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Infinitesimal Perturbation Analysis of Stochastic Hybrid Systems:
Application to Congestion Management in Traffic-Light Intersections

Y. Wardi∗† and C. Seatzu#

Abstract— This paper presents a new approach to congestion
management at traffic-light intersections. The approach isbased
on controlling the relative lengths of red/green cycles in order
to have the congestion level track a given reference. It uses
an integral control with adaptive gains, designed to provide
fast tracking and wide stability margins. The gains are inverse-
proportional to the derivative of the plant-function with r espect
to the control parameter, and are computed by infinitesimal
perturbation analysis. Convergence of this technique is shown
to be robust with respect to modeling uncertainties, computing
errors, and other random effects. The framework is presented
in the setting of stochastic hybrid systems, and applied to a
particular traffic-light model. This is but an initial study and
hence the latter model is simple, but it captures some of the
salient features of traffic-light processes. The paper concludes
with comments on possible extensions of the proposed approach
to traffic-light grids with realistic flow models.

I. I NTRODUCTION

Infinitesimal Perturbation Analysis (IPA) is an established
sample-path technique for sensitivity estimation of perfor-
mance functions defined on discrete event dynamic systems
and stochastic hybrid systems. In a typical scenarioL(θ) is a
real-valued, random function of a parameterθ ∈ Rn, defined
over a common probability space(Ω,F , P ), and for a
particular realization corresponding toω ∈ Ω, IPA computes
its sample (ω-dependent) derivative (gradient)∇L(θ). This
sample gradient can act, under certain circumstances, as
an estimator of the gradient of the expected-value func-
tion J(θ) := E

[

L(θ)
]

, with E[·] denoting expectation in
(Ω,F , P ). This can be used, in conjunction with gradient-
descent algorithms such as stochastic approximation, to
minimize the functionJ(θ) to the extent of computing a
local minimum. For extensive presentation of IPA and its
scope in optimization, , please see [17], [16], [4].

In recent years there has been a mounting interest in the
application of IPA to stochastic hybrid systems, and espe-
cially to stochastic flow networks, comprising generalizations
of fluid queues [5], [6]. The reason is that, for an extensive
class of performance functions in this setting, IPA was shown
to be computable via simple algorithms directly from quan-
tities that are observable from realizations of the state ofthe
system. Moreover, the resulting gradient estimators are quite
robust to modeling variations. For these reasons, for a variety
of applications, the IPA gradients arguably can be computed
in real time without having concerns about the accuracy of
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the underlying models. References [7], [22] provide detailed
discussions of these points as well as unified frameworks for
IPA in the setting of stochastic hybrid systems. Until recently
the main areas mentioned for potential applications of IPA
were in manufacturing and telecommunications, but lately
there has been a growing interest in transportation networks
as well, and especially in traffic-light control (see [10] for a
survey).

The main objective of traffic-light control is to reduce, or
minimize congestion at traffic intersections. Early techniques
developed for these control and optimization problems in-
clude dynamic programming [20] and linear complementary
algorithms [8], while more recent approaches are based on
Markov-decision processes [21], game theory [3], and mixed-
integer programming [9]; [19] contains an early survey, and
a recent one can be found in [10]. Regarding applications of
IPA, early results were presented in [12], [18], and a recent
systematic approach has been developed in [13], [14], [15],
[10]. This approach defines the traffic-light control problem
in the aforementioned setting of stochastic hybrid systems
[7], and develops for it effective IPA-based algorithms.

The development of IPA since its inception has been moti-
vated primarily by applications to performance optimization
in discrete event and hybrid systems. This paper follows
a different track in pursuing an application to performance
regulation. The term “regulation” here means real-time track-
ing of a set (reference) performance index by tuning a
control parameter, and it is a common engineering practice.
In particular, following a system’s design or optimization
with an imprecise system model, regulation can be used to
ensure that performance meets specifications under changing
system characteristics and operating environments.

In devising our regulation technique we aim at effective
and efficient real-time implementation. Effectiveness means
that the set-point tracking algorithm is to have fast con-
vergence under a wide set of system parameters, efficiency
means simple implementation requiring low computing ef-
forts, and the real-time requirement means that all input
parameters to the controller be measurable by observing the
system’s state. High degree of efficiency means that we may
have to tilt the balance between speed and precision of com-
putation in favor of the former requirement. Consequently
we design the controller for maximum speed and simplicity
of computations, possibly by using imprecise models, while
guaranteeing its robustness under large variations in the
system’s parameters.The main contribution of this paper is
in a control system with all of these properties. It is based on
an integral control with a variable gain, computed by using
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the IPA derivative of the plant function with respect to the
control variable.

The integral controller is explained in Section II in an
abstract setting. Its application to a relevant example of
traffic-light control, including the derivation of the IPA
derivative, is presented in Section III. Section IV contains
simulation results, and Section V concludes the paper.

II. REGULATION ALGORITHM: INTEGRAL CONTROL

WITH ADAPTIVE GAIN

Consider the single-input-single-output discrete-time con-
trol system shown in Figure 1, wherer is the reference (set
point) input,yn is the output,en is the error signal, andun

is the input to the plant. Suppose that the plant is a time-
varying, memoryless nonlinearity of the form

yn = gn(un), (1)

where gn : R → R, n = 1, 2, . . ., is called theplant
function. Given a reference inputr, the purpose of the control
system is to ensure thatlimn→∞ yn = r. To this end it is
natural to choose the controller to be an integrator having,
for example, the transfer functionGc(z) = Az−1/(1− z−1)
for a given gainA > 0. However, integral controllers
may display oscillatory behavior and have narrow stability
margins. Furthermore, due to the time-varying nature of the
system it may not be easy (or possible) to choose a gain
that fits all possible scenarios. For this reason we use an
integral control with adaptive gain,An, having the time-
domain representation

un = un−1 +Anen−1, (2)

where the error signal is defined as

en = r − yn. (3)

We choose the gainAn to be defined via the equation

An =
1

g′n(un−1)
, (4)

with “prime” denoting derivative. Equations (1) – (4), com-
puted cyclically in the order(4) → (2) → (1) → (3), define
the dynamics of the closed-loop system. In fact, we implicitly
consider the following scenario in a real-time setting: the
quantitiesun−1, yn−1, and en−1 have been computed or
derived by the start of thenth computing cycle, and at that
time the following sequence of operations takes place and are
completed before the end of the cycle: (i)An is computed
by Equation (4); (ii)un is computed by the controller via
Equation (2); and (iii) the system yieldsyn anden (see (1),
(3)). The main computation is that ofAn in Equation (4),
since an exact evaluation ofg′n(un−1) may not be possible
in real time. In this case it may be necessary to trade off
precision with computational expediency, with the result that
Equation (4) be replaced by

An =
1

g′n(un−1) + ξn
, (5)

whereξn is a quantity representing the computing error. We
will say more about this point in the sequel.

Controller Plant
r en un yn

Fig. 1. Control System

The rationale behind Equation (4) can be seen by con-
sidering the time invariant plant, whereg is not a function
of n and hence Equation (1) has the formyn = g(un). In
this case, it can be seen that the control loop, defined via
Equations (1) –(4), implements Newton’s method for solving
the equationg(u) = r, known to converge, in the sense that

lim
n→∞

en = 0, (6)

under broad assumptions. In the event that Equation (5) is
used instead of (4), namely (still assuming a time-invariant
plant) An = 1/(g′(un−1) + ξn), the regulation scheme
still converges in the sense of Equation (6), under broad
assumptions, as long as the relative error is under 100%.
For example, if the functiong is concave or convex, and if,
for someα ∈ (0, 1), the relative error of the plant derivative,
defined asεn := |ξn|/|g

′
n(un+1)|, satisfies the inequality

εn < α for all n = 1, 2, . . ., then Equation (6) is satisfied
(see [1]).

In the case of a time-varying plant defined by Equation (1),
Equation (6) no longer can be expected. However, the error
sequence{en} asymptotically gets close to 0 by an amount
that depends, monotonically, on a measure of the system’s
variability. For example, [1] proved, under the convexity
assumption, that for everyǫ > 0 there existsδ > 0 such that,
if |gn(un−1)−gn−1(un−1)| < δ for everyn = 1, 2, . . ., then

lim sup
n→∞

|en| < ǫ. (7)

We point out that the convexity assumption can be relaxed
to local convexity or concavity as long as guards are put
in place to ensure an appropriate upper bound on the terms
|un − un−1|. Moreover, bounds on the relative errorsεn :=
|ξn|/|g

′
n(un−1)| practically need not be computed a priori

but can be verified from system simulation as done in [2].
This control law was applied to regulate the dynamic core-

power in computer processors by the applied frequency. The
plant, comprising the frequency-to-power relationship, has an
established model based on physical principles [11], repre-
sented by a convex, time-varying, memoryless nonlinearity.
Its time variability is due to the activity factor of the program
load, a quantity representing the amount of switching activity
of the logic gates at the core. This quantity generally is
unpredictable and cannot be measured in real time, and hence
the plant functions cannot be computed. Although the output
yn can be measured, the derivativeg′n(un−1) requires a
formula. It turns out that this derivative is computable from
quantities that can be measured in real time and hence the
regulation scheme could be applied; for simulation results
with an industry-grade simulator, please see [1].



Reference [2] considers regulating the instruction through-
put in a similar core, also as a function of frequency. Each
control cycle consists of a fixed number of clock cycles
and takes about 10 miliseconds, during which the applied
frequency is fixed. The outputyn is defined as the average
throughput over a given cycle, and the model for the plant
is a queueing network representing instruction-processing
at the core. The queueing model has multiple precedence
constraints and is complicated in various other ways, and
hence defies analysis for deriving closed-form formulas for
the plant function. However, we estimated the derivative term
g′n(un−1) by using IPA, which yielded simple formulas that
could be computed in real time. We point out that these
IPA derivatives were statistically biased and hence “wrong”,
but extensive simulations on various benchmark systems
yielded maximum relative error of 30%. Encouraged by these
findings we applied the regulation scheme despite the bias
of IPA, and the results can be seen in [2].

This example highlights two salient points of our proposed
regulation framework. First, the plant is modeled as a queue-
ing network which is a highly dynamic system, but the cost
function, consisting of the average throughput over a certain
amount of time, allows us to consider it as amemoryless,
time-varying nonlinearity. The time variability is due to the
uncertain, random element as well as to variations that are
inherent in the system’s dynamics. This view serves us better
than the dynamic view by dint of Equation (7), and suggests
that, under conditions of stochastic stability, longer control
cycles should result in smaller values oflimn→∞ |en|. Sec-
ond, the important feature of IPA and its use in Equation
(4) is its simplicity and on-line computability, and therefore
the main objective of the analysis below is to derive simple
terms for the sample derivativesg′n(un−1).

III. T RAFFIC-L IGHT REGULATION PROBLEM

This section concerns an application of the aforementioned
control technique to a traffic-light intersection model. Inor-
der to highlight the salient features of the regulation scheme,
we consider only a simple model and defer a discussion
of more detailed models to a future study. Thus, consider
a traffic-light intersection of two unidirectional (one-way)
roads. Suppose that the light in each direction alternates
between red and green signals, and for the sake of simplicity
we assume that there is no orange light, and hence, epochs of
red signal in one direction (road) correspond to green signal
in the other direction. Let us focus attention on one of the
roads and define alight cycle as a red period followed by a
green period (for the other road, the same cycle is comprised
of green followed by red). Suppose that the light cycle time
is fixed, and denoted byC, and let the length of the red
period comprise the control variable,θ ∈ [0, C].

One of the ways to characterize congestion is by the traffic
buildup in front of a traffic light, and as in [13], [15], [10],we
model its dynamics by a fluid queue. Such a queue is driven
by two random processes: the arrival rate and the service rate.
The arrival-rate process does not depend onθ and hence it
is denoted by{α(t)}, while the service-rate process depends

on θ in a manner described below, and hence it is denoted by
{β(θ; t)}. Given an integerN > 0 we define the performance
function that we seek to regulate as the time-average of the
buffer contents (amount of fluid at the buffer) duringN light
cycles. DefiningT := NC, we call the period[0, T ] acontrol
cycle, and we note that a control cycle consists ofN light
cycles. We assume thatθ remains fixed during each control
cycle and it is changed, by the regulation process, only at
the boundary points between consecutive control cycles.

Consider a control cycle at a givenθ ∈ [0, C]. We define
the buffer contents during the cycle, denoted byx(θ, t), by
the one-sided differential equation

dx

dt+
(θ; t) =

{

α(t) − β(θ; t), if x(θ, t) > 0
0, if x(θ, t) = 0,

(8)

where, for the sake of simplicity, we assume the initial
conditionx(θ, t) = 0 (our simulations use a different initial
condition as will be explained in the sequel). We assume
that, ∀ θ ∈ [0, C], w.p.1, α(t) and β(θ, t) are piecewise
continuously differentiable (but not necessarily continuous)
in the intervalt ∈ [0, T ], and this ensures thatx(θ, t) is well
defined by Equation (8). The performance functionL(θ) is
defined as

L(θ) =
1

T

∫ T

0

x(θ; t)dt. (9)

Given a reference set-pointr > 0, the objective of the
regulation scheme is to compute a sequence of control
variablesθ1, θ2, . . ., such that the sequenceL(θ1), L(θ2), . . .
tracksr as best as possible.

Regarding the service rate process, we define a model that
includes the cases where, upon the light switching from red
to green, the service rate either jumps to, or ramps up towards
a given maximum value. In the latter case the ramp-up period
depends on the queue length at the time the green epoch
starts, and lasts until either one of the following two events
occur: (i) The buffer becomes empty, or (ii) the light switches
back to red. In the first event the service rate jumps to the
maximum value, and in the second event, it jumps down to 0.
We model the ramp-up rate process as a random function to
account for fluctuations that are hard to model, and assume
mutually independent realizations of it in successive cycles.

Formally, let βm > 0 be a given constant, and let
b(t) : [0, C] → [0, βm] be a monotone-nondecreasing random
function that does not depend onθ. On a given light cycle
[kC, (k + 1)C), we define the service rate of the queue as
follows,

β(θ, t) =























0, if t ∈ [kC, kC + θ)
b(t− (kC + θ)), if t ∈ [kC + θ, kC + C),

and x(θ, t) > 0
βm, if t ∈ [kC + θ, kC + C),

and x(θ, t) = 0.
(10)

Note that this includes the case whereβ(θ, t) jumps directly
from 0 to βm when the light turns green.

In the rest of this section we derive the IPA formula for
the derivative termL′(θ, t). This will be done under the
following assumption.



Assumption 1: (i). The random functionsα(t) and b(t)
are independent of each other. (ii). W.p.1,α(t) is piece-
wise monotone (nondecreasing/non-increasing) and piece-
wise continuously differentiable int. (iii). W.p.1, the function
b(t) is monotone nondecreasing and piecewise continuously
differentiable int. (iv). For everyθ ∈ [0, T ], w.p.1α(t) is
continuous at the pointskC andkC + θ, k = 0, 1, . . .. (v).
For everyθ ∈ [0, T ], w.p.1 the functionα(t) is continuous
at any point whereβ(θ; t) is discontinuous. (vi). For every
θ ∈ [0, C), w.p.1, for every open intervalI ⊂ [0, T ], it is
impossible to have the relationα(t) = β(θ, t) ∀ t ∈ I except
for the case whereα(t) = β(θ; t) = 0.

Similar assumptions are routinely made in the literature
on IPA in the setting of stochastic hybrid systems; e.g., [5],
[22]. We remark that the attribute “piecewise continuously
differentiable” means that it is continuously differentiable at
all but a finite set of time-pointst. At those points it may be
discontinuous. This set of points may depend on the sample
ω, and its cardinality need not be upper-bounded overω ∈ Ω.

In the forthcoming discussion we use the ‘prime’ notation
for derivatives with respect toθ, and the ‘dot’ notation for
derivatives with respect tot. Thus,x′(θ; t) := ∂x

∂θ
(θ; t), while

ẋ(θ; t) = ∂x
∂t
(θ; t).

Fix θ ∈ [0, T ]. x(θ, t) is continuous int by Equation (8),
and by (9),

L′(θ) =
1

T

∫ T

0

x′(θ; t)dt. (11)

We next derive formulas for the derivative termx′(θ; t).
First, suppose thatt lies in the interior of an empty period

(namely, the continuous-queue analogue of an idle period; a
maximal period whenx(θ; ·) = 0; see [5]). Then, obviously,
x′(θ, t) = 0.

Next, considert lying in a non-empty period (the com-
plementary of empty periods; a supremal interval where
x(θ; ·) > 0). Let ut(θ) be the starting time of the nonempty
period, namely,ut(θ) := max{u ≤ t : x(θ;u) = 0}; if
no suchu exists, ut(θ) := 0. Let ℓC, (ℓ + 1)C, . . . ,mC
denote the time-points in the interval(ut(θ), t) when the
light switches from green to red, for some integersℓ ≥ 1
andm ≥ ℓ. We have the following result.

Proposition 1: Fix θ ∈ (0, C), and considert ∈ [0, T ]
such thatβ(θ; ·) is continuous att, andx(θ; t) > 0. Then
the termx′(θ; t) has the following form,

x′(θ; t) =
m
∑

k=ℓ

β(θ; (kC)−) + β(θ; t) − β(θ;ut(θ)
+). (12)

For the proof we provide the diagram in Figure 2 as a
visual aid.

Proof: By definition ofut(θ) and Equation (8), we have
that

x(θ; t) =

∫ t

ut(θ)

(

α(τ) − β(θ; τ)
)

dτ. (13)

If τ lies in the interior of a red-signal period thenβ(θ; τ) = 0
and hence ∂

∂θ

(

α(τ) − β(θ; τ)
)

= 0; therefore only green-
signal periods need be considered in the computation of
x′(θ; t) in the following way. Let us denote the green-signal
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Fig. 2. Evolution ofβ(θ; ·) (red curve) andx(θ; ·) (blue curve):ut =
(ℓ− 1)C; ξ1 = (ℓ− 1)C + θ; η1 = ℓC; ξ2 = ℓC + θ; η2 = (ℓ + 1)C;
p = 2.

periods in the interval[ut(θ), t] by Γj , j = 1, . . . , p, in
increasing order, and letξj(θ) and ηj(θ) be the boundary
points ofΓj, so thatΓj = [ξj(θ), ηj(θ)]. Define the functions
fj(θ), j = 1, . . . , p, as follows:

fj(θ) :=

∫ ηj(θ)
+

ξj(θ)−

(

α(τ) − β(θ; τ)
)

dτ, (14)

with only the following two possible exceptions: (i) Forj =
1, if ξ1(θ) = ut(θ), then the left - limit point of the integral in
(14) isut(θ) and notut(θ)

−; and (ii) for j = p, if ηp(θ) = t
then the right-limit point of the integral ist and not t+.
The reason for these exceptions is that the integral in (13)
is taken over[ut(θ), t] and its integrant may not be valid
outside this interval. Furthermore, it is obvious thatx(θ; t) =
∑p

j=1 fj(θ), and hence,

x′(θ; t) =

p
∑

j=1

f ′
j(θ). (15)

We next derive formulas forf ′
j(θ).

Consider a typical green-signal periodΓ := [ξ(θ), η(θ)] ⊂
[ut(θ), t], and define

f(θ) =

∫ min{η(θ)+,t}

max{ξ(θ)−,ut(θ)}

(

α(τ) − β(θ; τ)
)

dτ ; (16)

note that this is like one of the functionsfj(θ) defined in
(14) with the noted exceptions. Letτi(θ), i = 1, . . . , q, be
the jump-times ofβ(θ; ·) in increasing order, in the interval
(ξ(θ), η(θ)). Suppose first thatξ(θ) > ut(θ) and η(θ) < t,
the cases whereξ(θ) = ut(θ) or η(θ) = t will be considered



later. Taking derivative with respect toθ in (16), we obtain,

f ′(θ) = −

∫ τ1(θ)

ξ(θ)

β′(θ; τ)dτ

−

q−1
∑

i=1

∫ τi+1(θ)

τi(θ)

β′(θ; τ)dτ −

∫ η(θ)

τq(θ)

β′(θ; τ)dτ

−

q
∑

i=1

(

β(θ; τi(θ)
−)− β(θ; τi(θ)

+)
)

τ ′i(θ)

+
(

(

α(ξ(θ)−)− β(θ; ξ(θ)−)
)

−
(

α(ξ(θ)+)− β(θ; ξ(θ)+)
)

)

ξ′(θ)

+
(

(

α(η(θ)−)− β(θ; η(θ)−)
)

−
(

α(η(θ)+)− β(θ; η(θ)+)
)

)

η′(θ); (17)

we note that discontinuities inα(·) do not matter since the
process{α(·)} is independent ofθ, and further notice that
α(·) is continuous at jump-points ofβ(θ; ·) by Assumption
1.v.

Consider the integral terms in the RHS of (17). Since
Γ is a green-signal period contained in a nonempty period
of the queue, Equation (10) implies that, for everyτ ∈ Γ,
β(θ; τ) = b(τ −kC−θ) for somek = 1, 2, . . .. This implies
that β′(θ; τ) = −β̇(θ; τ), which allows us to compute the
integrals in the following way:

−

∫ τ1(θ)

ξ(θ)

β′(θ; τ)dτ =

∫ τ1(θ)

ξ(θ)

β̇(θ; τ)

= β(θ; τ1(θ)
−)− β(θ; ξ(θ)+), (18)

and similarly, for the rest of the integrals,

−

∫ τi+1(θ)

τi(θ)

β′(θ; τ) = β(θ; τi+1(θ)
−)−β(θ; τi(θ)

+), (19)

and

−

∫ η(θ)

τq(θ)

β′(θ; τ) = β(θ; η(θ)−)− β(θ; τq(θ)
+). (20)

Substituting from Equations (18)-(20) in (17) we obtain,

f ′(θ) =

q
∑

i=1

(

1− τ ′i(θ)
)(

β(θ; τi(θ)
−)− β(θ; τi(θ)

+)
)

−β(θ; ξ(θ)+) + β(θ; η(θ)−)

+
(

(

α(ξ(θ)−)− β(θ; ξ(θ)−)
)

−
(

α(ξ(θ)+)− β(θ; ξ(θ)+)
)

)

ξ′(θ)

+
(

(

α(η(θ)−)− β(θ; η(θ)−)
)

−
(

α(η(θ)+)− β(θ; η(θ)+)
)

)

η′(θ). (21)

Next, we observe that a green-signal period contained in
the interval(ut(θ), t) ends at a time-pointkC, k = 1, . . .,
meaning thatη(θ) = kC which is independent ofθ, and
henceη′(θ) = 0. This implies that the last additive term
in Equation (21) is zero. Furthermore, each timeτi(θ) lies

in the interior of the green-signal periodΓ, and hence there
exists an open interval containing it where, by Equation (10),
β(θ, τ) = b(τ − kC − θ); this implies thatτ ′i(θ) = 1, which
annuls the first additive term in the RHS of (21). All of this
reduces (21) to the following equation,

f ′(θ) = −β(θ; ξ(θ)+) + β(θ; η(θ)−)

+
(

(

α(ξ(θ)−)− β(θ; ξ(θ)−)
)

−
(

α(ξ(θ)+)− β(θ; ξ(θ)+)
)

)

ξ′(θ). (22)

Next, the starting time of a green period has the formξ(θ) =
kC + θ, k = 1, . . ., and henceξ′(θ) = 1. Moreover, by
Assumption 1.iv,α(τ) is continuous atτ = ξ(θ) and hence
α(ξ(θ)−) = α(ξ(θ)+), and finally,β(θ; ξ(θ)−) = 0 since
ξ(θ)− lies in a red-signal period. All of this reduces (22) to

f ′(θ) = β(θ; η(θ)−). (23)

Consider now the case whereξ(θ) = ut(θ). Then, the lower
boundary of the integral in (16) isut(θ), and the correspond-
ing boundary condition in (17) becomes−

(

α(ut(θ)
+) −

β(θ;ut(θ)
+)

)

u′
t(θ) instead of

(

(

α(ξ(θ)−)−β(θ; ξ(θ)−)
)

−
(

α(ξ(θ)+)− β(θ; ξ(θ)+)
)

)

ξ′(θ). As a result, (22) becomes

f ′(θ) = −β(θ;ut(θ)
+) + β(θ; η(θ)−)

−
(

α(ut(θ)
+)− β(θ;ut(θ)

+)
)

u′
t(θ). (24)

We now assert that
(

α(ut(θ)
+)− β(θ;ut(θ)

+)
)

u′
t(θ) = 0. (25)

Recall thatut(θ) is the time a non-empty period starts at the
queue. There are three ways a non-empty period can start:
while the queue is empty, (i)α(·) jumps up; (ii)β(θ; ·) jump
down; and (iii)α(·) − β(θ; ·) rises in a continuous fashion
from non-positive to positive. In the first caseut(θ) is a jump
time of α(·), and since the latter process is independent of
θ, u′

t(θ) = 0. In the second case, the only wayβ(θ, ·) can
jump down is at the start of red-signal periods. In that case
ut(θ) = kC for somek = 1, . . ., and againu′

t(θ) = 0. In
the third case,α(ut(θ))−β(θ;ut(θ)) = 0. In all three cases,
(25) is satisfied.

Applying (25) to (24), we obtain that

f ′(θ) = −β(θ;ut(θ)
+) + β(θ; η(θ)−). (26)

Finally, consider the case wheret = η(θ). Then, in Equation
(21) we have thatη′(θ) = 0 as before, and hence the
derivations of Equations (23) and (26) remain unchanged.

Consider now Equation (15). Forj = 1, if ξ1(θ) = ut(θ)
then Equation (26) applies tof ′

1(θ). On the other hand,
if ξ1(θ) > ut(θ) then Equation (23) applies tof ′

1(θ), but
in this case (by definition ofut(θ)) ut(θ)

+ lies in a red-
signal period and henceβ(θ;ut(θ)

+) = 0; implying that (26)
applies as well. Thus, in any event,f ′

1(θ) = −β(θ;ut(θ)
+)+

β(θ; η1(θ)
−). For everyj = 2, . . . , p, ξj(θ) > ut(θ) and

hence Equation (23) applies, namely,f ′
j(θ) = β(θ; ηj(θ)

−).
Therefore, by summing up all the terms in (15), Equation
(12) follows.



Equation (12) requires the on-line monitoring of traffic-
flow rates, and this can be done by measuring the speed
of automobiles crossing the intersection. In the special case
where the service rate alternates between 0 andβm, β(θ; t)
can be directly determined by the color of the traffic light.

Finally, we point out that the sample functionx(θ; t)
evidently is continuous inθ for every given t, and its
derivativex′(θ, t) is monotone nondecreasing inθ (see (12)).
This implies thatL(θ) is continuous as well, and the IPA
derivativeL′(θ) is unbiased.

IV. SIMULATION EXAMPLES

This section presents simulation examples for testing the
effectiveness of our regulation technique. The traffic-light
cycle is C = 1, and the control cycle consists of 20 light
cycles. The arrival rate consists of a off/on model where,
in the off stageα(t) = 0, while for eachon stageα(t) is
uniformly distributed in an interval[(1− ζ)ᾱ, (1 + ζ)ᾱ]; we
chose its mean to bēα = 4.1, and consider different values
of ζ > 0. The arrival rateα(t) varies from oneon period
to the next but retains a constant value throughout eachon
period. The durations ofoff periods andon periods are drawn
from the uniform distributions on the intervals[0, 0.02] and
[0, 0.063], respectively. The service rateβ(θ; t) ramps up at
the start of each green-signal period at the rate of0.62, until
either it reaches the saturation level ofβm := 5.0 or an
empty period starts. In the latter case the service rate jumps
to βm, and in both casesβ(θ; t) remains at the level ofβm

to the end of the green-cycle period.
The set-point reference value isr = 0.3, and the initial

control variable was set toθ1 = 0.9. We choseζ = 0.3 and
ζ = 0.1, respectively, and thus, the variance of the arrival
process is larger in the first experiment than in the second
one.

Figure 3 depicts the graphs of the obtained outputsLn(θn)
as functions of the countern = 1, . . . , 50, while Figure 4
provides the same information forn = 10, . . . , 50 in order
to highlight the effects of the variance on the asymptotic
behavior of the outputs. In both figures the blue and red
graphs correspond to the respective cases ofζ = 0.3 and
ζ = 0.1. In Figure 3 the graphs are hardly distinguishable,
and both exhibit convergence to aboutr = 0.3 in about 10
iterations. In Figure 4 the differences are more evident, and
the two graphs exhibit variability about the target value of
0.3. This is expected in view of the variations inLn(θn)
which are due to the random elements of the system and the
fact that it is nowhere near steady state after20 light cycles.
However, the respective means over the last 41 iterations,
namely the quantities141

∑50
n=10 Ln(θn), are0.3011 for the

case whereζ = 0.3, and0.305 for the case whereζ = 0.1.
Finally, Figure 5 shows plots of the control variableθn as

functions ofn for the case whereζ = 0.3, for two runs with
the respective starting values ofθ1 = 0.9 (the blue graph)
andθ1 = 0.1 (the green graph). Not surprisingly, both settle
to roughly the same value (θ ∼ 0.25) after 10 iterations.
We point out that the flat part of the blue curve at iterations
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Fig. 3. Evolution ofLn : n = 1 . . . , 50
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Fig. 5. Evolution ofθn : n = 1, . . . , 50

3-5 is due to a lower-bound guard onθ at 0.1, designed to
prevent extreme values which could destabilize the system.

V. CONCLUSIONS ANDFUTURE WORK

This paper proposes a regulation technique for congestion
management in a traffic-light intersection. The technique
aims at tracking a given reference queue level at the light in
the face of variable traffic patterns. It is based on the simple
idea of an integral controller with a variable gain, adjusted
according to the IPA derivative of the plant function. The
main theoretical result concerns a simple formula for the IPA
derivative, which is computable from traffic rates that can be
measured on-line. Simulation results exhibit fast convergence
towards the set value, and suggest the potential viability of
our approach in eventual applications.

Future research concerns extensions of our control for-
mulation to grids of traffic light with cross-correlated traffic
patterns. On the theoretical side, the main question is how
to design regulators for traffic-light systems with multiple
controllers. On the practical side, the main issue is how to
apply the proposed technique to achieve effective regulation
under more realistic traffic conditions.
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