arXiv:1312.0821v3 [cs.SY] 5 Sep 2014

Delay-Robustness in Distributed Control of
Timed Discrete-Event Systems Based on

Supervisor Localization
(October 26, 2018)

Renyuan Zhang, Kai Cai, Yongmei Gan, W.M. Wonham

Abstract
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. INTRODUCTION

For distributed control of discrete-event systems (DESpesvisor localization was recently proposed
[1-4] which decomposes a monolithic supervisor or a heteraatlicay of modular supervisors into
local controllers for individual agents. Collective loa@ntrolled behavior is guaranteed to be globally
optimal and nonblocking, assuming that the shared eventn@nrocal controllers are communicated
instantaneously, i.e. with no delay. In practice, howeVecal controllers are linked by a physical
communication network in which delays may be inevitablenéte for correct implementation of the
local controllers obtained by localization, it is essdntiamodel and appraise communication delays.

In [5] and its conference precursoB][ we studied communication delays among local controllers
for untimed DES. In particular, we proposed a new concegéedalelay-robustnessmeaning that the
systemic behavior of local controllers interconnected bgnmunication channels subject to unbounded
delays is logically equivalent to its delay-free countetpiloreover, we designed an efficient procedure
to verify for which channeled events the system is delaysbblf for a channeled eventthe system
fails to be delay-robust, there may still exist a finite bodiadwhich the system can tolerate a delay in
r. In unitimed DES, however, there lacksemporalmeasure for the delay bound (except for counting
the number of occurrences of untimed events).

In this paper and its conference anteced@ntie extend our study on delay-robustness to the timed
DES (or TDES) framework proposed by Brandin and Wonh&mn9]. In this framework, the special
clock eventtick provides a natural way of modeling communication delay asptwal behavior. We
first propose a timed channel model for transmitting eaclmebked event, which effectively measures
communication delay by the numbertafk occurrences, with na priori upper bound, so that the channel
modelsunboundedielay. We then define timed delay-robustness with respetietdéimed channel, thus
extending its untimed counterpa#, [6] in two respects: (1) the system'’s temporal behavior is anted
for, and (2) timed controllability is required. A polynorhiagorithm is presented to verify timed delay-
robustness according to this new definition.

If the delay-robust property fails to hold, we introduseundeddelay-robustness and present a corre-
sponding verification algorithm. In particular, the aldlom computes thenaximaldelay bound (in terms
of number ofticks) for transmitting a channeled event, i.e. the largestydilat can be tolerated without
violating the system specifications. These concepts anddhesponding algorithms are illustrated for
the case of an under-load tap-changing transformer (ULTC).

Distributed/decentralized supervisory control with coumeation delay has been widely studied for



untimed DES (e.g.10-19]). In particular in [L1, 15], the existence of distributed controllers in the
unbounded delay case is proved to be undecidable; and inl4, 16], distributed controllers are
synthesized under the condition that communication dedagaunded. We also note that Sadid et al.
[18] propose a way to verify robustness of a given synchronootopol with respect to a fixed or a
finitely-bounded delay, as measured by the number of untievedits occurring during the transmitting
process. We refer tdb[ 6] for a detailed review of these works and their differenaesnf our approach.
Communication delay in timed DES, on the other hand, hastdkoowledge) received little attention.
The present work is based on our previous research on timeehssor localization 3, 4].

The paper is organized as follows. Sdtiprovides a review of the Brandin-Wonham TDES framework
and recalls supervisor localization for TDES. In Séittwe introduce a timed channel model, and present
the concept and verification algorithm for timed delay-rsthess.In SectV we define bounded delay-
robustness, and present an algorithm to compute the maxeaialy bound. These concepts and the
corresponding algorithms are demonstrated in Séabn the distributed control problem for an under-

load tap-changing transformer (ULTC) with communicatio@enclusions are presented in Séeck.

II. DISTRIBUTED CONTROL BY SUPERVISORLOCALIZATION OF TDES
A. Preliminaries on TDES

The TDES model proposed by Brandin and Wonh&hig and extension of the untimed DES generator
model of the Ramadge-Wonham framewogk [A TDES is given by

G := (Q7E>57 qO?Qm)' (1)

Here @ is the finite set ofstates X is the finite set of events including the special evank, which
represents “tick of the global clock’d : Q x ¥ — @ is the (partial)state transition functior{this is
derived from the corresponding activity transition fuoati the reader is referred to the detailed transition
rules given in 8, 9]); qo is theinitial state and Q,, C @ is the set ofmarker statesThe transition
function is extended to : Q x ¥* — @ in the usual way. Thelosed behavioof G is the language
L(G) := {s € ¥*|6(qo, 5)!} and themarked behaviois L,,(G) := {s € L(G)|5(qo, s) € Qm} C L(G).

We say thatG is nonblockingif L,,(G) = L(G), where- denotesprefix closure[9].

Let X* be the set of all finite strings, including the empty strind=or >’ C X, the natural projection



P :¥* — ¥ is defined by

e, ifo "
P(a){ fog> @)

o, if ceX;
P(soc) = P(s)P(0), s€X*,0€X.
As usual,P is extended taP : Pwr(X*) — Pwr(X"*), where Pwr(-) denotes powerset. Writ@ ! :
Pwr(¥X*) — Pwr(X*) for the inverse-image functioof P.

To adapt the TDESG in (1) for supervisory control, we first designate a subset of syetenoted
by ¥, C X, to be theprohibitible events which can be disabled by an external supervisor., ext
specific to TDES, we bring in another category of eventsgedatheforcible events, which capreempt
eventtick; let X, C ¥ denote the set of forcible events. Note thatk ¢ X, U X4, Now it is
convenient to define theontrollable event sett. := X,;, U {tick}. The uncontrollableevent set is
Yy =2 — X

We introduce the notion of (timed) controllability as folle. For a strings € L(G), defineEligg(s) :=
{o € ¥|so € L(G)} to be the subset of events ‘eligible’ to occur (i.e. definedha stateg = 5(qo, s).
Consider an arbitrary language C L(G) and a strings € F'; similarly define the eligible event subset
Eligr(s) := {0 € |so € F}. We sayF is controllable with respect toG if, for all s € F,
Eliga(s) N (X,U{tick})

if Eligr(s) N X sor =0,
Elige(s) Ny,
if Eligr(s) N X # 0.

Whether or notF' is controllable, we denote bg(F') the set of all controllable sublanguages i6f

Eligp(s) 2 ©)

ThenC(F') is nonempty, closed under arbitrary set unions, and thusaoena unique supremal (largest)
element denoted byupC(F') [8, 9]. Now consider a specification languade C ¥* imposed on the

timed behavior ofG; E may represent a logical and/or temporal requirement. LeeflfiDES
SUP = (X, %,¢, 20, Xm) 4)

be the correspondingionolithic supervisothat is optimal (i.e., maximally permissive) and nonblaki

in the following senseSUP’s marked languagé,,(SUP) is
L,,(SUP) = supC(E N Ly, (G)) C Ly (G)
and moreover its closed languagéSUP) is L(SUP) = L,,(SUP).
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B. Supervisor Localization of TDES

In this subsection, we introduce the supervisor localimaprocedure, which was initially proposed
in the untimed DES frameworKl] and then adapted to the TDES framewo8 4]. By this procedure,
a set oflocal controllersandlocal preemptorss obtained and shown to be ‘control equivalent’ to the
monolithic supervisoSUP in (4). By allocating these constructed local controllers aneeprptors to
each component agent, we build a distributed supervisomyra@loarchitecture.

Let TDES G in (1) be the plant to be controlled anfl be a specification language. As if],[
synthesize the monolithic optimal and nonblocking supEmwSUP. SupervisorSUP’s control action
includes (i) disabling prohibitible events M, and (ii) preemptingick via forcible events int,,.. By
the supervisor localization procedure, a set of local aders {LOCS defined onX,|a € X5} and a
set of local preemptor$LOC§defined on¥g|8 € Sy, } are constructed. TheseOCY and LOC’E
are all TDES as inX), and proved to be control equivalent$&JP (with respect toi) in the following

sense:
L(G)m( N Pa—lL(Locg))n( N Pﬁ‘lL(LOCf;)):L(SUP), )
a€X i BEX for
Lm(G)m( N Pa‘le(LOCac))m( N Pﬁ‘le(LOCE)):Lm(SUP). (6)
a€X iy BEX for

Here P, : ¥* — X7, and Py : £¥* — X% are the natural projections as iB)(

Now, using the constructed local controllers and local pieters, we build a distributed supervisory
control architecture (without communication delay) for altkagent TDES plant. Consider that the plant
G consists of N component TDESG; (: € NV := {1,2,..., N}), each with event set; > tick. For
simplicity assumez; NX; = {tick}, for all i # j € N'; namely the agent&; are independent except for
synchronization on the global everitk. As a result, the marked and closed behaviors of the comgpiosit
of G; coincide with those of their synchronous produdt pnd thus we use synchronous product instead
of composition to combine TDES together, i@.= || G; where|| denotes the synchronous product
of TDES! =

A convenientallocation policyof local controllers/preemptors is the following. For a fixagentG;,
let 3 ror, i niv € X5 be its forcible event set and prohibitible event set, reypely. Then allocate tds;

the set of local controllerf.OC{ := {LOCS|a € ;) and the set of local preemptolsOCY :=

The closed and marked behaviors BDES = TDES1 || TDES2 are L(TDES) = L(TDES1)|| L(TDES2) and
L, (TDES) = L,,(TDES1) || L,,(TDES2), where|| denotes the synchronous product of languagés [
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Fig. 1. Timed channel mod&CH(y, o, i) for transmitting event from G; to G; with indefinite (i.e. unspecified) time delay.

{LOC§|5 € X for - This allocation creates a distributed control architextior the multi-agent plant
G, in which each agen; is controlled by its own local controllers/preemptors, Mhinteracting with
other agents through communication of shared events. Femt&g;, the set ofcommunication events
that need to be imported from other agents is
Seomi = ( U Za-Z)u( U Zs-%) (7)
Q€L hib BEX: for
whereX, and Xz are the event sets @OoC¢ and ofLOC§ respectively.

However, this distributed control architecture is builtden the assumption that the communication
delay of communication events is negligible. While simptfy the design of distributed controllers, this
assumption may be unrealistic in practice, where contobee linked by a physical network subject to
delay. In the rest of this paper, we investigate how the comaation delay affects the synthesized local

control strategies and the corresponding overall systema\ber.

[11.  TIMED DELAY-ROBUSTNESS

Consider event communication between a pair of agéhtandG; (i, j € N): specifically,G; sends
an eventr to G;. Let X; be the event set ofx; and X.,,,,; as in (7) the set of communication events

that G; imports from other agents. Then the set of events @Gatsends toG; is
Ej,com,i = 2j N Ecom,i- (8)

We thus have event € X; .om ;-

Now consider the timed channel mod&H(j, 0,4) for o transmission displayed in Fid. CH(j, 0, )
is a 2-state TDES with event sét, o', tick}. The transition from state 0 to 1 by means thatg; has
sento to channel, while the transition from state 1 back to Odhymeans that; has received from
channel. We refer to’ as thesignal evenof o, and assign its controllability status to be the same as
o (i.e. o’ is controllable iff o is controllable). The selfloop transitiarick at state 1 therefore counts

communication delay of transmission: the number ofcks that elapses betweenands’. Measuring



delay bytick events is a major improvement compared to the untimed cthanodel we used in{]
where no suitable measure exists to count delay. Later it 8&cwith the aid of this measure we will
compute useful delay bounds for event communication.

It should be stressed that the numbetit occurrences betweenando’ is unspecified, inasmuch as
the selflooptick at state 1 may occur indefinitely. In this sen€&l(j, o,7) models possiblyunbounded
communication delay. Note thaick is also selflooped at state O; this is not used to count delaty, b
rather for the technical necessity of preventing the evétit from being blocked when synchronizing
CH(j,0,:) with other TDES. The initial state 0 is marked, signaling raompletion of event
transmission; state 1, on the other hand, is unmarked be¢hagransmission is still ongoing.

The capacity of channdlH(j, 0,4) is 1, meaning that only when the latest occurrence of ewvest
received by its recipienG;, will the channel accept a fresh instancecofrom G;. Hence,CH(j, 0, )
permits reoccurrence of (i.e. G; sendss again) only when it is idle, namely at state 0. The capacity
constraint of CH(j, 0,4) can be easily relaxed to allomulti-capacitychannel models, as we shall see
in Remark1 below. We nevertheless adoftH(j, o,4) for its structural simplicity and suitability for
clarifying the concept of delay-robustness presented. next

With the channel modeCH(j, o, i), we may describe thehanneled behavioof the system as follows.
Suppose giverGy, k € N; by localization (see Sectl-B) G, acquires a set of local controllers
LOCY := {LOC{ |a € S5} and a set of local preemptolsOCy, := {LOCE( € ¥y, o, }.% SO the
local controlled behavior 06y, is

SUP,:=G. || (|| LocS) || ( | LoOCk). 9)

Q€Xg niv BEXk, for
Observe that whef; sendso to G; throughCH(j, o, ¢), only the recipieniG;’s local behaviolSUP;
is affected becaus€; receivess’ instead ofs due to delay. Hence each transitiorof SUP; must be

replaced by its signal event; we denote bySUP! the resulting new local behavior &;. Now let

NSUP :=SUP. || ( || SUPy) (10)
kEN k#i

2 For each state state of each controlleLOCY (resp. preemptoLOCfff), and each communication evente ¥, — X,
(resp.o € X — %), if o is not defined at:, we add ao-selfloop, i.e. transitior{z, o, z) to LOCS (resp.LOCfff). Now,
o is defined at every state dEOCS (resp. LOCE). With this modification, the new local controllelsOCS (resp. local
preemptorsLOCf?) are also control equivalent to SUP (becali®@C$ (resp.LOCff:) does not disable events from other
componentsG;;) and the definition ofr at every state oLOCY (resp.LOC§) is consistent with the assumption tHa©C¢

(resp.LOCf;") may receives after indefinite communication delay.



and then
SUP’ := NSUP || CH(j,0,1). (11)

SoSUP’ is the channeled behavior of the system with respe€Hj, o, ). Note that bottSUP’ and
NSUP are defined oveE’ := X U {¢'}.
Let P : ¥* — ¥* and P, : ¥* — {o,tick,o’}* be natural projections (as ir2)). We define

delay-robustness as follows.

Definition 1. Consider thatG; sends evenv to G; through channelCH(j,0,4). The monolithic
supervisorSUP in (4) is delay-robustwith respect toCH(j, o, ) if the following conditions hold:
(i) SUP’ in (11) is correctandcompletei.e.

PL(SUP') = L(SUP) (12)
PL,,(SUP') = L,,(SUP) (13)
(Vs € £™*)(Vw € £*) s € L(SUP') & (Ps)w € L,,(SUP)
= (Jv e ¥*) Pv=w & sv € L,,(SUP’) (14)
(i) P;'(L(CH(j,0,4))) is controllable with respect té(NSUP) and{c}, i.e.

P 'L(CH(j,0,i)){c} N L(NSUP) C P_'L(CH(j,0,i)) (15)

In condition (i) above, ‘correctness’ §UP’ means that nd”-projection of anythingSUP’ can do
is disallowed bySUP, while ‘completeness’ means that anythiS§/P can do is theP-projection of
somethingSUP’ can do. In this sense, the channeled beha8BiP’ is ‘equivalent’ to its delay-free
counterparSUP. Specifically, conditionsl(2) and (L3) state the equality of closed and marked behaviors
betweerSUP and theP-projection ofSUP’; condition (L4), which is required for ‘completeness’, states
that if SUP’ executes a string whose projection”s in SUP can be extended by a stringto a marked
string of SUP, thenSUP’ can further execute a stringwhose projectionPv is w and such thatv is
marked inSUP’. Roughly, arobservationally consistent inferenabout coreachability at the “operating”
level of SUP’ can be drawn from coreachability at the abstract (projgde@al of SUP.

Condition (ii) of Definition 1 imposes a basic requirement that chan@&l(j, o,7), when combined
with NSUP in (10) to form SUP’, should not entail uncontrollability with respect ta We impose
condition (ii) no matter whether is controllable or uncontrollable. This is because we viee thannel

CH(j,0,7) as a hard-wired passive adjunction to the original systerd,thereforeCH(j, o, i) cannot



exercise control omwr. In other words, the channel has to ‘accept’ any event thatdist of the system
might execute, whether that event is controllable or unmtlable. Thus if there is already an instance of
o in the channel (i.,eCH(j, 0,7) at state 1), then reoccurrenceofwill be (unintentionally) ‘blocked’,
causing condition (ii) to fail. This issue persists, albdaitmilder form, even if we use channel models
of multiple (finite) capacities (see Rematkbelow).

We note that delay-robustness as defined above is an extefrsim untimed DES to timed DES, of
the concept proposed under the same nameé]in In particular, the channel mod€'H(j, o, ) used in
the definition is capable of measuring transmission delagdyntingtick occurrences; and condition
(i) in the definition requires controllability for timed &

Finally, we present a polynomial algorithm to verify the alefobustness property. Notice that when
(12 and (L3) hold, then (4) is identical with theL,,(SUP’)-observerproperty of P [19, 20]. The
latter may be verified in polynomial time)(n?), n the state size 08 UP’) by computing thesupremal
quasi-congruencef a nondeterministic automaton derived fr@&WP’ and P [19, 21].3 The following
is the delay-robustness verification algorithm.

Algorithm 1

1. Check if P is an L,,(SUP’)-observer. If no, returfialse

2. Check if PL(SUP’) = L(SUP) and PL,,(SUP’) = L,,,(SUP). If no, returnfalse

3. Check if P,' (L(CH(j,0,1))) is controllable with respect t&(NSUP) and{c}. If no, returnfalse
4. Returntrue.

If Step 1 above@(n*) complexity) is successful, i.&? is indeed arL,,,(SUP’)-observer, then Step 2
of computing PL(SUP’) and PL,,(SUP’) is of polynomial complexityO(n*) [21]. Then checking
the two equalities in Step 2 is @d(n?) complexity. Finally in Step 3, controllability may be check
using standard algorithn8] in linear time O(n). Therefore, Algorithm 1 terminates and is of polynomial

complexity O(n*). The following result is straightforward.

Proposition 1. Consider thatG; sends event to G; through channelCH(j,0,7). The monolithic

supervisorSUP is delay-robust with respect t6€H(j, o, ) if and only if Algorithm 1 returns true.

Remark1. (Multi-capacity channel model) So far we have considerezl thcapacity channel model

3We noteen passanthat [22] reports an algorithm with quadratic time complexity forifging the observer property alone;
that does not, however, yield structural information whiigtthe observer property is not satisfied) might be usefulréanedial

design.
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Fig. 2. C-capacity channel modéNCH(j, o, 1).

CH(j,0,i), and defined delay-robustness with respect to it. We nowidenshe more general'-
capacity channel modéNCH(j,0,:), C > 1 a positive integer, displayed in Fig. The sendeiG;
may send at mos€' instances of event to NCH(j,0,7), each instance subject to indefinite delay.
With channelINCH(j, 0,4), one may proceed just as before, by replad®H(j, 0,i) by NCH(j,0,1%)
throughout, to define the corresponding delay-robustnexgsepty with respect tiNCH(j, o,4), and then
revising Algorithm 1 correspondingly to verify delay-radiness.

It is worth noting that wherNCH(j,0,4) reaches its maximal capacity, ai&; sends yet another
instance otr, theno is ‘blocked’ by NCH(j, o,4), implying uncontrollability of the channeled behavior.
Hence the uncontrollability problem always exists as loadhe channel model is of finite capacity and
delay is indefinite, although the controllability conditi¢cf. condition (ii) of Definition1) is more easily

satisfied for larger capacity channels (simply because nmstances ob may be sent to the channel).

IV. BOUNDED DELAY-ROBUSTNESS ANDMAXIMAL DELAY BOUND

Consider again the situation that ag€nf sends an event to G;. If the monolithic supervisoBUP
is verified (by Algorithm 1) to be delay-robust, then we wileichanneCH(j, 0, 4) in Fig. 1 to transmit
o subject to unbounded delay, and the system’s behavior willbe affected. If, howeveSUP fails
to be delay-robust, there are two possible implication¥:o(dInust be transmitted without delay (as in
the original setup of localizationl| 3, 4]); or (2) there exists a delay bountl(> 1) of & such that
if each transmission of is completed withind occurrences ofick, the system’s behavior will remain
unaffected. This section aims to identify the latter cashictv we call “bounded delay-robust”, and
moreover to determine the bouad

To that end, consider the channel mo@d,(j, o,¢) in Fig. 3, with parameterl > 1. CHy(j,0,1) is
a (d + 2)-state TDES with event s€io, tick, o’ }. After an occurrence of (state 0 to 1)CH,(j, 0,1)
counts up tad (> 0) occurrences ofick (state 1 throughi + 1) by which time the signal event’ must

occur. That is, the occurrence 6f (G; receivess) is bounded byl ticks. Note that theick selfloop at
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Fig. 3. Timed channel mode&lH,(j, 0,1), d > 1, for transmitting event from G; to G; with delay boundd.

state 0 is again for the technical requirement to prevenbtbeking of eventtick when synchronizing
CH,(j,0,1) with other TDES.

Now with CHy(j, 0,17), the channeled behavior of the system is
SUP’, := NSUP || CHy(j,0,1) (16)
where NSUP is given in (L0). The event set oSUP’,; is ¥’ = ¥ U {¢’}, and we recall the natural

projectionsP : ¥* — ¥* and P, : ¥* — {0, tick, o’ }*.

Definition 2. Consider thaiG; sends event to G; through channeCH,(j, 0,7), d > 1. The monolithic
supervisoiSUP in (4) is bounded delay-robustith respect toCH,(j, o,¢) (or d-bounded delay-robust
if the following conditions hold:

(i) SUP/,; in (16) is correctand completei.e.
PL(SUP';) = L(SUP) 17)
PL,,(SUP'y) = L,,(SUP) (18)
(Vs € ¥*)(Vw € ¥¥) s € L(SUP'y) & (Ps)w € L,,(SUP)
= (Jv € ) Pv=w & sv € L,,(SUP'y) (19)
(i) P, (L(CH,(j,0,i))) is controllable with respect td(NSUP) and {c}, i.e.
P,'L(CH,(j,0,i){c} N L(NSUP) C P,'L(CH,(j,a,i)) (20)
Bounded delay-robustness is defined in the same way as (andedudelay-robustness in Definitidn
but with respect to the new channel modeH,(j,0,¢) with delay boundd. As a result,d-bounded
delay-robustness may be verified by Algorithm 1 with cormesting modifications. For later reference,
we state here the modified algorithm.

Algorithm 2
1. Check if P is an L,,,(SUP/))-observer. If not, returfialse
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2. Check if PL(SUP’,) = L(SUP) and PL,,,(SUP’y) = L,,(SUP). If not, returnfalse
3. Check if P, ' (L(CHy(j, 0,4))) is controllable with respect t6(NSUP) and{c}. If not, returnfalse
4. Returntrue.

Now if the monolithic supervisoSUP fails to be (unbounded) delay-robust with respect to chianne
CH(j,0,1), we would like to verify if SUP is bounded delay-robust with respect@y(j,o,7) for
somed > 1. If so, compute thenaximaldelay bound, i.e. the largest delay (numberaks) that can

be tolerated without changing the system’s logical belra¥e need the following lemma.

Lemma 1. Consider thatG; sends event to G; through channelCHy(j,0,i), d > 1. If SUP is not
d-bounded delay-robust, then it is ngt + 1)-bounded delay-robust.

The result of Lemmal is intuitive: if SUP cannot tolerate & transmission delay of, neither can
it tolerate a delay(d + 1). By induction, in fact,SUP cannot tolerate any delay larger thdn The
proof of Lemmal is in AppendixA. This fact suggests the following algorithm for identifgilbounded
delay-robustness as well as computing the maximal delapdou
Algorithm 3
1. Setd = 1.

2. Check by Algorithm 2 ifSUP is d-bounded delay-robust relative to chan@d,(j, o,). If not, let
d =d— 1 and go to Step 3. Otherwise advantéo d + 1 and repeat Step 2.
3. Outputd, 4z := d.

Lemma 2. If SUP is not delay-robust with respect €8H(j, o,7), then Algorithm 3 terminates in at

most2™ x m steps, i.ed .. < 2™ * m, where m is the state size 8UP’ in (11).

The proof of Lemma2 is given in Appendix B. In Algorithm 3, we work upwards stagifrom
the minimal delayd = 1. If SUP is not 1-bounded delay-robust with respect@H, (j, o,7), then by
Lemmal SUP is notd-bounded delay-robust for amly> 1. ThereforeSUP is notbounded delay-robust
ando must be transmitted without delay. Note that in this caseoAllgm 3 outputsd,,q, = 0.

If SUP is 1-bounded delay-robust, we next check if it 3sbounded delay-robust with respect to
CHs(j,0,4). If SUP fails to be 2-bounded delay-robust, then again by Lemin&UP fails to be
d-bounded delay-robust for any > 2. HenceSUP is bounded delay-robust, with the maximal delay
boundd, ., = 1.

If SUP is shown to be2-bounded delay-robust, the iterative process continuék SB/P fails to be

(d+1)-bounded delay-robust for sorde> 2; this happens in finitely many steps according to Lengna

12



ThenSUP is bounded delay-robust, with the maximal delay bodpg. = d. The following result is

immediate.

Proposition 2. Consider thatG; sends event to G; through channelCH,(j,0,i), d > 1. The
monolithic supervisolSUP is bounded delay-robust with respect @H,(j,0,4) if and only if the
outputd,,,,, of Algorithm 3 satisfied,,,.., > 0. Moreover, if SUP is bounded delay-robust, thef,,.

is the maximal delay bound far transmission.

To summarize, when an eventis sent fromG; to G;, we determine unbounded or bounded delay-
robustness and choose the corresponding channel as follows
Algorithm 4
1. Check by Algorithm 1 ifSUP is (unbounded) delay-robust. If so, terminate, set the makidelay
boundd,,,, = oo, and use channd&’H(j,0,) in Fig. 1.
2. Check by Algorithm 3 ifSUP is bounded delay-robust. If so (i.€,,.,, > 1), terminate and use
channelCHy(j,0,14) in Fig. 3 with d = d;,4-

3. In this casel,,., = 0. Terminate and use no channelmust be transmitted without delay.

Remark2. (Multiple channeled events) So far we have considered desevgnt communication: age@t;
sends event to G;. Using this as a basis, we present an approach to the geaseabtmultiple channeled
events, as is common in distributed control. We will consittat each fixed triple (sender, channeled
event, receiver) is assigned with its own communicationnoled and the assigned channels operate
concurrently. Our goal is to obtain these channels, engunbounded or bounded delay-robustness, one
for each triple (sender, channeled event, receiver).

First fix i, j € A/, and recall from §) that Z; ..., ; is the set of events thdk; sends toG,. Write
Yj.comi = {01,...,0.}, 7 > 1, and treat the channeled eventis o5, ... sequentiallyin order of indexing.
Algorithm 5
1. Setp =1.

2. For evento, € ¥, .om,i apply Algorithm 4 to obtain the maximal delay boudgl,..

2.1. If dppae = 00, Namely unbounded delay-robustness, choose ch&i¢j, 0,,, ), and letNSUP :=
NSUP||CH(j,0p,1).

2.2. If dypee > 1 is finite, namely bounded delay-robustness, choose chabkel(j, 0,,,4), and let
NSUP := NSUP||CH,(j, 0, ).

2.3 If dyyez = 0, then no channel is chosen aagl must be transmitted without delay.

If p <r, advancep to p+ 1 and repeat Step 2.
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Fig. 4. ULTC: Components and Controller

3. Output a set of channels used for sending events fibmo G;.

Note that at Step 2 of Algorithm 5, if a channel is chosen fargw,, thenNSUP must be reset to
be the synchronous product D¥SUP and the channel, so that in choosing a channel for the nexit eve
op+1 the previously chosen channel is considered together. ditgsires that when the derived channels
operate concurrently, the system’s behavior is not aftedieis worth noting that a different ordering
of the setY; ..,m; may result in a different set of channels; if no priority oktlransmission delay is
imposed on the communication events, we may choose an egdemdomly.

Finally, since the set of all communication eventls,,, := iijEJN Y com,i» We simply apply Algo-
rithm 5 for each (ordered) pairj € N to derive all communication channels. Again, a differemtesing
of the set\/ x N generally results in a different set of channels, becauseliannels chosen for a pair
(,7) will be used to decide channels for all subsequeht’). For convenience we will simply order

the pairs(i, j) sequentially first oryj then ons.

V. CASE STuDY: UNDER-LOAD TAP-CHANGING TRANSFORMER

In this section we demonstrate timed delay-robustness asdcated verification algorithms on an

under-load tap-changing transformer system.

A. Model Description and Supervisor Localization

Transformers with tap-changing facilities constitute mpoértant means of controlling voltage at all
levels throughout electrical power systems. We considermater-load tap-changing transformer (ULTC)
as displayed in Fig4, which consists of two components: Voltmeter and Tap-CkdgBa4).

This ULTC is operated in two modes: Automatic and Manual.he automatic mode, the tap-changer

works according to the following logic. (1) If the voltagewiiion is greater than some threshold value,
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TABLE 1. PHYSICAL INTERPRETATION OF EVENTS

Event || Physical interpretation Time bounds | (hib/for)
(lower, upper)

11 Initialize voltmeter (0, 00) hib

10 Report|AV| > ID and AV > 0 (0, >0)

12 Report|AV|] < ID, i.e. voltage recovered (0, c0)

14 Report|AV| > ID and AV < 0 (0, 00)

16 Report voltage exceeds,q. (0, o0)

30 Tap-up/Down failed (0, 00)

31 Tap-down command with Bick delay (5, o) hib & for
32 Tap-down successful (0, c0)

33 Tap-up command (0, o0) hib & for
34 Tap-up successful (0, c0)

35 Tap-down command without delay (0, 00) hib & for
41 Enter Automatic mode (0, c0) hib

43 Enter Manual mode (0, o) hib

then a timer will start; when the timer times out, a ‘tap irage (or decrease) event’ will occur and
the timer will reset; a tap increase or decrease should ootyroif the voltage change continues to
exceed threshold after the time out- this is to avoid tap gkarin response to merely occasional random
fluctuations of brief duration. (2) If the voltage returnsttee dead-band, because of a tap change or
some other reason, then no tap change will occur. (3) If thtage exceeds the maximally allowed value
Vinaz, then lowering of the tap command without delay occurs mstiaeously. In the manual mode,
the system is waiting for ‘Tap-up’, ‘Tap-down’, or ‘Automett commands. An operator can change the
operation mode from one to the other, and thus the operatj@ned into the plant components to be
controlled.

Each plant component is modeled as a TDES displayed inSrignd associated events are listed in
Tablel. So, the plant to be controlled is the synchronized behafidoltmeter VOLT), Tap-changer
(TAP) and OperatorQPTR), i.e.

PLANT = VOLT || TAP || OPTR. (21)

We consider a voltage control problem of the ULTC: when thiéagr is not ‘normal’, design controllers
to recover the voltage through controlling tap ratio aftéimee delay to recover the voltage. Figdisplays
the TDES modeBPEC for the control specification in Automatic/Manual mode.

Note that since the tap increase (decrease) and loweringotamands would preempt the occurrence

of tick, the corresponding events 31, 33 and 35 are designatedabldoevents. In the following, we
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TAP(Tap-Changer, ¢ = tick)

Fig. 5. Timed Transition Graph of ULTC Components

synthesize the monolithic supervisSUP by the standard TDES supervisory control thedtyq] and
the local controllers by TDES supervisor localizatich §].

First, synthesize the monolithic supervisor TDEWP in the usual sense that its marked behavior

Lin(SUP) = SupC(Lp(SPEC) N L,,(VOLT)) (22)
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12
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Fig. 6. Control SpecificatioSPEC in Automatic/Manual Mode. The transition 43 from the squaith “*' represents similar

transitions from all states to the ‘manual operation mode’.

and its closed behavidt(SUP) = L,,(SUP). SUP has 231 states and 543 transitions, and embodies
disabling actions for all the prohibitible events and preé&ng actions relative teick for all the forcible
events.

Next, by supervisor localization, we obtain a set of locaiteallersLOCY), LOCY;, LOC$;, LOCS;
LOCY, and LOCS; for controllable events 11, 31, 33, 35, 41 and 43 respegtiaid a set of local
preemptordLOC?, LOCL; andLOCL for forcible events 31, 33 and 35 respectively; their traosi
diagrams are shown in Fig.

Finally, using these constructed local controllers/prptems, we build a distributed control architecture
without communication delays for ULTC as displayed in Rég.The local controlled behaviors of the

plant components are
SUPy = VOLT || LOCS,
SUP; = TAP || (LOCY, || LOCS; || LOCS)
| (LOCj; || LOC; || LOC),
SUP, = OPTR || (LOCY, || LOCY).

Let ¥4 com,B represent the set of events that componérgends to componen®; the sets of commu-
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34,41,43 LOC’,(LOCS,)

9 30,31,33,35,43

LOC,

tick,43

41

10,12,14,16,32,34,41

LOC;,(LOCy)) LOC:,

Fig. 7. Local controllers and local preemptors for ULTC. Amiing to Footnote2, for each state state of each local
controller/preemptor, and each communication everif ¢ is not defined at, we add as-selfloop. Let *(x) be the set of events
whose selfloops need to be adjoined at statén LOCY;, (0) = x(2) = *(4) = {30, 31,32,33, 34, 35,41}, (1) = {43},
#(5) = {30,32,34}, and*(6) = {31,33,35}; in LOCY, (LOC), *(1) = %(2) = #(3) = *(4) = x(5) = *(6) = {14};

in LOCS; (LOCL), (1) = (2) = %(3) = *(4) = #(5) = %(6) = {10}; in LOCS; (LOC%;), #(1) = {16}; in LOCY,
x(1) = {30}; in LOC%, x(0) = {10, 12,14, 16, 30, 32, 34}, and (1) = {11, 31, 33, 35}.

nication events are
ET,com,V = {30, 31, 32, 33, 34, 35},
EO,com,V = {41743}7
EV,com,T = {107 147 16}7
20,com,r = {43}, (23)
18
Yv.com0 = {10,11,12, 14, 16},

ZT,com,O = {30, 31, 32, 33, 34, 35}
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Fig. 8. Distributed Control Architecture of ULTC

30’
CH(T,30,0)

Fig. 9. Communication Chann€'H(T, 30, O)

It is guaranteed by supervisor localization of TDES4] that the ULTC under the control of these local
controllers and preemptors without communication delag blosed and marked behavior identical to
SUP in (22).

B. Delay-Robustness Verification

Now we investigate the timed delay-robustness propertyJiofrC. For illustration, we consider the
following three cases.

(1) Event 30 inX7 com,0

Applying Algorithm 4, at Step 1 we verify by Algorithm 1 th&UP is delay-robust with respect to
the communication chann€H(7T', 30, O) transmitting event 30, as displayed in F.

To illustrate that the overall system behavior will not béefed by indefinite communication delay
of event 30, consider the case that the voltmeter reportdédcaiease in voltage (iVOLT as displayed
in Fig. 5, events 11 and 10 have occurred), and the tap has receivgdup teommand, but the tap-up
operation failed (inTAP as displayed in Fig5, eventstick, tick, tick, tick, tick, 33 and 30 have
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occurred in sequence). By inspection of the transition rdiacg, the plant componendOLT, TAP
andOPTR in Fig. 5 are at states 0, 0, and O respectively, and thus the eventarthaligible to occur
are 11, 35, 41, 43, andck. However, according to the transition diagrams of the |lamaitrollers and
preemptors displayed in Fig: (1) LOCY, is at state 1 and disables event 11; IZDC% is at state

0 and disables event 35; (3)0CY; will disable or enable event 41 depending on the commuminati
delay of event 30; (4L.OCS; is at state 1 and disables event 43; {&): will not be preempted, since
no forcible event is enabled. If 30 is transmitted instarelyent 41 is enabled byOCY; and the system
will enter the automatic mode. If the transmission of 30 isaged, only eventick is enabled, and
other events will not be enabled until the system enters thiensatic mode. However, according to the
transition diagram oLOCY, displayed in Fig7, only afterLOCY, has received the occurrence of event
30, will it enable event 41, and bring the system into the iatiic mode. Hence, the overall system
behavior will not be affected even if the communication oérv30 is delayed.

(2) Event 10 inXy,com,0

Applying Algorithm 4, at Step 1 we verify by Algorithm 1 th&UP fails to be delay-robust with
respect to the chann€@H(V, 10, 0), as displayed in Figl0; then at Step 2, we check by Algorithm 3
that the maximal delay bound for event 10 is 4, B&JP is bounded delay-robust with respect to the
channelCH,(V, 10, 0), as displayed in Figl0.

To illustrate thatSUP is not delay-robust with respect @H(V, 10, O), but is bounded delay-robust
with respect taCH,(V, 10, O), we consider the case that an increase in the voltage istegp@re. events
11 and 10 inVOLT have occurred sequentially). By inspection of the traositliagrams of the plant
components shown in Fid, the events that are eligible to occur are 11, 35, 41, 43 tatkd According
to the transition diagrams of the local controllers and pnetrs displayed in Fig7, if OPTR knows
the voltage increase before the fitibk occurs, the tap-changer will generate a tap-up commandrend t
operator can switch the system into manual mode; othentfisetap-changer will also generate a tap-up
command, but the system cannot enter the manual mode. Iis @wfrtanguage, event 43 will be enabled
after the event sequenee= 11.10.tick.tick.tick.tick.tick.310.33 (where event 310 is the signal event
of 10), but is disabled aftes’ := 11.10.tick.tick.tick.tick.tick.33. When observings and s’ from the
projection P that erases the signal event 310, they cannot be distingglistowever, the system can enter
the manual mode after the sequercéut not afters’. In other words, the system can not ‘complete’ the
behavior of entering manual mode aftéy but this behavior can be finished in its delay-free couraterp
SUP. So, the observer property9) required by bounded delay-robustness is violated wherdétay

boundd exceeds 4icks, and we conclude that the maximal delay bound for event #0 is
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Fig. 10. Communication ChanneSH(V, 10, 0) and CH4(V, 10, O)

Similarly, one can verify by Algorithm 4 th&UP is bounded delay-robust with respec@@4(V, 14, O),
as displayed in Figll, and any other events except 10, 14 and 30 must be transmiiiecut delay.

(3) All communication events in2@)

Applying Algorithm 5 to each of the sets of communicationmeen 23) in sequence, we obtain that
d} oz (T530,0) = 00, d],,.(V,10,0) = d),,..(V,14,0) = 4, and for the remaining eventd, .. = 0. In
the following, we verify that if all the communication evergre communicated within their corresponding
delay bounds, the overall system behavior will still not lifected.

First, useCH(T', 30,0), CH4(V,10,0) andCH,4(V, 14, O) to transmit events 30, 10 and 14 respec-

tively. Second, connected by these channels, the overstiéisybehavior is

SUP!

com

CH,(V, 14,0)||CH(T, 30,0)||SUP{)
over the augmented alphabfgi), 11, ...,43,10’, 14/, 30}, whereSUP; is obtained by replacing 10, 14,
and 30 by10’, 14’ and30’ respectively. Third, one can verify that: (8)UP’,,, is correct and complete,
and (2)CH(T,30,0), CH4(V,10,0) and CH4(V, 14, O) will not cause uncontrollability with respect

to the uncontrollable communication events. Finally, wadode that the overall system behavior is still

optimal and nonblocking.

VI. CONCLUSIONS

In this paper we have studied communication delays amorej antrollers obtained by supervisor

localization in TDES. First, we have identified propertidstioned delay-robustness’ which guarantee
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Fig. 11. Communication Chann€H,(V, 14, O)

that the specification of our delay-free distributed contontinues to be enforced in the presence
of (possibly unbounded) delay, and presented a polynond@gfieation algorithm to determine delay-
robustness. Second, for those events that fail to be delayst, we have proposed an algorithm to
determine their maximal delay boumf},,, such that the system i$,,,.-bounded delay-robust. Finally,
a ULTC example has exemplified these results, showing howetiiyvthe delay-robustness, determine
the maximal delay bound for bounded delay-robustness, mrdidition, obtain a set of maximal delay
bounds, one for each communication event, under the conditiat the overall system behavior is still
optimal and nonblocking.

With the definitions and tests reported here as basic tootsfuture work will include the investigation
of alternative more complex channel models and, of espéuilest, global interconnection properties

of a distributed system of TDES which may render delay-roiess more or less likely to be achieved.

APPENDIX A

PROOF OFLEMMA 1

To prove Lemmal, we need the following Lemma3 and 4.

Lemma 3. For any delay bound! > 1, there hold
L(SUP) C PL(SUP)) (24)

Ln(SUP) C PL,,(SUP)) (25)

Proof: Note that for different delay bounds the alphabets 8UP/, andCH,(j, 0,4) arey’ = SU{o’}
and {o, tick, o'}, respectively. Here we only prove tha&{SUP) C PL(SUPY); (25) can be proved in
the same way by replacing by L,, throughout.

Let s € L(SUP); we must show that there exists a stringge L(SUP/) such thatP(t) = s. We

first consider that only one instance efappeared ins, and writes = zy0x9 Wherez,z, are free
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of 0. By (16) and observing tha8UP;, is obtained by replacing each instancecoby ¢/, we obtain
thatt := zy00'z9 € L(SUPY). Furthermore P(t) = s. So, L(SUP) C PL(SUP/). This result can
be easily extended to the general case thatis multiple instances af, becauses is transmitted by
the channel model and the reoccurrencerdé permitted only when transmission of the previeuss

completed. Namely, i = z10x90..., 1107}, there exists a string= x100'x900...,xx_100" 71, such

thatt € L(SUP/) and Pt = s. Hence, we declare thd(SUP) C PL(SUP)). [ |

Lemma 4. Lett = xy0zox30'24 € L, (SUP,) wherezy, z9, x5 and z4 are strings free o and ¢’,

i.e. z1,29,73,74 € (X — {0})*. Thent' := zy0x90'x324 € Ly, (SUPY).

Proof of Lemma4: Recall thatSUP;, is SUP; with transitions labeledr relabeleds’. By definition
of synchronous productys, 23 and ¢’ can be re-ordered without affecting the membership ah

L,,(SUP)), namely the strings’ formed from¢ by the successive replacement
1‘10’1‘21‘30'/1'4 — xlaa’nggx4
— 1’101’20'/1’31’4

will belong to L,,(SUP/) as well. In other words, if the transmission efis completed in a shorter

time (the number oficks in 2, will be smaller than that incxz3), the behavior is still legal. |

Proof of Lemmal: We prove Lemmal by contraposition, i.e. iISUP is (d + 1)-bounded delay-robust,
then it is alsod-bounded delay-robust. To that end, we must verify){(20).

(1) For (17), we prove thatPL(SUP,) O L(SUP) and PL(SUP,) C L(SUP) in sequence.
PL(SUP,) > L(SUP) is obtained from Lemma immediately. By inspection of the transition diagram
of CHy(j,0,1) in Fig. 3, we get thatL(CHy(j,0,7)) C L(CHy4+1(j,0,7)). So according to16),

L(SUP}) C L(SUP,,). (26)
Since SUP is (d + 1)—bounded delay-robust”?L(SUP},,) € L(SUP). Hence, PL(SUP,') C
L(SUP).
(2) Condition (L8) can be confirmed from the proof o17) by replacingL by L,, throughout.

(3) For (19), assume that € L(SUP/) and (Ps)w € L,,(SUP); we must show that there exists a
string v € ¥ such thatPv = w andsv € L,,(SUPY).
By (26), we haves € L(SUP),_ ). SinceSUP is (d+ 1)—bounded delay-robust, there exists a string

u € ¥* such thatPu = w andsu € L,,(SUP/). Here we consider the case that only one instance of
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exists insu; the general cases can be confirmed similarly (since thermesion of multiple instances
of o does not result in mutual interference). In the followings prove (9) from these three cases: (i)
su = $10820'sguius, (2) su = sjosquic’us, and (i) sysouiousc’uz, wheresy, so, s3,u1, us, uz are
free of o ando’.

(i) su = s10s20's3ujus. By (16), we havesu € L,,(NSUP). Similarly, sinces € L(SUP/),
s € P,'L(CHy(j,0,4)). Further,s = sjos20’s3, which means that after string, o’ has reset the
channelCH,(j,0,7). Thuss € chlle(CHd_l(j, 0,i)). On the other hand, becauseis free of o,
su € P,'L,,(CHy(j,0,1)). Hence,su € L,,(SUPY). Definev = u; then Pv = Pu = w and sv €
L.,(SUPY), as required by1(9).

(ii) su = syos9uic’us. By Lemmad,, it results fromsu € L,,(SUPY) thatsiosac’uiug € Ly, (SUPY).
The rest is similar to case (1); in this caser o'ujus.

(iii) su = sysouiousc’us. By Lemmad, we havesisquioo’ugus € L, (SUPY). Also, the rest is

similar to case (1); in this case,= uy00’usus.

(4) Lets € P,'L(CH,(j,0,4)) andso € L(NSUP); we show thatso € P,;'L(CHy(j,0,i)) by
contraposition. Assume that ¢ P;LlL(CHd(j, 0,1)). Write CHy(j,0,1) = (Cq, Xch, Tds €d,0, {¢d0})
whereX.;, = {0, tick,o’}. We claim thatry(cq 0, Pens) # ca,0; Otherwisep is defined at state;(cq o, Per )
andso € P, L(CHy(j, 0,4)). By inspection of the transition diagrams@H,(j, o, i) andCH.1 (j, 0, 1),
it results fromry(c4,0, Pens) # ca,0, thatmg1(Cat1,0, Pens) # cat1,0- Henceso ¢ PotL(CHyy1 (4, 0,14)),

in contradiction to the fact the8UP is (d + 1)—bounded delay-robust. [ ]

APPENDIX B

PROOF OFLEMMA 2

Since SUP is not delay-robust wrtCH(j, 0,4), by Definition 1, one of the conditions1Q)-(15) is
violated. In the following, we prove that in each cadg,. < 2™ xm, wherem is the states number of
SUP’ in (12).

(1) Condition (L2) is violated. Since that (SUP) C PL(SUP’) always holds (similar to Lemma),
we havePL(SUP’) ¢ L(SUP). So, there exists at least one stringe ¥* such thats € L(SUP’),
but Ps ¢ L(SUP). We claim thats can be written as;o0w wheres;,w € ¥'*; otherwise,s does not
contain anyo, and it follows from the construction SUP’ that Ps € L(SUP), a contradiction. As
illustrated in Fig.12, we prove in the following that there exist stringse L(SUP’) andw’ € ¥'* such
that #tick(w') < 2™ xm (where#tick(w’) represents the number of evenigk appearing in stringv’),

s'ow’ € L(SUP’), but P(s'ocw’) ¢ L(SUP), from which we can conclude: to prevent the occurrence
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SUP'

Fig. 12. Ps; = Ps, Pw’ =t andt is a simple string.

of string sjow’, the maximal communication delay of must be less tha#ttick(w') < 2™ % m, i.e.
dmaz < 2™ % (m' 4+ 1).

By sijow € L(SUP’) and P(s;ow) ¢ L(SUP), we haveP(sjow) € PL(SUP’)N(X* — L(SUP)).
To identify such strings, we build an TDEXL = (Z, %, (, 20, Z,,,) Such that

Ln(XL) = PL(SUP') N (S* — L(SUP))

and
L(XL) = PL(SUP),

i.e., P(si0) € L(XL), and P(sjow) € L,,(XL).

First, we build XA such thatL,,(XA) = PL(SUP’) and L(XA) = L,,(XA) by the following
two steps: (i) construcPSUP’ by applying the subset construction algorithm WP’ with natural
projection P, and (ii) obtainX A by marking all states oPSUP’. Second, we buildXB such that
L, (XB) = ¥* — L(SUP) and L(XB) = ¥* by first adjoining a (non-marker) dump stajeto the
state set ofSUP and transitiongq, o, G) for each state; of SUP if o € ¥ is not defined ay (i.e.
L(XB) = ¥*), and secondly setting to be the only marker state. Third, IXL = XA||XB; then
Ln(XL) = PL(SUP’) N (* — L(SUP)), L(XL) = PL(SUP’). The state sizéZ| < 2 % (m' + 1),
sinceX A has at mosR™ states (due to the subset construction algorithm), ¥iglhasm' + 1 states .

Finally, by P(sj0) € PL(SUP’) = L(XL), there exists a state, € Z such thatzy = ((2¢, P(s0));
by P(syow) € L, (XL), there exists a marker statg, € Z,, such thatz,, = ((z9, P(siow)) =
(22, P(w)). So, there exists at leastsimple string ¢ € ©* joining ze and z,, such thatz,, = ((22,1),

4The concept ‘simple string’ is derived from the ‘simple paith graphic theory, where a path is callsimpleif no vertex

is traversed more than on@d|. Here stringt is calledsimpleif no state is traversed more than once.
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Fig. 13. P-Normality of SUP’

and thusP(s,0)t € L,,,(XL). It follows that (Ps;)ot € PL(SUP’) N (X* — L(SUP)). So, there exist
strings s}, w’ € ¥* such thatPs]| = Ps;, Puw' = t, sjow’ € L(SUP’), and P(sow’) ¢ L(SUP),
namely the occurrence af’ after s} violates condition 12). Sincet is simple, we have#tick(t) <
|Z] < 2™ % (m' +1). By Puw' = t, we have#tick(w') = #tick(t) < 2™ x (m’ 4+ 1). Furthermore,
sinceSUP’ represents the system behavior with communication delayalways haven’ +1 < m. So
#tick(w') < 2™ % m, as required.

(2) Condition (3) is violated.d,,,. < m x 2™ can be confirmed similar to case (1).

(3) Condition (4) is violated. Since delay-robustnessSIP is violated by the communication delay
of o, there must exist strings;, s, andw, such thats;os, € L(SUP’) and P(sy0s2)w € L,,,(SUP),
but no stringv satisfies tha’v = w andsosyv € L, (SUP’). As illustrated in Figl3, we prove in the
following that the condition 14) is also violated by the string pairiot and s{ot” where#tick(t) <
2™ x m and #tick(t") < 2™ % m, from which we conclude: to prevent the occurrences of thegs
s1ot ands{ot”, the communication delay of must be less thamin(#tick(t), #tick(t")) < 2™ xm ,
i.e. dmaz < m* 2™,

To that end, we need the concept ‘normal automagéh'[For SUP’ = (Y, Y/, 1, 4o, Y. ), We say that
SUP’ is P-normal if

(Vs,t € L(SUP")R(s) # R(t) = R(s) N R(t) = 0 @27)

where R(s) := {y € Y|y = n(yo,s'), Ps = Ps'}. In caseSUP’ is not P-normal, replaceSUP’
by SUP’||PSUP’ where PSUP’ is a deterministic generator ovét obtained by the subset con-
struction.SUP’||PSUP’ is alwaysP-normal, andL(SUP’) = L(SUP’||PSUP’) and L,,,(SUP’) =
L,,(SUP'||PSUP’). The state size of the neSUP’ is at mostm x 2.
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By P(si0s2)w € L,,,(SUP) C PL,,(SUP’), there must exist strings,, s,, andv’ such thatPs| =
Psy, Pshy = Psy, Pv' = w, ands|oshv’ € L,,(SUP’), as displayed in Figl3. Let y; = n(yo, s10),
y2 = n(y1,s2), ¥§ = n(yo,syo), andy, = n(y}, s5). Joiningy; andys,, there must exist a simple string
t such thaty, = n(y1,t). So, R(s10s2) N R(s10t) = yo. By P-normality of SUP’, there must exist a
string s” € L(SUP’) such thaty), = n(yo,s”), P(s1ot) = P(s"), andy) € R(s10t). So strings” can
be written ass{ot” where Ps = Ps; and Pt” = Pt, and the condition1{) is also violated by the
string pairs;ot and s{ot”. Because is simple,#tick(t) < m, wherem is the state size oP-normal
form of SUP’. So, whenSUP’ is not P-normal, #tick(t) < m = 2™. In addition, sincePt” = Pt,
#tick(t") = #tick(t) < m x 2™, as required.

(4) Condition (L5) is violated. In this case, assume thats blocked at statg of SUP’, and the last
occurrence ofr occurs at statg’ of SUP’. Fromy/ to y, there must exist a simple strirtgWe claim
that the maximal communication delay @#fmust be less thagtick(t); otherwise, the system will arrive
at statey by stringt. Henced, o < #t(tick) < m.

Finally, by comparingl,,.., in the above four cases, we conclude th& WP is not delay-robust with

respect toCH(j,0,1), dpas < m * 2™,
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