed channel, thus

extending its untimed counterpart [5, 6] in two respects: (1) the system’s temporal behavior is accounted

for, and (2) timed controllability is required. A polynomial algorithm is presented to verify timed delay-

robustness according to this new definition.

If the delay-robust property fails to hold, we introduceboundeddelay-robustness and present a corre-

sponding verification algorithm. In particular, the algorithm computes themaximaldelay bound (in terms

of number ofticks) for transmitting a channeled event, i.e. the largest delay that can be tolerated without

violating the system specifications. These concepts and thecorresponding algorithms are illustrated for

the case of an under-load tap-changing transformer (ULTC).

Distributed/decentralized supervisory control with communication delay has been widely studied for
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untimed DES (e.g. [10–18]). In particular in [11, 15], the existence of distributed controllers in the

unbounded delay case is proved to be undecidable; and in [11–14, 16], distributed controllers are

synthesized under the condition that communication delay is bounded. We also note that Sadid et al.

[18] propose a way to verify robustness of a given synchronous protocol with respect to a fixed or a

finitely-bounded delay, as measured by the number of untimedevents occurring during the transmitting

process. We refer to [5, 6] for a detailed review of these works and their differences from our approach.

Communication delay in timed DES, on the other hand, has (to our knowledge) received little attention.

The present work is based on our previous research on timed supervisor localization [3, 4].

The paper is organized as follows. Sect.II provides a review of the Brandin-Wonham TDES framework

and recalls supervisor localization for TDES. In Sect.III we introduce a timed channel model, and present

the concept and verification algorithm for timed delay-robustness.In Sect.IV we define bounded delay-

robustness, and present an algorithm to compute the maximaldelay bound. These concepts and the

corresponding algorithms are demonstrated in Sect.V on the distributed control problem for an under-

load tap-changing transformer (ULTC) with communications. Conclusions are presented in Sect.VI .

II. D ISTRIBUTED CONTROL BY SUPERVISORLOCALIZATION OF TDES

A. Preliminaries on TDES

The TDES model proposed by Brandin and Wonham [8] is and extension of the untimed DES generator

model of the Ramadge-Wonham framework [9]. A TDES is given by

G := (Q,Σ, δ, q0, Qm). (1)

HereQ is the finite set ofstates; Σ is the finite set of events including the special eventtick, which

represents “tick of the global clock”;δ : Q × Σ → Q is the (partial)state transition function(this is

derived from the corresponding activity transition function; the reader is referred to the detailed transition

rules given in [8, 9]); q0 is the initial state; andQm ⊆ Q is the set ofmarker states. The transition

function is extended toδ : Q × Σ∗ → Q in the usual way. Theclosed behaviorof G is the language

L(G) := {s ∈ Σ∗|δ(q0, s)!} and themarked behavioris Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm} ⊆ L(G).

We say thatG is nonblockingif L̄m(G) = L(G), where·̄ denotesprefix closure[9].

Let Σ∗ be the set of all finite strings, including the empty stringǫ. ForΣ′ ⊆ Σ, thenatural projection
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P : Σ∗ → Σ′∗ is defined by

P (ǫ) = ǫ;

P (σ) =







ǫ, if σ /∈ Σ′,

σ, if σ ∈ Σ′;

P (sσ) = P (s)P (σ), s ∈ Σ∗, σ ∈ Σ.

(2)

As usual,P is extended toP : Pwr(Σ∗) → Pwr(Σ′∗), wherePwr(·) denotes powerset. WriteP−1 :

Pwr(Σ′∗) → Pwr(Σ∗) for the inverse-image functionof P .

To adapt the TDESG in (1) for supervisory control, we first designate a subset of events, denoted

by Σhib ⊆ Σ, to be theprohibitible events which can be disabled by an external supervisor. Next, and

specific to TDES, we bring in another category of events, called theforcible events, which canpreempt

event tick; let Σfor ⊆ Σ denote the set of forcible events. Note thattick /∈ Σhib ∪ Σfor. Now it is

convenient to define thecontrollable event setΣc := Σhib ∪̇ {tick}. The uncontrollableevent set is

Σu := Σ− Σc.

We introduce the notion of (timed) controllability as follows. For a strings ∈ L(G), defineEligG(s) :=

{σ ∈ Σ|sσ ∈ L(G)} to be the subset of events ‘eligible’ to occur (i.e. defined) at the stateq = δ(q0, s).

Consider an arbitrary languageF ⊆ L(G) and a strings ∈ F ; similarly define the eligible event subset

EligF (s) := {σ ∈ Σ|sσ ∈ F}. We sayF is controllablewith respect toG if, for all s ∈ F ,

EligF (s) ⊇































EligG(s) ∩ (Σu∪̇{tick})

if EligF (s) ∩ Σfor = ∅,

EligG(s) ∩ Σu

if EligF (s) ∩ Σfor 6= ∅.

(3)

Whether or notF is controllable, we denote byC(F ) the set of all controllable sublanguages ofF .

ThenC(F ) is nonempty, closed under arbitrary set unions, and thus contains a unique supremal (largest)

element denoted bysupC(F ) [8, 9]. Now consider a specification languageE ⊆ Σ∗ imposed on the

timed behavior ofG; E may represent a logical and/or temporal requirement. Let the TDES

SUP = (X,Σ, ξ, x0,Xm) (4)

be the correspondingmonolithic supervisorthat is optimal (i.e., maximally permissive) and nonblocking

in the following sense:SUP’s marked languageLm(SUP) is

Lm(SUP) = supC(E ∩ Lm(G)) ⊆ Lm(G)

and moreover its closed languageL(SUP) is L(SUP) = Lm(SUP).
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B. Supervisor Localization of TDES

In this subsection, we introduce the supervisor localization procedure, which was initially proposed

in the untimed DES framework [1] and then adapted to the TDES framework [3, 4]. By this procedure,

a set oflocal controllersand local preemptorsis obtained and shown to be ‘control equivalent’ to the

monolithic supervisorSUP in (4). By allocating these constructed local controllers and preemptors to

each component agent, we build a distributed supervisory control architecture.

Let TDES G in (1) be the plant to be controlled andE be a specification language. As in [9],

synthesize the monolithic optimal and nonblocking supervisorSUP. SupervisorSUP’s control action

includes (i) disabling prohibitible events inΣhib and (ii) preemptingtick via forcible events inΣfor. By

the supervisor localization procedure, a set of local controllers {LOC
C
αdefined onΣα|α ∈ Σhib} and a

set of local preemptors{LOC
P
β defined onΣβ|β ∈ Σfor} are constructed. TheseLOC

C
α andLOC

P
β

are all TDES as in (1), and proved to be control equivalent toSUP (with respect toG) in the following

sense:

L(G)∩
(

⋂

α∈Σhib

P−1
α L(LOC

C
α )

)

∩
(

⋂

β∈Σfor

P−1

β L(LOC
P
β )

)

= L(SUP), (5)

Lm(G)∩
(

⋂

α∈Σhib

P−1
α Lm(LOC

C
α )

)

∩
(

⋂

β∈Σfor

P−1
β Lm(LOC

P
β )

)

= Lm(SUP). (6)

HerePα : Σ∗ → Σ∗
α andPβ : Σ∗ → Σ∗

β are the natural projections as in (2).

Now, using the constructed local controllers and local preemptors, we build a distributed supervisory

control architecture (without communication delay) for a multi-agent TDES plant. Consider that the plant

G consists ofN component TDESGi (i ∈ N := {1, 2, ..., N}), each with event setΣi ∋ tick. For

simplicity assumeΣi∩Σj = {tick}, for all i 6= j ∈ N ; namely the agentsGi are independent except for

synchronization on the global eventtick. As a result, the marked and closed behaviors of the composition

of Gi coincide with those of their synchronous product [9], and thus we use synchronous product instead

of composition to combine TDES together, i.e.G = ||
i∈N

Gi where || denotes the synchronous product

of TDES.1

A convenientallocation policyof local controllers/preemptors is the following. For a fixed agentGi,

let Σi,for,Σi,hib ⊆ Σi be its forcible event set and prohibitible event set, respectively. Then allocate toGi

the set of local controllersLOC
C
i := {LOC

C
α |α ∈ Σi,hib} and the set of local preemptorsLOC

P
i :=

1The closed and marked behaviors ofTDES = TDES1 ||TDES2 are L(TDES) = L(TDES1) ||L(TDES2) and

Lm(TDES) = Lm(TDES1) ||Lm(TDES2), where|| denotes the synchronous product of languages [9].
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σ

'σ

0 1

tick tick

Fig. 1. Timed channel modelCH(j, σ, i) for transmitting eventσ from Gj to Gi with indefinite (i.e. unspecified) time delay.

{LOC
P
β |β ∈ Σi,for}. This allocation creates a distributed control architecture for the multi-agent plant

G, in which each agentGi is controlled by its own local controllers/preemptors, while interacting with

other agents through communication of shared events. For agent Gi, the set ofcommunication events

that need to be imported from other agents is

Σcom,i :=
(

⋃

α∈Σi,hib

Σα −Σi

)

∪
(

⋃

β∈Σi,for

Σβ − Σi

)

(7)

whereΣα andΣβ are the event sets ofLOC
C
α and ofLOC

P
β respectively.

However, this distributed control architecture is built under the assumption that the communication

delay of communication events is negligible. While simplifying the design of distributed controllers, this

assumption may be unrealistic in practice, where controllers are linked by a physical network subject to

delay. In the rest of this paper, we investigate how the communication delay affects the synthesized local

control strategies and the corresponding overall system behavior.

III. T IMED DELAY-ROBUSTNESS

Consider event communication between a pair of agentsGi andGj (i, j ∈ N ): specifically,Gj sends

an eventσ to Gi. Let Σj be the event set ofGj andΣcom,i as in (7) the set of communication events

thatGi imports from other agents. Then the set of events thatGj sends toGi is

Σj,com,i := Σj ∩ Σcom,i. (8)

We thus have eventσ ∈ Σj,com,i.

Now consider the timed channel modelCH(j, σ, i) for σ transmission displayed in Fig.1. CH(j, σ, i)

is a 2-state TDES with event set{σ, σ′, tick}. The transition from state 0 to 1 byσ means thatGj has

sentσ to channel, while the transition from state 1 back to 0 byσ′ means thatGi has receivedσ from

channel. We refer toσ′ as thesignal eventof σ, and assign its controllability status to be the same as

σ (i.e. σ′ is controllable iff σ is controllable). The selfloop transitiontick at state 1 therefore counts

communication delay ofσ transmission: the number ofticks that elapses betweenσ andσ′. Measuring
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delay by tick events is a major improvement compared to the untimed channel model we used in [6]

where no suitable measure exists to count delay. Later in Sect. IV, with the aid of this measure we will

compute useful delay bounds for event communication.

It should be stressed that the number oftick occurrences betweenσ andσ′ is unspecified, inasmuch as

the selflooptick at state 1 may occur indefinitely. In this sense,CH(j, σ, i) models possiblyunbounded

communication delay. Note thattick is also selflooped at state 0; this is not used to count delay, but

rather for the technical necessity of preventing the eventtick from being blocked when synchronizing

CH(j, σ, i) with other TDES. The initial state 0 is marked, signaling each completion of eventσ

transmission; state 1, on the other hand, is unmarked because the transmission is still ongoing.

The capacity of channelCH(j, σ, i) is 1, meaning that only when the latest occurrence of eventσ is

received by its recipientGi, will the channel accept a fresh instance ofσ from Gj . Hence,CH(j, σ, i)

permits reoccurrence ofσ (i.e. Gj sendsσ again) only when it is idle, namely at state 0. The capacity

constraint ofCH(j, σ, i) can be easily relaxed to allowmulti-capacitychannel models, as we shall see

in Remark1 below. We nevertheless adoptCH(j, σ, i) for its structural simplicity and suitability for

clarifying the concept of delay-robustness presented next.

With the channel modelCH(j, σ, i), we may describe thechanneled behaviorof the system as follows.

Suppose givenGk, k ∈ N ; by localization (see Sect.II-B) Gk acquires a set of local controllers

LOC
C
k := {LOC

C
α |α ∈ Σk,hib} and a set of local preemptorsLOC

P
k := {LOC

P
β |β ∈ Σk,for}.2 So the

local controlled behavior ofGk is

SUPk := Gk ||
(

||
α∈Σk,hib

LOC
C
α

)

||
(

||
β∈Σk,for

LOC
P
β

)

. (9)

Observe that whenGj sendsσ to Gi throughCH(j, σ, i), only the recipientGi’s local behaviorSUPi

is affected becauseGi receivesσ′ instead ofσ due to delay. Hence each transitionσ of SUPi must be

replaced by its signal eventσ′; we denote bySUP
′
i the resulting new local behavior ofGi. Now let

NSUP := SUP
′
i || ( ||

k∈N ,k 6=i

SUPk) (10)

2 For each state statex of each controllerLOC
C
α (resp. preemptorLOC

P
β ), and each communication eventσ ∈ Σα − Σk

(resp.σ ∈ Σβ − Σk), if σ is not defined atx, we add aσ-selfloop, i.e. transition(x, σ, x) to LOC
C
α (resp.LOC

P
β ). Now,

σ is defined at every state ofLOC
C
α (resp.LOC

P
β ). With this modification, the new local controllersLOC

C
α (resp. local

preemptorsLOC
P
β ) are also control equivalent to SUP (becauseLOC

C
α (resp.LOC

P
β ) does not disable eventsσ from other

componentsGj ) and the definition ofσ at every state ofLOC
C
α (resp.LOC

P
β ) is consistent with the assumption thatLOC

C
α

(resp.LOC
P
β ) may receiveσ after indefinite communication delay.
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and then

SUP
′ := NSUP || CH(j, σ, i). (11)

SoSUP
′ is the channeled behavior of the system with respect toCH(j, σ, i). Note that bothSUP

′ and

NSUP are defined overΣ′ := Σ ∪ {σ′}.

Let P : Σ′∗ → Σ∗ and Pch : Σ′∗ → {σ, tick, σ′}∗ be natural projections (as in (2)). We define

delay-robustness as follows.

Definition 1. Consider thatGj sends eventσ to Gi through channelCH(j, σ, i). The monolithic

supervisorSUP in (4) is delay-robustwith respect toCH(j, σ, i) if the following conditions hold:

(i) SUP
′ in (11) is correct andcomplete, i.e.

PL(SUP
′) = L(SUP) (12)

PLm(SUP
′) = Lm(SUP) (13)

(∀s ∈ Σ′∗)(∀w ∈ Σ∗) s ∈ L(SUP
′) & (Ps)w ∈ Lm(SUP)

⇒ (∃v ∈ Σ′∗) Pv = w & sv ∈ Lm(SUP
′) (14)

(ii) P−1
ch (L(CH(j, σ, i))) is controllable with respect toL(NSUP) and{σ}, i.e.

P−1

ch L(CH(j, σ, i)){σ} ∩ L(NSUP) ⊆ P−1

ch L(CH(j, σ, i)) (15)

In condition (i) above, ‘correctness’ ofSUP
′ means that noP -projection of anythingSUP

′ can do

is disallowed bySUP, while ‘completeness’ means that anythingSUP can do is theP -projection of

somethingSUP
′ can do. In this sense, the channeled behaviorSUP

′ is ‘equivalent’ to its delay-free

counterpartSUP. Specifically, conditions (12) and (13) state the equality of closed and marked behaviors

betweenSUP and theP -projection ofSUP
′; condition (14), which is required for ‘completeness’, states

that if SUP
′ executes a strings whose projectionPs in SUP can be extended by a stringw to a marked

string ofSUP, thenSUP
′ can further execute a stringv whose projectionPv is w and such thatsv is

marked inSUP
′. Roughly, anobservationally consistent inferenceabout coreachability at the “operating”

level of SUP
′ can be drawn from coreachability at the abstract (projected) level of SUP.

Condition (ii) of Definition1 imposes a basic requirement that channelCH(j, σ, i), when combined

with NSUP in (10) to form SUP
′, should not entail uncontrollability with respect toσ. We impose

condition (ii) no matter whetherσ is controllable or uncontrollable. This is because we view the channel

CH(j, σ, i) as a hard-wired passive adjunction to the original system, and thereforeCH(j, σ, i) cannot

8



exercise control onσ. In other words, the channel has to ‘accept’ any event that the rest of the system

might execute, whether that event is controllable or uncontrollable. Thus if there is already an instance of

σ in the channel (i.e.CH(j, σ, i) at state 1), then reoccurrence ofσ will be (unintentionally) ‘blocked’,

causing condition (ii) to fail. This issue persists, albeitin milder form, even if we use channel models

of multiple (finite) capacities (see Remark1 below).

We note that delay-robustness as defined above is an extension, from untimed DES to timed DES, of

the concept proposed under the same name in [6] . In particular, the channel modelCH(j, σ, i) used in

the definition is capable of measuring transmission delay bycountingtick occurrences; and condition

(ii) in the definition requires controllability for timed DES.

Finally, we present a polynomial algorithm to verify the delay-robustness property. Notice that when

(12) and (13) hold, then (14) is identical with theLm(SUP
′)-observerproperty ofP [19, 20]. The

latter may be verified in polynomial time (O(n4), n the state size ofSUP
′) by computing thesupremal

quasi-congruenceof a nondeterministic automaton derived fromSUP
′ andP [19, 21].3 The following

is the delay-robustness verification algorithm.

Algorithm 1

1. Check ifP is anLm(SUP
′)-observer. If no, returnfalse.

2. Check ifPL(SUP
′) = L(SUP) andPLm(SUP

′) = Lm(SUP). If no, returnfalse.

3. Check ifP−1

ch (L(CH(j, σ, i))) is controllable with respect toL(NSUP) and{σ}. If no, returnfalse.

4. Returntrue.

If Step 1 above (O(n4) complexity) is successful, i.e.P is indeed anLm(SUP
′)-observer, then Step 2

of computingPL(SUP
′) and PLm(SUP

′) is of polynomial complexityO(n4) [21]. Then checking

the two equalities in Step 2 is ofO(n2) complexity. Finally in Step 3, controllability may be checked

using standard algorithm [8] in linear timeO(n). Therefore, Algorithm 1 terminates and is of polynomial

complexityO(n4). The following result is straightforward.

Proposition 1. Consider thatGj sends eventσ to Gi through channelCH(j, σ, i). The monolithic

supervisorSUP is delay-robust with respect toCH(j, σ, i) if and only if Algorithm 1 returns true.

Remark1. (Multi-capacity channel model) So far we have considered the 1-capacity channel model

3We noteen passantthat [22] reports an algorithm with quadratic time complexity for verifying the observer property alone;

that does not, however, yield structural information which(if the observer property is not satisfied) might be useful for remedial

design.
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Fig. 2. C-capacity channel modelNCH(j, σ, i).

CH(j, σ, i), and defined delay-robustness with respect to it. We now consider the more generalC-

capacity channel modelNCH(j, σ, i), C ≥ 1 a positive integer, displayed in Fig.2. The senderGj

may send at mostC instances of eventσ to NCH(j, σ, i), each instance subject to indefinite delay.

With channelNCH(j, σ, i), one may proceed just as before, by replacingCH(j, σ, i) by NCH(j, σ, i)

throughout, to define the corresponding delay-robustness property with respect toNCH(j, σ, i), and then

revising Algorithm 1 correspondingly to verify delay-robustness.

It is worth noting that whenNCH(j, σ, i) reaches its maximal capacity, andGj sends yet another

instance ofσ, thenσ is ‘blocked’ byNCH(j, σ, i), implying uncontrollability of the channeled behavior.

Hence the uncontrollability problem always exists as long as the channel model is of finite capacity and

delay is indefinite, although the controllability condition (cf. condition (ii) of Definition1) is more easily

satisfied for larger capacity channels (simply because moreinstances ofσ may be sent to the channel).

IV. B OUNDED DELAY-ROBUSTNESS ANDMAXIMAL DELAY BOUND

Consider again the situation that agentGj sends an eventσ to Gi. If the monolithic supervisorSUP

is verified (by Algorithm 1) to be delay-robust, then we will use channelCH(j, σ, i) in Fig. 1 to transmit

σ subject to unbounded delay, and the system’s behavior will not be affected. If, however,SUP fails

to be delay-robust, there are two possible implications: (1) σ must be transmitted without delay (as in

the original setup of localization [1, 3, 4]); or (2) there exists a delay boundd (≥ 1) of σ such that

if each transmission ofσ is completed withind occurrences oftick, the system’s behavior will remain

unaffected. This section aims to identify the latter case, which we call “bounded delay-robust”, and

moreover to determine the boundd.

To that end, consider the channel modelCHd(j, σ, i) in Fig. 3, with parameterd ≥ 1. CHd(j, σ, i) is

a (d+ 2)-state TDES with event set{σ, tick, σ′}. After an occurrence ofσ (state 0 to 1),CHd(j, σ, i)

counts up tod (≥ 0) occurrences oftick (state 1 throughd+1) by which time the signal eventσ′ must

occur. That is, the occurrence ofσ′ (Gi receivesσ) is bounded byd ticks. Note that thetick selfloop at

10



σ

'σ0 1

tick

tick

2 d d+1

tick

'σ
'σ

'σ

⋯⋯

Fig. 3. Timed channel modelCHd(j, σ, i), d ≥ 1, for transmitting eventσ from Gj to Gi with delay boundd.

state 0 is again for the technical requirement to prevent theblocking of eventtick when synchronizing

CHd(j, σ, i) with other TDES.

Now with CHd(j, σ, i), the channeled behavior of the system is

SUP
′
d := NSUP || CHd(j, σ, i) (16)

whereNSUP is given in (10). The event set ofSUP
′
d is Σ′ = Σ ∪ {σ′}, and we recall the natural

projectionsP : Σ′∗ → Σ∗ andPch : Σ′∗ → {σ, tick, σ′}∗.

Definition 2. Consider thatGj sends eventσ to Gi through channelCHd(j, σ, i), d ≥ 1. The monolithic

supervisorSUP in (4) is bounded delay-robustwith respect toCHd(j, σ, i) (or d-bounded delay-robust)

if the following conditions hold:

(i) SUP
′
d in (16) is correct andcomplete, i.e.

PL(SUP
′
d) = L(SUP) (17)

PLm(SUP
′
d) = Lm(SUP) (18)

(∀s ∈ Σ′∗)(∀w ∈ Σ∗) s ∈ L(SUP
′
d) & (Ps)w ∈ Lm(SUP)

⇒ (∃v ∈ Σ′∗) Pv = w & sv ∈ Lm(SUP
′
d) (19)

(ii) P−1
ch (L(CHd(j, σ, i))) is controllable with respect toL(NSUP) and{σ}, i.e.

P−1

ch L(CHd(j, σ, i)){σ} ∩ L(NSUP) ⊆ P−1

ch L(CHd(j, σ, i)) (20)

Bounded delay-robustness is defined in the same way as (unbounded) delay-robustness in Definition1,

but with respect to the new channel modelCHd(j, σ, i) with delay boundd. As a result,d-bounded

delay-robustness may be verified by Algorithm 1 with corresponding modifications. For later reference,

we state here the modified algorithm.

Algorithm 2

1. Check ifP is anLm(SUP
′
d)-observer. If not, returnfalse.

11



2. Check ifPL(SUP
′
d) = L(SUP) andPLm(SUP

′
d) = Lm(SUP). If not, returnfalse.

3. Check ifP−1
ch (L(CHd(j, σ, i))) is controllable with respect toL(NSUP) and{σ}. If not, returnfalse.

4. Returntrue.

Now if the monolithic supervisorSUP fails to be (unbounded) delay-robust with respect to channel

CH(j, σ, i), we would like to verify ifSUP is bounded delay-robust with respect toCHd(j, σ, i) for

somed ≥ 1. If so, compute themaximaldelay bound, i.e. the largest delay (number ofticks) that can

be tolerated without changing the system’s logical behavior. We need the following lemma.

Lemma 1. Consider thatGj sends eventσ to Gi through channelCHd(j, σ, i), d ≥ 1. If SUP is not

d-bounded delay-robust, then it is not(d+ 1)-bounded delay-robust.

The result of Lemma1 is intuitive: if SUP cannot tolerate aσ transmission delay ofd, neither can

it tolerate a delay(d + 1). By induction, in fact,SUP cannot tolerate any delay larger thand. The

proof of Lemma1 is in AppendixA. This fact suggests the following algorithm for identifying bounded

delay-robustness as well as computing the maximal delay bound.

Algorithm 3

1. Setd = 1.

2. Check by Algorithm 2 ifSUP is d-bounded delay-robust relative to channelCHd(j, σ, i). If not, let

d = d− 1 and go to Step 3. Otherwise advanced to d+ 1 and repeat Step 2.

3. Outputdmax := d.

Lemma 2. If SUP is not delay-robust with respect toCH(j, σ, i), then Algorithm 3 terminates in at

most2m ∗m steps, i.e.dmax ≤ 2m ∗m, where m is the state size ofSUP
′ in (11).

The proof of Lemma2 is given in Appendix B. In Algorithm 3, we work upwards starting from

the minimal delayd = 1. If SUP is not 1-bounded delay-robust with respect toCH1(j, σ, i), then by

Lemma1 SUP is notd-bounded delay-robust for anyd > 1. ThereforeSUP is notbounded delay-robust

andσ must be transmitted without delay. Note that in this case Algorithm 3 outputsdmax = 0.

If SUP is 1-bounded delay-robust, we next check if it is2-bounded delay-robust with respect to

CH2(j, σ, i). If SUP fails to be 2-bounded delay-robust, then again by Lemma1 SUP fails to be

d-bounded delay-robust for anyd > 2. HenceSUP is bounded delay-robust, with the maximal delay

bounddmax = 1.

If SUP is shown to be2-bounded delay-robust, the iterative process continues until SUP fails to be

(d+1)-bounded delay-robust for somed ≥ 2; this happens in finitely many steps according to Lemma2.

12



ThenSUP is bounded delay-robust, with the maximal delay bounddmax = d. The following result is

immediate.

Proposition 2. Consider thatGj sends eventσ to Gi through channelCHd(j, σ, i), d ≥ 1. The

monolithic supervisorSUP is bounded delay-robust with respect toCHd(j, σ, i) if and only if the

outputdmax of Algorithm 3 satisfiesdmax > 0. Moreover, ifSUP is bounded delay-robust, thendmax

is the maximal delay bound forσ transmission.

To summarize, when an eventσ is sent fromGj to Gi, we determine unbounded or bounded delay-

robustness and choose the corresponding channel as follows.

Algorithm 4

1. Check by Algorithm 1 ifSUP is (unbounded) delay-robust. If so, terminate, set the maximal delay

bounddmax = ∞, and use channelCH(j, σ, i) in Fig. 1.

2. Check by Algorithm 3 ifSUP is bounded delay-robust. If so (i.e.dmax ≥ 1), terminate and use

channelCHd(j, σ, i) in Fig. 3 with d = dmax.

3. In this casedmax = 0. Terminate and use no channel:σ must be transmitted without delay.

Remark2. (Multiple channeled events) So far we have considered a single event communication: agentGj

sends eventσ toGi. Using this as a basis, we present an approach to the general case of multiple channeled

events, as is common in distributed control. We will consider that each fixed triple (sender, channeled

event, receiver) is assigned with its own communication channel, and the assigned channels operate

concurrently. Our goal is to obtain these channels, ensuring unbounded or bounded delay-robustness, one

for each triple (sender, channeled event, receiver).

First fix i, j ∈ N , and recall from (8) that Σj,com,i is the set of events thatGj sends toGi. Write

Σj,com,i = {σ1, ..., σr}, r ≥ 1, and treat the channeled eventsσ1, σ2, ... sequentially, in order of indexing.

Algorithm 5

1. Setp = 1.

2. For eventσp ∈ Σj,com,i apply Algorithm 4 to obtain the maximal delay bounddmax.

2.1. If dmax = ∞, namely unbounded delay-robustness, choose channelCH(j, σp, i), and letNSUP :=

NSUP||CH(j, σp, i).

2.2. If dmax ≥ 1 is finite, namely bounded delay-robustness, choose channelCHd(j, σp, i), and let

NSUP := NSUP||CHd(j, σp, i).

2.3 If dmax = 0, then no channel is chosen andσp must be transmitted without delay.

If p < r, advancep to p+ 1 and repeat Step 2.

13
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3. Output a set of channels used for sending events fromGj to Gi.

Note that at Step 2 of Algorithm 5, if a channel is chosen for eventσp, thenNSUP must be reset to

be the synchronous product ofNSUP and the channel, so that in choosing a channel for the next event

σp+1 the previously chosen channel is considered together. Thisensures that when the derived channels

operate concurrently, the system’s behavior is not affected. It is worth noting that a different ordering

of the setΣj,com,i may result in a different set of channels; if no priority of the transmission delay is

imposed on the communication events, we may choose an ordering randomly.

Finally, since the set of all communication events isΣcom := ∪
i,j∈N

Σj,com,i, we simply apply Algo-

rithm 5 for each (ordered) pairi, j ∈ N to derive all communication channels. Again, a different ordering

of the setN ×N generally results in a different set of channels, because the channels chosen for a pair

(i, j) will be used to decide channels for all subsequent(i′, j′). For convenience we will simply order

the pairs(i, j) sequentially first onj then oni.

V. CASE STUDY: UNDER-LOAD TAP-CHANGING TRANSFORMER

In this section we demonstrate timed delay-robustness and associated verification algorithms on an

under-load tap-changing transformer system.

A. Model Description and Supervisor Localization

Transformers with tap-changing facilities constitute an important means of controlling voltage at all

levels throughout electrical power systems. We consider anunder-load tap-changing transformer (ULTC)

as displayed in Fig.4, which consists of two components: Voltmeter and Tap-Changer[23].

This ULTC is operated in two modes: Automatic and Manual. In the automatic mode, the tap-changer

works according to the following logic. (1) If the voltage deviation is greater than some threshold value,
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TABLE I. PHYSICAL INTERPRETATION OF EVENTS

Event Physical interpretation Time bounds (hib/for)

(lower, upper)

11 Initialize voltmeter (0, ∞) hib

10 Report |∆V | > ID and∆V > 0 (0, ∞)

12 Report |∆V | < ID, i.e. voltage recovered (0, ∞)

14 Report |∆V | > ID and∆V < 0 (0, ∞)

16 Report voltage exceedsVmax (0, ∞)

30 Tap-up/Down failed (0, ∞)

31 Tap-down command with 5tick delay (5, ∞) hib & for

32 Tap-down successful (0, ∞)

33 Tap-up command (0, ∞) hib & for

34 Tap-up successful (0, ∞)

35 Tap-down command without delay (0, ∞) hib & for

41 Enter Automatic mode (0, ∞) hib

43 Enter Manual mode (0, ∞) hib

then a timer will start; when the timer times out, a ‘tap increase (or decrease) event’ will occur and

the timer will reset; a tap increase or decrease should only occur if the voltage change continues to

exceed threshold after the time out- this is to avoid tap changes in response to merely occasional random

fluctuations of brief duration. (2) If the voltage returns tothe dead-band, because of a tap change or

some other reason, then no tap change will occur. (3) If the voltage exceeds the maximally allowed value

Vmax, then lowering of the tap command without delay occurs instantaneously. In the manual mode,

the system is waiting for ‘Tap-up’, ‘Tap-down’, or ‘Automatic’ commands. An operator can change the

operation mode from one to the other, and thus the operator isadjoined into the plant components to be

controlled.

Each plant component is modeled as a TDES displayed in Fig.5, and associated events are listed in

TableI. So, the plant to be controlled is the synchronized behaviorof Voltmeter (VOLT), Tap-changer

(TAP) and Operator (OPTR), i.e.

PLANT = VOLT || TAP || OPTR. (21)

We consider a voltage control problem of the ULTC: when the voltage is not ‘normal’, design controllers

to recover the voltage through controlling tap ratio after atime delay to recover the voltage. Fig.6 displays

the TDES modelSPEC for the control specification in Automatic/Manual mode.

Note that since the tap increase (decrease) and lowering tapcommands would preempt the occurrence

of tick, the corresponding events 31, 33 and 35 are designated as forcible events. In the following, we
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synthesize the monolithic supervisorSUP by the standard TDES supervisory control theory [8, 9] and

the local controllers by TDES supervisor localization [3, 4].

First, synthesize the monolithic supervisor TDESSUP in the usual sense that its marked behavior

Lm(SUP) = SupC(Lm(SPEC) ∩ Lm(VOLT)) (22)
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and its closed behaviorL(SUP) = Lm(SUP). SUP has 231 states and 543 transitions, and embodies

disabling actions for all the prohibitible events and preempting actions relative totick for all the forcible

events.

Next, by supervisor localization, we obtain a set of local controllersLOC
C
11, LOC

C
31, LOC

C
33, LOC

C
35

LOC
C
41 andLOC

C
43 for controllable events 11, 31, 33, 35, 41 and 43 respectively, and a set of local

preemptorsLOC
P
31, LOC

P
33 andLOC

P
35 for forcible events 31, 33 and 35 respectively; their transition

diagrams are shown in Fig.7.

Finally, using these constructed local controllers/preemptors, we build a distributed control architecture

without communication delays for ULTC as displayed in Fig.8. The local controlled behaviors of the

plant components are

SUPV = VOLT || LOC
C
11,

SUPT = TAP || (LOC
C
31 || LOC

C
33 || LOC

C
35)

|| (LOC
P
31 || LOC

P
33 || LOC

P
35),

SUPO = OPTR || (LOC
C
41 || LOC

C
43).

Let ΣA,com,B represent the set of events that componentA sends to componentB; the sets of commu-
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Fig. 7. Local controllers and local preemptors for ULTC. According to Footnote2, for each state statex of each local

controller/preemptor, and each communication eventσ, if σ is not defined atx, we add aσ-selfloop. Let *(x) be the set of events

whose selfloops need to be adjoined at statex. In LOC
C
11, ∗(0) = ∗(2) = ∗(4) = {30, 31, 32, 33, 34, 35, 41}, ∗(1) = {43},

∗(5) = {30, 32, 34}, and ∗(6) = {31, 33, 35}; in LOC
C
31 (LOC

P
31), ∗(1) = ∗(2) = ∗(3) = ∗(4) = ∗(5) = ∗(6) = {14};

in LOC
C
33 (LOC

P
33), ∗(1) = ∗(2) = ∗(3) = ∗(4) = ∗(5) = ∗(6) = {10}; in LOC

C
35 (LOC

P
35), ∗(1) = {16}; in LOC

C
41,

∗(1) = {30}; in LOC
C
43, ∗(0) = {10, 12, 14, 16, 30, 32, 34}, and∗(1) = {11, 31, 33, 35}.

nication events are

ΣT,com,V = {30, 31, 32, 33, 34, 35},

ΣO,com,V = {41, 43},

ΣV,com,T = {10, 14, 16},

ΣO,com,T = {43}, (23)

ΣV,com,O = {10, 11, 12, 14, 16},

ΣT,com,O = {30, 31, 32, 33, 34, 35}.
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It is guaranteed by supervisor localization of TDES [3, 4] that the ULTC under the control of these local

controllers and preemptors without communication delay, has closed and marked behavior identical to

SUP in (22).

B. Delay-Robustness Verification

Now we investigate the timed delay-robustness property forULTC. For illustration, we consider the

following three cases.

(1) Event 30 inΣT,com,O

Applying Algorithm 4, at Step 1 we verify by Algorithm 1 thatSUP is delay-robust with respect to

the communication channelCH(T, 30, O) transmitting event 30, as displayed in Fig.9.

To illustrate that the overall system behavior will not be affected by indefinite communication delay

of event 30, consider the case that the voltmeter reported anincrease in voltage (inVOLT as displayed

in Fig. 5, events 11 and 10 have occurred), and the tap has received a tap-up command, but the tap-up

operation failed (inTAP as displayed in Fig.5, eventstick, tick, tick, tick, tick, 33 and 30 have
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occurred in sequence). By inspection of the transition diagrams, the plant componentsVOLT, TAP

andOPTR in Fig. 5 are at states 0, 0, and 0 respectively, and thus the events that are eligible to occur

are 11, 35, 41, 43, andtick. However, according to the transition diagrams of the localcontrollers and

preemptors displayed in Fig.7: (1) LOC
C
11 is at state 1 and disables event 11; (2)LOC

C
35 is at state

0 and disables event 35; (3)LOC
C
41 will disable or enable event 41 depending on the communication

delay of event 30; (4)LOC
C
43 is at state 1 and disables event 43; (5)tick will not be preempted, since

no forcible event is enabled. If 30 is transmitted instantly, event 41 is enabled byLOC
C
41 and the system

will enter the automatic mode. If the transmission of 30 is delayed, only eventtick is enabled, and

other events will not be enabled until the system enters the automatic mode. However, according to the

transition diagram ofLOC
C
41 displayed in Fig.7, only afterLOC

C
41 has received the occurrence of event

30, will it enable event 41, and bring the system into the automatic mode. Hence, the overall system

behavior will not be affected even if the communication of event 30 is delayed.

(2) Event 10 inΣV,com,O

Applying Algorithm 4, at Step 1 we verify by Algorithm 1 thatSUP fails to be delay-robust with

respect to the channelCH(V, 10, O), as displayed in Fig.10; then at Step 2, we check by Algorithm 3

that the maximal delay bound for event 10 is 4, i.e.SUP is bounded delay-robust with respect to the

channelCH4(V, 10, O), as displayed in Fig.10.

To illustrate thatSUP is not delay-robust with respect toCH(V, 10, O), but is bounded delay-robust

with respect toCH4(V, 10, O), we consider the case that an increase in the voltage is reported (i.e. events

11 and 10 inVOLT have occurred sequentially). By inspection of the transition diagrams of the plant

components shown in Fig.5, the events that are eligible to occur are 11, 35, 41, 43, andtick. According

to the transition diagrams of the local controllers and preemptors displayed in Fig.7, if OPTR knows

the voltage increase before the fifthtick occurs, the tap-changer will generate a tap-up command and the

operator can switch the system into manual mode; otherwise,the tap-changer will also generate a tap-up

command, but the system cannot enter the manual mode. In terms of language, event 43 will be enabled

after the event sequences := 11.10.tick.tick.tick.tick.tick.310.33 (where event 310 is the signal event

of 10), but is disabled afters′ := 11.10.tick.tick.tick.tick.tick.33. When observings and s′ from the

projectionP that erases the signal event 310, they cannot be distinguished. However, the system can enter

the manual mode after the sequences, but not afters′. In other words, the system can not ‘complete’ the

behavior of entering manual mode afters′, but this behavior can be finished in its delay-free counterpart

SUP. So, the observer property (19) required by bounded delay-robustness is violated when thedelay

boundd exceeds 4ticks, and we conclude that the maximal delay bound for event 10 is4.
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Similarly, one can verify by Algorithm 4 thatSUP is bounded delay-robust with respect toCH4(V, 14, O),

as displayed in Fig.11, and any other events except 10, 14 and 30 must be transmittedwithout delay.

(3) All communication events in (23)

Applying Algorithm 5 to each of the sets of communication events in (23) in sequence, we obtain that

d′max(T, 30, O) = ∞, d′max(V, 10, O) = d′max(V, 14, O) = 4, and for the remaining events,d′max = 0. In

the following, we verify that if all the communication events are communicated within their corresponding

delay bounds, the overall system behavior will still not be affected.

First, useCH(T, 30, O), CH4(V, 10, O) andCH4(V, 14, O) to transmit events 30, 10 and 14 respec-

tively. Second, connected by these channels, the overall system behavior is

SUP
′
com =SUPV ||SUPT ||CH4(V, 10, O)||

CH4(V, 14, O)||CH(T, 30, O)||SUP
′′′
O)

over the augmented alphabet{10, 11, ..., 43, 10′ , 14′, 30′}, whereSUP
′′′
O is obtained by replacing 10, 14,

and 30 by10′, 14′ and30′ respectively. Third, one can verify that: (1)SUP
′
com is correct and complete,

and (2)CH(T, 30, O), CH4(V, 10, O) andCH4(V, 14, O) will not cause uncontrollability with respect

to the uncontrollable communication events. Finally, we conclude that the overall system behavior is still

optimal and nonblocking.

VI. CONCLUSIONS

In this paper we have studied communication delays among local controllers obtained by supervisor

localization in TDES. First, we have identified properties of ‘timed delay-robustness’ which guarantee
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that the specification of our delay-free distributed control continues to be enforced in the presence

of (possibly unbounded) delay, and presented a polynomial verification algorithm to determine delay-

robustness. Second, for those events that fail to be delay-robust, we have proposed an algorithm to

determine their maximal delay bounddmax such that the system isdmax-bounded delay-robust. Finally,

a ULTC example has exemplified these results, showing how to verify the delay-robustness, determine

the maximal delay bound for bounded delay-robustness, and in addition, obtain a set of maximal delay

bounds, one for each communication event, under the condition that the overall system behavior is still

optimal and nonblocking.

With the definitions and tests reported here as basic tools, our future work will include the investigation

of alternative more complex channel models and, of especialinterest, global interconnection properties

of a distributed system of TDES which may render delay-robustness more or less likely to be achieved.

APPENDIX A

PROOF OFLEMMA 1

To prove Lemma1, we need the following Lemmas3 and4.

Lemma 3. For any delay boundd ≥ 1, there hold

L(SUP) ⊆ PL(SUP
′
d) (24)

Lm(SUP) ⊆ PLm(SUP
′
d) (25)

Proof: Note that for different delay boundsd, the alphabets ofSUP
′
d andCHd(j, σ, i) areΣ′ = Σ∪{σ′}

and{σ, tick, σ′}, respectively. Here we only prove thatL(SUP) ⊆ PL(SUP
′
d); (25) can be proved in

the same way by replacingL by Lm throughout.

Let s ∈ L(SUP); we must show that there exists a stringt ∈ L(SUP
′
d) such thatP (t) = s. We

first consider that only one instance ofσ appeared ins, and write s = x1σx2 wherex1, x2 are free
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of σ. By (16) and observing thatSUP
′
i is obtained by replacing each instance ofσ by σ′, we obtain

that t := x1σσ
′x2 ∈ L(SUP

′
d). Furthermore,P (t) = s. So,L(SUP) ⊆ PL(SUP

′
d). This result can

be easily extended to the general case thats has multiple instances ofσ, becauseσ is transmitted by

the channel model and the reoccurrence ofσ is permitted only when transmission of the previousσ is

completed. Namely, ifs = x1σx2σ..., xk−1σxk, there exists a stringt = x1σσ
′x2σσ

′..., xk−1σσ
′xk such

that t ∈ L(SUP
′
d) andPt = s. Hence, we declare thatL(SUP) ⊆ PL(SUP

′
d). �

Lemma 4. Let t = x1σx2x3σ
′x4 ∈ Lm(SUP

′
d) wherex1, x2, x3 and x4 are strings free ofσ and σ′,

i.e. x1, x2, x3, x4 ∈ (Σ− {σ})∗. Thent′ := x1σx2σ
′x3x4 ∈ Lm(SUP

′
d).

Proof of Lemma4: Recall thatSUP
′
i is SUPi with transitions labeledσ relabeledσ′. By definition

of synchronous product,x2, x3 and σ′ can be re-ordered without affecting the membership oft in

Lm(SUP
′
d), namely the stringst′ formed fromt by the successive replacement

x1σx2x3σ
′x4 → x1σσ

′x2x3x4

→ x1σx2σ
′x3x4

will belong to Lm(SUP
′
d) as well. In other words, if the transmission ofσ is completed in a shorter

time (the number ofticks in x2 will be smaller than that inx2x3), the behavior is still legal. �

Proof of Lemma1: We prove Lemma1 by contraposition, i.e. ifSUP is (d+ 1)-bounded delay-robust,

then it is alsod-bounded delay-robust. To that end, we must verify (17)-(20).

(1) For (17), we prove thatPL(SUPd
′) ⊇ L(SUP) and PL(SUPd

′) ⊆ L(SUP) in sequence.

PL(SUPd
′) ⊇ L(SUP) is obtained from Lemma3 immediately. By inspection of the transition diagram

of CHd(j, σ, i) in Fig. 3, we get thatL(CHd(j, σ, i)) ⊆ L(CHd+1(j, σ, i)). So according to (16),

L(SUP
′
d) ⊆ L(SUP

′
d+1). (26)

Since SUP is (d + 1)−bounded delay-robust,PL(SUP
′
d+1) ⊆ L(SUP). Hence,PL(SUPd

′) ⊆

L(SUP).

(2) Condition (18) can be confirmed from the proof of (17) by replacingL by Lm throughout.

(3) For (19), assume thats ∈ L(SUP
′
d) and (Ps)w ∈ Lm(SUP); we must show that there exists a

string v ∈ Σ′∗ such thatPv = w andsv ∈ Lm(SUP
′
d).

By (26), we haves ∈ L(SUP
′
d+1). SinceSUP is (d+1)−bounded delay-robust, there exists a string

u ∈ Σ′∗ such thatPu = w andsu ∈ Lm(SUP
′
d). Here we consider the case that only one instance ofσ
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exists insu; the general cases can be confirmed similarly (since the transmission of multiple instances

of σ does not result in mutual interference). In the following, we prove (19) from these three cases: (i)

su = s1σs2σ
′s3u1u2, (2) su = s1σs2u1σ

′u2, and (iii) s1s2u1σu2σ′u3, wheres1, s2, s3, u1, u2, u3 are

free of σ andσ′.

(i) su = s1σs2σ
′s3u1u2. By (16), we havesu ∈ Lm(NSUP). Similarly, sinces ∈ L(SUP

′
d),

s ∈ P−1

ch L(CHd(j, σ, i)). Further,s = s1σs2σ
′s3, which means that after strings, σ′ has reset the

channelCHd(j, σ, i). Thus s ∈ P−1

ch Lm(CHd−1(j, σ, i)). On the other hand, becauseu is free of σ,

su ∈ P−1
ch Lm(CHd(j, σ, i)). Hence,su ∈ Lm(SUP

′
d). Definev = u; thenPv = Pu = w and sv ∈

Lm(SUP
′
d), as required by (19).

(ii) su = s1σs2u1σ
′u2. By Lemma4,, it results fromsu ∈ Lm(SUP

′
d) thats1σs2σ′u1u2 ∈ Lm(SUP

′
d).

The rest is similar to case (1); in this case,v = σ′u1u2.

(iii) su = s1s2u1σu2σ
′u3. By Lemma4, we haves1s2u1σσ′u2u3 ∈ Lm(SUP

′
d). Also, the rest is

similar to case (1); in this case,v = u1σσ
′u2u3.

(4) Let s ∈ P−1
ch L(CHd(j, σ, i)) and sσ ∈ L(NSUP); we show thatsσ ∈ P−1

ch L(CHd(j, σ, i)) by

contraposition. Assume thatsσ /∈ P−1

ch L(CHd(j, σ, i)). Write CHd(j, σ, i) = (Cd,Σch, τd, cd,0, {cd,0})

whereΣch = {σ, tick, σ′}. We claim thatτd(cd,0, Pchs) 6= cd,0; otherwise,σ is defined at stateτd(cd,0, Pchs)

andsσ ∈ P−1
ch L(CHd(j, σ, i)). By inspection of the transition diagrams ofCHd(j, σ, i) andCHd+1(j, σ, i),

it results fromτd(cd,0, Pchs) 6= cd,0, thatτd+1(cd+1,0, Pchs) 6= cd+1,0. Hence,sσ /∈ P−1

ch L(CHd+1(j, σ, i)),

in contradiction to the fact thatSUP is (d+ 1)−bounded delay-robust. �

APPENDIX B

PROOF OFLEMMA 2

SinceSUP is not delay-robust wrt.CH(j, σ, i), by Definition 1, one of the conditions (12)-(15) is

violated. In the following, we prove that in each case,dmax ≤ 2m ∗m, wherem is the states number of

SUP
′ in (11).

(1) Condition (12) is violated. Since thatL(SUP) ⊆ PL(SUP
′) always holds (similar to Lemma3),

we havePL(SUP
′) * L(SUP). So, there exists at least one strings ∈ Σ′∗ such thats ∈ L(SUP

′),

but Ps /∈ L(SUP). We claim thats can be written ass1σw wheres1, w ∈ Σ′∗; otherwise,s does not

contain anyσ, and it follows from the construction ofSUP
′ that Ps ∈ L(SUP), a contradiction. As

illustrated in Fig.12, we prove in the following that there exist stringss′1 ∈ L(SUP
′) andw′ ∈ Σ′∗ such

that#tick(w′) ≤ 2m ∗m (where#tick(w′) represents the number of eventstick appearing in stringw′),

s′σw′ ∈ L(SUP
′), but P (s′σw′) /∈ L(SUP), from which we can conclude: to prevent the occurrence
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Fig. 12. Ps1 = Ps′1, Pw′ = t and t is a simple string.

of string s′1σw
′, the maximal communication delay ofσ must be less than#tick(w′) ≤ 2m ∗ m, i.e.

dmax ≤ 2m ∗ (m′ + 1).

By s1σw ∈ L(SUP
′) andP (s1σw) /∈ L(SUP), we haveP (s1σw) ∈ PL(SUP

′)∩ (Σ∗−L(SUP)).

To identify such strings, we build an TDESXL = (Z,Σ, ζ, z0, Zm) such that

Lm(XL) = PL(SUP
′) ∩ (Σ∗ − L(SUP))

and

L(XL) = PL(SUP
′),

i.e., P (s1σ) ∈ L(XL), andP (s1σw) ∈ Lm(XL).

First, we buildXA such thatLm(XA) = PL(SUP
′) and L(XA) = Lm(XA) by the following

two steps: (i) constructPSUP
′ by applying the subset construction algorithm onSUP

′ with natural

projectionP , and (ii) obtainXA by marking all states ofPSUP
′. Second, we buildXB such that

Lm(XB) = Σ∗ − L(SUP) andL(XB) = Σ∗ by first adjoining a (non-marker) dump statêq to the

state set ofSUP and transitions(q, σ, q̂) for each stateq of SUP if σ ∈ Σ is not defined atq (i.e.

L(XB) = Σ∗), and secondly settinĝq to be the only marker state. Third, letXL = XA||XB; then

Lm(XL) = PL(SUP
′) ∩ (Σ∗ − L(SUP)), L(XL) = PL(SUP

′). The state size|Z| ≤ 2m ∗ (m′ + 1),

sinceXA has at most2m states (due to the subset construction algorithm), andXB hasm′ +1 states .

Finally, by P (s1σ) ∈ PL(SUP
′) = L(XL), there exists a statez2 ∈ Z such thatz2 = ζ(z0, P (sσ));

by P (s1σw) ∈ Lm(XL), there exists a marker statezm ∈ Zm such thatzm = ζ(z0, P (s1σw)) =

ζ(z2, P (w)). So, there exists at least asimple string4 t ∈ Σ∗ joining z2 andzm such thatzm = ζ(z2, t),

4The concept ‘simple string’ is derived from the ‘simple path’ in graphic theory, where a path is calledsimple if no vertex

is traversed more than once[24]. Here stringt is calledsimple if no state is traversed more than once.
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and thusP (s1σ)t ∈ Lm(XL). It follows that (Ps1)σt ∈ PL(SUP
′) ∩ (Σ∗ − L(SUP)). So, there exist

stringss′1, w
′ ∈ Σ′∗ such thatPs′1 = Ps1, Pw′ = t, s′1σw

′ ∈ L(SUP
′), andP (s′1σw

′) /∈ L(SUP),

namely the occurrence ofw′ after s′1σ violates condition (12). Sincet is simple, we have#tick(t) ≤

|Z| ≤ 2m ∗ (m′ + 1). By Pw′ = t, we have#tick(w′) = #tick(t) ≤ 2m ∗ (m′ + 1). Furthermore,

sinceSUP
′ represents the system behavior with communication delay, we always havem′ +1 ≤ m. So

#tick(w′) ≤ 2m ∗m, as required.

(2) Condition (13) is violated.dmax ≤ m ∗ 2m can be confirmed similar to case (1).

(3) Condition (14) is violated. Since delay-robustness ofSUP is violated by the communication delay

of σ, there must exist stringss1, s2, andw, such thats1σs2 ∈ L(SUP
′) andP (s1σs2)w ∈ Lm(SUP),

but no stringv satisfies thatPv = w ands1σs2v ∈ Lm(SUP
′). As illustrated in Fig.13, we prove in the

following that the condition (14) is also violated by the string pairs1σt and s′′1σt
′′ where#tick(t) ≤

2m ∗ m and#tick(t′′) ≤ 2m ∗ m, from which we conclude: to prevent the occurrences of the strings

s1σt ands′′1σt
′′, the communication delay ofσ must be less thanmin(#tick(t),#tick(t′′)) ≤ 2m ∗m ,

i.e. dmax ≤ m ∗ 2m.

To that end, we need the concept ‘normal automaton’[25]. For SUP
′ = (Y,Σ′, η, y0, Ym), we say that

SUP
′ is P -normal if

(∀s, t ∈ L(SUP
′))R(s) 6= R(t) ⇒ R(s) ∩R(t) = ∅ (27)

where R(s) := {y ∈ Y |y = η(y0, s
′), Ps = Ps′}. In caseSUP

′ is not P -normal, replaceSUP
′

by SUP
′||PSUP

′ where PSUP
′ is a deterministic generator overΣ obtained by the subset con-

struction.SUP
′||PSUP

′ is alwaysP -normal, andL(SUP
′) = L(SUP

′||PSUP
′) andLm(SUP

′) =

Lm(SUP
′||PSUP

′). The state size of the newSUP
′ is at mostm ∗ 2m.
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By P (s1σs2)w ∈ Lm(SUP) ⊆ PLm(SUP
′), there must exist stringss′1, s

′
2, andv′ such thatPs′1 =

Ps1, Ps′2 = Ps2, Pv′ = w, ands′1σs
′
2v

′ ∈ Lm(SUP
′), as displayed in Fig.13. Let y1 = η(y0, s1σ),

y2 = η(y1, s2), y′1 = η(y0, s
′
1σ), andy′2 = η(y′1, s

′
2). Joiningy1 andy2, there must exist a simple string

t such thaty2 = η(y1, t). So,R(s1σs2) ∩ R(s1σt) = y2. By P -normality of SUP
′, there must exist a

string s′′ ∈ L(SUP
′) such thaty′2 = η(y0, s

′′), P (s1σt) = P (s′′), andy′2 ∈ R(s1σt). So strings′′ can

be written ass′′1σt
′′ wherePs′′1 = Ps1 andPt′′ = Pt, and the condition (14) is also violated by the

string pairs1σt ands′′1σt
′′. Becauset is simple,#tick(t) ≤ m, wherem is the state size ofP -normal

form of SUP
′. So, whenSUP

′ is not P -normal,#tick(t) ≤ m ∗ 2m. In addition, sincePt′′ = Pt,

#tick(t′′) = #tick(t) ≤ m ∗ 2m, as required.

(4) Condition (15) is violated. In this case, assume thatσ is blocked at statey of SUP
′, and the last

occurrence ofσ occurs at statey′ of SUP
′. From y′ to y, there must exist a simple stringt. We claim

that the maximal communication delay ofσ must be less that#tick(t); otherwise, the system will arrive

at statey by string t. Hencedmax ≤ #t(tick) ≤ m.

Finally, by comparingdmax in the above four cases, we conclude that ifSUP is not delay-robust with

respect toCH(j, σ, i), dmax ≤ m ∗ 2m.
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