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Abstract—The majority of distributed learning literature fo-
cuses on convergence to Nash equilibria. Correlated equilibria,
on the other hand, can often characterize more efficient collective
behavior than even the best Nash equilibrium. However, there
are no existing distributed learning algorithms that converge
to specific correlated equilibria. In this paper, we provide one
such algorithm which guarantees that the agents’ collective
joint strategy will constitute an efficient correlated equilibrium
with high probability. The key to attaining efficient correlated
behavior through distributed learning involves incorporating a
common random signal into the learning environment.

I. INTRODUCTION

Agents’ control laws are a crucial component of any mul-
tiagent system. They dictate how individual agents process
locally available information to make decisions. Factors that
determine the quality of a control law include informational
dependencies, asymptotic guarantees, and convergence rates.

Game theory has recently emerged as a framework for
assigning agents’ local control laws in a distributed system
[1], [12], [16], [18], [23]. Here, a learning rule dictates how
each agent should revise its behavior, based on its individual
objective and on available information about the surrounding
environment. Significant research has been directed at deriving
distributed learning rules that possess desirable asymptotic
performance guarantees and convergence rates and enable
agents to make decisions based on limited information.

The majority of this research has focused on attaining con-
vergence to (pure) Nash equilibria under stringent information
conditions [5], [9]–[11], [26], [30]. Recently, the research
focus has shifted to ensuring convergence to alternate types of
equilibria that often yield more efficient behavior than Nash
equilibria. In particular, results have emerged that guarantee
convergence to Pareto efficient Nash equilibria [20], [27],
potential function maximizers [4], [19], welfare maximizing
action profiles [2], [21], and the set of correlated equilibria
[3], [7], [13], [22], among others.

In most cases highlighted above, the derived algorithms
guarantee (probabilistic) convergence to the specified equi-
libria. However, the class of correlated equilibria has posed
significant challenges with regards to this goal. Learning
algorithms that converge to an efficient correlated equilibrium
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are desirable because optimal system behavior can often be
characterized by a correlated equilibrium. Unfortunately, the
aforementioned learning algorithms, such as regret matching
[13], merely converge to the set of correlated equilibria. This
means that the long run behavior does not necessarily consti-
tute – or even approximate – a specific correlated equilibrium
at any instance of time.

We provide a distributed learning algorithm that converges
to the most efficient, i.e., welfare maximizing, correlated
equilibrium. For concreteness, consider a mild variant of the
Shapley game with the following payoff matrix

L M R
T 1,-ε -ε,1 0,0
M 0,0 1,-ε -ε,1
B -ε,1 0,0 1,-ε

where ε > 0 is a small constant. In this game, there are
two players (Row, Column); the row player has three actions
(T,M,B), and the column player has three actions (L,M,R). The
numbers in the table above are the players’ payoffs for each of
the nine joint actions. The unique Nash equilibrium for this
game occurs when each player uses a probabilistic strategy
that selects each of the three actions with probability 1/3.
This yields an expected payoff of approximately 1/3 to each
player. Alternatively, a joint distribution that places a mass of
1/6 on each of the six joint actions that yield non-zero payoffs
to the players yields an expected payoff of approximately 1/2
to each player. Note that this distribution cannot be realized
by independent strategies associated with the two players, but
instead represents a specific correlated equilibrium.

As the above example demonstrates, distributed learning
algorithms that converge to efficient correlated equilibria can
be desirable from a system-wide perspective. In line with
this theme, results presented in [17] rely on looking for
cyclic behavior against a bounded memory opponent. Addi-
tionally, a recent result in [22] proposed a distributed algorithm
that guarantees that the empirical frequency of the agents’
collective behavior will converge to an efficient correlated
equilibrium; however, convergence in empirical frequencies is
attained through deterministic cyclic behavior of the agents.
For example, in the above Shapley game, the algorithm posed
in [22] guarantees that the collective behavior of the agents
will follow the cycle (T, L) → (T,M) → (M,M) →
(M,R) → (B,R) → (B,L) → (T, L) with high probability.
Following this deterministic cycle results in an empirical
frequency of play that equates to the efficient correlated
equilibrium highlighted above; however, at any time instance
the players are not playing a joint strategy in accordance with
this efficient correlated equilibrium.

Predictable, cyclic behavior may be desirable from a
system-wide perspective for many applications, e.g., data
ferrying [6]. However, such behavior could be exploited in
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many other situations, e.g., team versus team zero-sum games
[14], [28]. By viewing each team as a single player, classical
results for two-player zero-sum games suggest that a team’s
desired strategy is to play its security strategy, which can be
characterized by a probability distribution over the team’s joint
action space. Distributed learning algorithms that can stabilize
specific joint strategies, such as correlated equilibria, may be
necessary for providing strong performance guarantees in such
settings.

In this paper we present a distributed learning algorithm
that ensures the agents collectively play a joint strategy corre-
sponding to the efficient correlated equilibrium. With regards
to the Shapley game, our algorithm guarantees that the agents
collectively play the highlighted joint distribution with high
probability. Attaining such guarantees on the underlying joint
strategy is non-trivial as we aim to ensure desired correlated
behavior through the design of learning rules where individ-
ual agents make independent decisions in response to local
information. The key element of our algorithm that makes
this correlation possible is the introduction of a common
random signal to the agents, which is incorporated into their
local decision-making rule. Another important feature of our
algorithm is that it is completely uncoupled [9], i.e., agents
make decisions based only on their received utility and their
observation of the common random signal. In such settings,
agents have no knowledge of the payoff or behavior of
other agents, nor do they have any information regarding the
structural form of their utility functions.

It is important to highlight the recent results which focus
on efficient centralized algorithms for computing specific
correlated equilibria [15], [24], [25]. Such algorithms often
require a complete characterization of the game which is
unavailable in many engineering multiagent systems. Hence,
the applicability of such results to the design and control of
multiagent systems may be limited.

II. BACKGROUND

We consider the framework of finite strategic form games
where there exists an agent set N = {1, 2, . . . , n}, and each
agent i ∈ N is associated with a finite action set Ai and a
utility function Ui : A → [0, 1] where A = A1×A2×· · ·×An
denotes the joint action space. We represent such a game by
the tuple G = (N, {Ui}i∈N , {Ai}i∈N ).

In this paper we focus on the class of coarse correlated
equilibria [3]. A coarse correlated equilibrium is characterized
by a joint distribution q = {qa}a∈A ∈ ∆(A), where ∆(A)
represents the simplex over the finite set A, such that for any
agent i ∈ N and action a′i ∈ Ai,∑

a∈A
Ui(ai, a−i)q

a ≥
∑
a∈A

Ui(a
′
i, a−i)q

a, (1)

where a−i = {a1, . . . , ai−1, ai+1, . . . , an} denotes the collec-
tion of action of all players other than player i.1 Informally,
a coarse correlated equilibrium represents a joint distribution
where each agent’s expected utility for going along with the
joint distribution is at least as good as his expected utility
for deviating to any fixed action. We say a coarse correlated

1We will express an action profile a ∈ A as a = (ai, a−i).

equilibrium q∗ is efficient if it maximizes the sum of the
expected payoffs of the agents, i.e.,

q∗ ∈ arg max
q∈CCE

∑
i∈N

∑
a∈A

Ui(a)qa, (2)

where CCE ⊂ ∆(A) denotes the set of coarse correlated
equilibria. It is well known that CCE 6= ∅ for any game G.

This paper focuses on deriving a distributed learning al-
gorithm that ensures the collective behavior of the agents
converges to an efficient coarse correlated equilibrium. We
adopt the framework of repeated one-shot games, where a
static game G is repeated over time and agents use ob-
servations from previous plays of the game to formulate a
decision. More specifically, a repeated one-shot game yields
a sequence of action profiles a(0), a(1), . . . , where at each
time t ∈ {0, 1, 2, . . . } the decision of each agent i is chosen
independently accordingly to the agent’s strategy at time t,
which we denote by pi(t) = {paii (t)}ai∈Ai

∈ ∆(Ai).

A learning rule dictates how each agent selects its strategy
given available information from previous plays of the game.
One type of learning rule, known as completely uncoupled or
payoff based [9], takes on the form:

pi(t) = Fi

(
{ai(τ), Ui(a(τ))}τ=0,...,t−1

)
(3)

Completely uncoupled learning rules represent one of the most
informationally restrictive classes of learning rules since the
only knowledge that each agent has about previous plays of
the game is (i) the action the agent played and (ii) the utility
the agent received.

We gauge the performance of a learning rule {Fi}i∈N by
the resulting asymptotic guarantees. With that goal in mind,
let q(t) ∈ ∆(A) represent the agents’ collective strategy at
time t, which is of the form

q(a1,...,an)(t) = pa11 (t)× · · · × pann (t) (4)

where {pi(t)}i∈N are the individual agent strategies at time t.
The goal of this paper is to derive learning rules that guarantee
the agents’ collective strategy constitutes an efficient coarse
correlated equilibrium the majority of the time, i.e., for all
sufficiently large times t,

Pr

[
q(t) ∈ arg max

q∈CCE

∑
i∈N

∑
a∈A

Ui(a)qa

]
≈ 1. (5)

Attaining this goal using learning rules of the form (3) is
impossible because such rules do not allow for correlation
between the players, i.e., the agents’ collective strategies are
restricted to being of form (4). Accordingly, we modify the
learning rules in (3) by giving each agent access to a common
random signal z(t) at each period t ∈ {0, 1, . . . } that is
i.i.d. and drawn uniformly from the interval [0, 1]. Now, the
considered distributed learning rule takes the form

pi(t) = Fi

(
{ai(τ), Ui(a(τ)), z(t))}τ=0,...,t−1

)
. (6)

As we show in the following section, this common signal can
be used as a coordinating entity to reach collective strategies
beyond the form given in (4).
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III. A LEARNING ALGORITHM FOR ATTAINING EFFICIENT
CORRELATED EQUILIBRIA

In this section, we present a specific learning rule of the
form (6) that guarantees the agents’ collective strategy con-
stitutes an efficient coarse correlated equilibrium the majority
of the time. This algorithm achieves the desired convergence
guarantees by exploiting the common random signal z(t)
through the use of signal-based strategies.

A. Preliminaries
Consider a situation where each agent i ∈ N commits to

a signal-based strategy of the form si : [0, 1] → Ai which
associates with each signal z ∈ [0, 1] an action si(z) ∈ Ai.
With an abuse of notation, we consider a finite parameteri-
zation of such signal-based strategies, which we refer to as
strategies, of the form Si = ∪Ω

ω=1(Ai)ω where Ω ≥ 1 is a
design parameter identifying the granularization of the agent’s
possible strategies. A strategy si = (a1

i , . . . , a
ω
i ) ∈ Si, ω ≤ Ω,

defines a mapping of the form

si(z) =


a1
i if z ∈ [0, 1/ω)
a2
i if z ∈ [1/ω, 2/ω)
...

...
aωi if z ∈ [(ω − 1)/ω, 1].

(7)

These strategies divide the unit interval into at most Ω regions
of equal length and associate each region with a specific action
in the agent’s action set. If the agents commit to a strategy
profile s = (s1, s2, . . . , sn) ∈ S =

∏
i∈N Si, the resulting

joint strategy q(s) = {qa(s)}a∈A ∈ ∆(A) satisfies

qa(s) =

∫ 1

0

∏
i∈N

I{si(z) = ai}dz

where I{·} is the indicator function. Lastly, the set of joint
distributions that can be realized by the strategies S is

q(S) = {q ∈ ∆(A) : q(s) = q for some s ∈ S}.

B. Informal algorithm description
The forthcoming algorithm is reminiscent of the trial and

error learning algorithm introduced in [30] and can be viewed
at a high level through the following diagram.

Evaluation Trial Acceptance

period k

times

period 
k

period 
k+1

xi(k) = {sb
i , mi} xi(k + 1)

3pk + 1, . . . , 3pk + 3p

Fig. 1: Learning algorithm phases within each time period

The times {1, 2, . . . } will be broken up into periods of
length 3p̄ where p̄ > 1 is an interval whose length will be
defined formally below. At the beginning of each period k,
each agent i ∈ N has a local state variable of the form
xi(k) = [sbi ,mi] where sbi ∈ Si is the agent’s baseline strategy
and mi is the agent’s mood. The agent’s baseline strategy

corresponds to the strategy the agent is accustomed to playing.
The agent’s mood mi, which can either be CONTENT or
DISCONTENT, dictates how likely each agent is to select its
baseline strategy during a given period. Roughly speaking, a
content agent is more likely to select its baseline strategy while
a discontent agent is more likely to try an alternate strategy.

Each period k > 0, which consists of the time steps {3p̄k+
1, . . . , 3p̄(k+1)}, will be broken up into three distinct phases
called evaluation, trial, and acceptance. The behavior of the
agents in each of these phases is highlighted below:
– Evaluation Phase: The first phase is the evaluation phase.
In this phase, each agent establishes a baseline utility, ubi ,
associated with its current baseline strategy, sbi . All agents
commit to their baseline strategies during this entire phase.
– Trial Phase: The second phase is the trial phase. During
this phase, each agent has the opportunity to experiment with
an alternate trial strategy, sti, in order to determine whether
changing its baseline strategy could be advantageous. An
agent’s mood determines how likely it is to experiment. In
particular, a content agent will use its baseline strategy sbi
during the trial phase with high probability. On the other hand,
a discontent player is likely to experiment with a trial strategy
sti 6= sbi . The exact probabilities associated with this selection
process will be described in detail in the forthcoming section.
– Acceptance Phase: The third phase is the acceptance phase.
Here, an agent who experimented during the trial phase
decides whether to accept its trial strategy or revert to its
baseline strategy. Agents who did not experiment during the
trial phase commit to their baseline strategies and observe
payoff changes which occur due to others’ changes in strategy.

C. Formal algorithm description

We begin by defining a constant c > n, an experimentation
rate ε ∈ (0, 1), and the length of a phase to be p̄ = d1/δnc+1e
time steps, for some small δ ∈ (0, 1). A period consists of
the evaluation, trial, and acceptance phases, and hence is 3p̄
time steps long. Let xi = xi(k) = [sbi ,mi] represent that
state of each agent i ∈ N at the beginning of some period
k ∈ {1, 2, . . . }. We will formally present the algorithm using
the same general structure given in previous section.

Agent Dynamics: Here we describe how individual agents
make decisions within a given period. Decisions of an agent
i ∈ N are influenced purely by its state at the beginning of
the k-th period, xi(k), and by payoffs received during the k-th
period. We specify agents’ behavior during the k-th period for
the three phases highlighted above.

– Evaluation Phase: The evaluation phase consists of the
times t ∈ {3p̄k + 1, . . . , 3p̄k + p̄}. Throughout this phase,
each agent commits to its baseline strategy sbi . At the end of
the phase, each agent computes its average baseline utility,

ubi =
1

p̄

3p̄k+p̄∑
τ=3p̄k+1

Ui
(
sb1(z(τ), . . . , sbn(z(τ))

)
, (8)

where z(τ) denotes the common random signal observed at
time τ . Here, ubi is viewed as an assessment of the performance
associated with the baseline strategy sbi .
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– Trial Phase: After the evaluation phase comes the trial phase
which consists of the times t ∈ {(3p̄k+ p̄)+1, . . . , 3p̄k+2p̄}.
During the trial phase each player i ∈ N may try a strategy
other than its baseline, and must commit to this trial strategy,
sti ∈ Si, over the entire phase. Agents’ trial strategies are
selected according to the following rule:

leftmargin = .3cm
• Content, mi = C: When agent i is content, its trial

strategy, sti ∈ Si, is chosen according to the distribution

Pr
[
sti = si

]
=

{
1− εc if si = sbi
εc / |Ai| for any si = ai ∈ Ai

(9)
A strategy sti = ai means that agent i commits to
playing action ai for the entire trial phase of the k-
th period, i.e., the strategy does not depend on the
common random signal. Observe that a content player
predominantly selects its baseline strategy during the trial
phase.

• Discontent, mi = D: When agent i is discontent, its trial
strategy, sti, is chosen randomly from the set Si,

Pr
[
sti = si

]
= 1 / |Si| for all si ∈ Si. (10)

At the end of the trial phase, each agent computes its
average utility:

uti =
1

p̄

3p̄k+2p̄∑
τ=3p̄k+p̄)+1

Ui
(
st1(z(τ), . . . , stn(z(τ))

)
. (11)

Here, uti is viewed as an assessment of the performance
associated with the baseline strategy sti.
– Acceptance Phase: The last phase is the acceptance phase
which consists of times t ∈ {(3p̄k+2p̄)+1, . . . , 3p̄k+3p̄}. The
primary purpose of the acceptance phase is to further evaluate
changes in the payoffs between ubi and uti. Each agent i ∈ N
commits to an acceptance strategy, denoted by sai ∈ Si, over
the entire acceptance phase. Each agent’s acceptance strategy
is selected according to the following.

leftmargin = .3cm
• Content, mi = C: When agent i is content, its acceptance

strategy is chosen as follows:

sai =

{
sti if uti > ubi + δ,
sbi if uti ≤ ubi + δ.

(12)

That is, players only repeat their trial strategy if their
performance was high enough relative to the performance
of the baseline strategy.

• Discontent, mi = D: When agent i is discontent, the
acceptance strategy is set as sai = sti.

Following the acceptance phase, each agent computes its
average utility:

uai =
1

p̄

3p̄k+3p̄∑
τ=(3p̄k+2p̄)+1

Ui
(
sa1(z(τ), . . . , san(z(τ))

)
. (13)

Here, uai is viewed as an assessment of the performance
associated with the baseline strategy sai .

State Dynamics: After the agent dynamics comes the state
dynamics which specifies how the state of each agent evolves.

The state of each agent i ∈ N at the beginning of the k + 1-
st stage, i.e., xi(k + 1), is influenced purely its state at the
beginning of the k-th period, i.e., xi(k), the strategies sbi , s

t
i

and sai , and the payoffs received during the k-th period. The
state dynamics are broken into the following cases:

– Content and No Experimentation, mi = C, sti = sbi : If
agent i was content at the start of the k-th period and did
not experiment in the trial phase, its state at the beginning of
the (k + 1)-st period is chosen as follows: leftmargin = .3cm

• If uai ≥ ubi − δ,

xi(k + 1) =

{ [
sai = sbi , C

]
w.p. 1− ε2c,[

sai = sbi , D
]

w.p. ε2c.
(14)

• If uai < ubi − δ,

xi(k + 1) =
[
sai = sbi , D

]
(15)

Accordingly, if the agent’s average payoff during the accep-
tance phase is low enough, then it will become discontent.

– Content and Experimentation, mi = C, sti 6= sbi : If agent i
was content at the start of the k-th period and experimented
during the trial phase, its state at the beginning of the (k+1)-st
period is chosen as

xi(k + 1) = [sai , C] . (16)

In this case the agent’s average payoff during the acceptance
phase does not impact its underlying state dynamics.

– Discontent, mi = D: If agent i was discontent at the start
of the k-th period, its state at the beginning of the (k + 1)-th
period is chosen as follows

xi(k + 1) =

{
[sai , C] w.p. ε1−ua

i ,
[sai , D] w.p. 1− ε1−ua

i .
(17)

Here, the agents are more likely to become content with
strategies the yield higher average payoffs.

D. Main Result

Throughout this paper we focus on games where there
is some degree of coupling between the utility functions of
the agents. The following definition of interdependence, taken
from [30], captures this notion of coupling.

Definition 1: A game G with agents N = {1, 2, . . . , n} is
said to be interdependent if, for every a ∈ A and every proper
subset of agents J ⊂ N , there exists an agent i /∈ J and a
choice of actions a′J ∈

∏
j∈J Aj such that Ui(a′J , a−J) 6=

Ui(aJ , a−J).

Roughly speaking, the definition of interdependence states
that it is not possibly to partition the group of agents into two
sets whose actions do not impact one another’s payoffs.

The following theorem characterizes the limiting behavior
associated with the proposed algorithm.

Theorem 1: Let G = (N, {Ui}, {Ai}) be a finite interde-
pendent game. First, suppose q(S) ∩ CCE 6= ∅. Given any
probability p < 1, if the exploration rate ε is sufficiently small,
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and if δ = ε, then for all sufficiently large times t,2

Pr

[
q(s(t)) ∈ arg max

q∈q(S)∩CCE

∑
i∈N

∑
a∈A

Ui(a)qa

]
> p.

Alternatively, suppose q(S)∩CCE = ∅. Given any probability
p < 1, if the exploration rate ε is sufficiently small and δ = ε,
then for all sufficiently large times t,

Pr

[
q(s(t)) ∈ arg max

q∈q(S)

∑
i∈N

∑
a∈A

Ui(a)qa

]
> p.

We prove Theorem 1 in Appendix B.
A few remarks are on order regarding Theorem 1. First,

observe that the proposed algorithm is of the form (6). Second,
the condition q(S) ∩ CCE 6= ∅ implies the agents can
realize specific joint distributions that are coarse correlated
equilibria through the joint strategy set S. When this is the
case, the above algorithm ensures the agents predominantly
play a strategy s ∈ S where the resulting joint distribution
q(s) corresponds to the efficient coarse correlated equilibrium.
Alternately, the condition q(S) ∩ CCE = ∅ implies there are
no agent strategies that can characterize a coarse correlated
equilibrium. When that is the case, the above algorithm
ensures the agents predominantly play strategies that have full
support on the action profiles a ∈ A that maximize the sum
of the agents payoffs, i.e., arg maxa∈A

∑
i∈N Ui(a).

E. Illustrative Example

Here, we present an example where agents update their
strategies according to the algorithm above, and their actions
converge to an efficient coarse correlated equilibrium.

Example 1: Consider a game with two players, (Row, Col-
umn), and the following payoff matrix:

L M R
T 0, 0 0, 1 0.85, 0.75
M 1, 0 0, 0 0, 0
B 0.75, 0.85 0, 0 0, 0

The efficient coarse correlated equilibrium in this game
places probability 0.5 on joint action (T,R), and probability
0.5 on joint action (B,L), i.e.,

q(T,R) = q(B,L) = 0.5, (18)

and qa = 0 for a /∈ {(T,R), (B,L)}. The expected utility
associated with this coarse correlated equilibrium is Ui(q) =
0.8.

For each value of ε in {0.15, 0.1, 0.015, 0.01}, we simulated
our algorithm for 20 times over 105 iterations, fixing δ = 0.14.
The table below shows the percentage of the last 5 × 104

iterations spent in the efficient coarse correlated equilibrium
as in (18).3

2For the proof of Theorem 1, we require δ = ε. However, in practice,
fixing δ > ε in order to shorten the period length, p̄, often yields similar
results, as we demonstrate in Example 1.

3We did not simulate our algorithm for smaller values of ε because conver-
gence rates slow significantly as ε→ 0, reducing the algorithm’s practicality.
Next research steps include improving this algorithm’s convergence rates.

ε % time in efficient CCE
0.15 9%
0.1 16%

0.015 84%
0.01 87%

Note that as ε decreases, more time is spent in the efficient
coarse correlated equilibrium, as predicted by Theorem 1.

IV. CONCLUSION

The majority of distributed learning literature has focused
on identifying learning rules that converge to Nash equilibria.
However, alternate forms of behavior, such as correlated equi-
librium, can often lead to significant improvements in system-
wide behavior. This paper focuses on identifying learning rules
that converge to joint distributions that do not necessarily
constitute Nash equilibria. In particular, we have a provided a
distributed learning rule, similar in spirit to the learning rule in
[22], that ensuers agents play strategies that constitute efficient
coarse correlated equilibria. A mild variant of the proposed
algorithm could also ensure the agents play strategies that
constitute correlated equilibria, as opposed to coarse correlated
equilibria. Future work seeks to investigate the applicability of
such algorithms in the context of team versus team zero-sum
games.
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APPENDIX

The formulation of the decision making process defined in
Section III ensures that the evolution of the agents’ states over
the periods {0, 1, 2, . . . } can be represented as a finite ergodic
Markov chain over the state space

X = X1 × · · · ×Xn (19)

where Xi = Si×{C,D} denotes the set of possible states of
agent i. Let P ε denote this Markov chain for some ε > 0, and
δ = ε. Proving Theorem 1 requires characterizing the station-
ary distribution of the family of Markov chains {P ε}ε>0 for
all sufficiently small ε. We employ the theory of resistance
trees for regular perturbed processes, introduced in [29], to
accomplish this task. We begin by reviewing this theory and
then proceed with the proof of Theorem 1.

A. Background: Resistance Trees
Define P 0 as the transition matrix for some nominal Markov

process, and let P ε be a perturbed version of this nominal
process where the size of the perturbation is ε > 0. Throughout
this paper, we focus on the following class of Markov chains.

Definition 2: A family of Markov chains defined over a
finite state space X , whose transition matrices are denoted by
{P ε}ε>0, is called a regular perturbed process of a nominal
process P 0 if the following conditions are satisfied for all
x, x′ ∈ X:

1) There exists a constant c > 0 such that P ε is aperiodic
and irreducible for all ε ∈ (0, c].

2) limε→0 P
ε
x→x′ = P 0

x→x′ .
3) If P εx→x′ > 0 for some ε > 0, then there exists a constant

r(x→ x′) ≥ 0 such that

0 < lim
ε→0

P εx→x′

εr(x→x′)
<∞. (20)

The constant r(x → x′) is referred to as the resistance
of the transition x→ x′.

For any ε > 0, let µε = {µεx}x∈X ∈ ∆(X) denote the
unique stationary distribution associated with P ε. The theory
of resistance trees presented in [29] provides efficient mech-
anisms for computing the support of the limiting stationary
distribution, i.e., limε→0+ µε, commonly referred to as the
stochastically stable states.

Definition 3: A state x ∈ X is stochastically stable [8]
if limε→0+ µεx > 0, where µε is the stationary distribution
corresponding to P ε.

In this paper, we adopt the technique provided in [29] for
identifying the stochastically stable states through a graph
theoretic analysis over the recurrent classes of the unperturbed
process P 0. To that end, let Y0, Y1, . . . , Ym denote the re-
current classes of P 0. Define Pij to be the set of all paths
connecting Yi to Yj , i.e., a path p ∈ Pij is of the form
p = {(x1, x2), (x2, x3), . . . , (xk−1, xk)} where x1 ∈ Yi and
xk ∈ Yj . The resistance associated with transitioning from Yi
to Yj is defined as

r(Yi, Yj) = min
p∈Pij

∑
(x,x′)∈p

r(x, x′). (21)

The recurrent classes Y0, Y1, . . . , Ym satisfy the following
properties: (i) there is a zero resistance path, i.e., a sequence
of transitions each with zero resistance, from any state x ∈ X
to at least one state y in one of the recurrent classes; (ii) for
any recurrent class Yi and any states yi, y′i ∈ Yi, there is a zero
resistance path from yi to y′i; and (iii) for any state yi ∈ Yi
and yj ∈ Yj , Yi 6= Yj , any path from yi to yj has strictly
positive resistance.

The first step in identifying the stochastically stable states is
to identify the resistance between the various recurrent classes.
The second step focuses on analyzing spanning trees of the
weighted, directed graph G whose vertices are recurrent classes
of the process P 0, and whose edge weights are given by the
resistances between classes in (21). Denote Ti to be the set of
all spanning trees of G rooted at recurrent class Yi. Next, we
compute the stochastic potential of each recurrent class which
is defined as follows:

Definition 4: The stochastic potential of recurrent class Yi
is

γ(Yi) = min
T ∈Ti

∑
(Y,Y ′)∈T

r(Y, Y ′)

The following theorem characterizes the recurrent classes that
are stochastically stable.

Theorem 2 ( [29]): Let P 0 be the transition matrix for a
stationary Markov process over the finite state space X with
recurrent communication classes Y1, . . . , Ym. For each ε > 0,
let P ε be a regular perturbation of P 0 with a unique stationary
distribution µε. Then:

1) As ε → 0, µε converges to a stationary distribution µ0

of P 0.

2) A state x ∈ X is stochastically stable if and only if x is
contained in a recurrent class Yj that minimizes γ(Yj).
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B. Proof of Theorem 1

We begin by restating the main results associated with
Theorem 1 (setting δ = ε) using the terminology defined in
the previous section. leftmargin = .3cm
• If q(S)∩CCE 6= ∅, then a state x = {xi = [si,mi]}i∈N

is stochastically stable if and only if (i) mi = C for
all i ∈ N and (ii) the strategy profile s = (s1, . . . , sn)
constitutes an efficient coarse correlated equilibrium, i.e.,

q(s) ∈ arg max
q∈q(S)∩CCE

∑
i∈N

∑
a∈A

Ui(a)qa. (22)

• If q(S)∩CCE = ∅, then a state x = {xi = [si,mi]}i∈N
is stochastically stable if and only if (i) mi = C for
all i ∈ N and (ii) the strategy profile s = (s1, . . . , sn)
constitutes an efficient action profile, i.e.,

q(s) ∈ arg max
q∈q(S)

∑
i∈N

∑
a∈A

Ui(a)qa. (23)

For convenience, and with an abuse of notation, define

Ui(s) :=
∑
a∈A

Ui(a)qa(s) (24)

to be agent i’s expected utility with respect to distribution q(s),
where s ∈ S.

The proof of Theorem 1 will consist of the following steps:
(i) Define the unperturbed process, P 0.

(ii) Determine the recurrent classes of process P 0.
(iii) Establish transition probabilities of process P ε.
(iv) Determine the stochastically stable states of P ε using

Theorem 2.

Part 1: Defining the unperturbed process

The unperturbed process P 0 is effectively the process
identified in Section III where ε = 0. Rather than dictate the
entire process as done previously, here we highlight the main
attributes of the unperturbed process that may not be obvious
upon initial inspection.

leftmargin = .3cm
• If agent i is content, i.e., xi = [sbi , C], the trial action

is sti = sbi with probability 1. Otherwise, if agent i is
discontent, the trial action is selected according to (10).

• The baseline utility ubi in (8) associated with joint base-
line strategy sb is now of the form

ubi = Ui(s
b). (25)

This results from invoking the law of large numbers since
p̄ = d1/εnc+1e. The trial utility uti and acceptance utility
uai are also of the same form.

• A content player will only become discontent if uai < ubi
where associated payoffs are computed according to (25).

Part 2: Recurrent classes of the unperturbed process

The second part of the proof analyzes the recurrent classes
of the unperturbed process P 0 defined above. The following
lemma identifies the recurrent classes of P 0.

Lemma 1: A state x = (x1, x2, . . . , xn) ∈ X belongs to a
recurrent class of the unperturbed process P 0 if and only if

the state x fits into one of following two forms: leftmargin =
.3cm

• Form #1: The state for each agent i ∈ N is of the form
xi =

[
sbi , C

]
where sbi ∈ Si. Each state of this form

comprises a distinct recurrent classes. We represent the
set of states of this form by C0.

• Form #2: The state for each agent i ∈ N is of the form
xi =

[
sbi , D

]
where sbi ∈ Si. All states of this form

comprise a single recurrent class, represented by D0.

Proof: We begin by showing that any state x ∈ C0

is a recurrent class of the unperturbed process. According
to P 0, if the system reaches state x, then it remains at x
with certainty for all future time. Hence, each x ∈ C0 is a
recurrent class of P 0. Next, we show that D0 constitutes a
single recurrent class. Consider any two states x, y ∈ D0.
According to the unperturbed process, P 0, the probability of
transitioning from x to y is strictly positive

(
≥∏i∈N 1/|Si|

)
;

hence, the resistance of the transition x→ y is 0. Further note
that the probability of transitioning to any state not in D0 is
zero. Hence, D0 forms a single recurrent class of P 0.

The last part of the proof involves proving that any state
x = {[sbi ,mi]}i∈N /∈ C0∪D0 is not recurrent in P 0. Since x /∈
C0 ∪D0, it consists of both content and discontent players.
Denote the set of discontent players by J = {i ∈ N : mi =
D} 6= ∅. We will show that the discontent players J will play
a sequence of strategies with positive probability that drives
at least one content player to become discontent. Repeating
this argument at most n times shows that any state x of the
above form will eventually transition to the all discontent state,
proving that x is not recurrent.

To that end, let x(1) = x be the state at the beginning
of the 1-st period. According to the unperturbed process P 0,
each discontent player randomly selects a strategy si ∈ Si
which becomes part of the player’s state at the ensuing
stage. Suppose each discontent agent selects a trial strategy
si = (a1

i , . . . , a
w
i ) ∈ Awi ⊂ Si during the 1-st period, i.e., the

discontent players select strategies of the finest granulariza-
tion. Note that each agent selects a strategy with probability
≥ 1 / |Si|. Here, the trial payoff for each player i ∈ N
associated with the joint strategies s = ({sbi}i/∈J , {si}i∈J) is

uti(s) =

∫ 1

0

Ui(s(z))dz (26)

=
1

w
Ui(a) +

∫ 1

w

Ui(s
′(z))dz, (27)

for some a ∈ A as si(z) = si(z
′) for any z, z′ ∈ [0, 1/w] for

any agent i ∈ N . If uti < ubi for any any agent i /∈ J , agent i
becomes discontent in the next stage and we are done.

For the remainder of the proof suppose uti(s) ≥ ubi (sb) for
all agents i /∈ J . This implies all agents N\J will be content at
the beginning of the second stage. By interdependence, there
exists a collective action ãJ ∈

∏
j∈J Aj and an agent i /∈

J such that Ui(a) 6= Ui(ãJ , aN\J). Suppose each discontent
agent selects a trial strategy s′i = (ã1

i , a
2
i , . . . , a

w
i ) ∈ Awi ⊂ Si

during the second period, i.e., only the first component of
the strategy changed. The trial payoff for each player i ∈ N
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associated with the joint strategies s′ = ({sbi}i/∈J , {s′i}i∈J) is

uti(s
′) =

∫ 1

0

Ui(s
′(z))dz

=
1

w
Ui(ãJ , aN\J) +

∫ 1

w

Ui(s
′(z))dz

6= uti(s)

If uti(s
′) < uti(s), agent i will become discontent at the

ensuing stage and we are done. Otherwise, agent i will stay
content at the ensuing stage. However, if each discontent agent
selects a trial strategy s′′i = (a1

i , a
2
i , . . . , a

w
i ) ∈ Awi ⊂ Si

during the third period, we know uti(s
′′) < uti(s

′), where
s′′ = ({sbi}i/∈J , {s′′i }i∈J). Hence, agent i will become dis-
content at the beginning of period 4. This argument can be
repeated at most n times, completing the proof.

Part 3: Transition probabilities of process P ε

Here, we establish the transition probability P εx→x+ for
a pair of arbitrary states, x, x+ ∈ X. Let xi = [si,mi],
x+
i = [s+

i ,m
+
i ] for i ∈ N, s = (s1, s2, . . . , sn), and

s+ = (s+
1 , s

+
2 , . . . , s

+
n ). Then,

P εx→x+ =
∑
s̃st∈S

∑
s̃a∈S

(
Pr[x+ | st = s̃t, sa = s̃a]

× Pr[sa = s̃a | st = s̃t] Pr[st = s̃t]

)
. (28)

Note that the strategy selections and state transitions are
conditioned on state x; for notational brevity we do not
explicitly write this dependence. Here, st and sa represent
the joint trial and acceptance strategies during the period
before the transition to x+.. The double summation in (28)
is over all possible trial actions, s̃t ∈ S, and acceptance
strategies, s̃a ∈ S. However, recall from (14) - (17) that,
when transitioning from x to x+, not all strategies can serve
as intermediate trial and acceptance strategies. In particular,
transitioning to state x+ requires that sa = s+; hence if
s̃a 6= s+, then Pr[x+ | st = s̃t, sa = s̃a] = 0, so we can
rewrite (28) as:

P εx→x+ =
∑
s̃t∈S

(
Pr[x+ | st = s̃t, sa = s+]

× Pr[sa = s+ | st = s̃t] Pr[st = s̃t]

)
(29)

There are three cases for the transition probabilities in (29).
Before proceeding, we make the following observations. The
last term in (29), Pr[st = s̃t], is defined in Section III; we
will not repeat the definition here. For the first two terms,
agents’ state transition and strategy selection probabilities are
independent when conditioned state x and on the joint trial
and acceptance strategy selections. Hence, we can write the
first term as:

Pr[x+ | st = s̃t, sa = s+] =
∏
i∈N

Pr[x+
i | st = s̃t, sa = s+]

(30)

and the second term as:

Pr[sa = s+ | st = s̃t] =
∏
i∈N

Pr[sai = s+
i | st = s̃t]. (31)

The following three cases specify individual agents’ prob-
ability of choosing the acceptance strategy sai in (31) and
transitioning to state x+

i in (30).

Case (i) agent i is content in state x, i.e., mi = C, and did
not experiment, sti = si:
For (31), since sai ∈ {sti, si} we know that

Pr[sai = s+
i | st = s̃t] =

{
1 if s+

i = si
0 otherwise .

In (30), for any trial strategy st = s̃t, the probability of
transitioning to a state x+

i depends on realized average payoffs
ubi and uai . In particular, if x+

i = [s+
i , C], then we must have

that uai ≥ ubi − ε, so

Pr

[
x+
i = [s+

i , C] | sa = s+, st = s̃t
]

=

∫ 1

0

Pr[ubi = η]

∫ 1

η−ε
Pr[uai = ν | st = s̃t, sa = s+]dνdη.

Then, the probability that x+
i = [s+

i , D] is

1− Pr

[
x+
i = [s+

i , C] | sa = s+, st = s̃t
]
.

Case (ii) agent i is content and experimented, sti 6= si :
For (31), agent i’s acceptance strategy depends on its average
baseline and trial payoffs, ubi and uti. Recall, if uti ≥ ubi + ε,
then sai = si, i.e., agent i’s acceptance strategy is simply its
baseline strategy from state x. Otherwise sai = sti. Utilities
ubi and uti depend on joint strategies s and st and on the
common random signals sent during the corresponding phases.
Therefore,

Pr[sai = s+
i | st = s̃t 6= s]

=

∫ 1

0

∫ 1

0

Pr[sai = s+
i |ubi = η, uti = ν, sti = si]

× Pr[ubi = η] Pr[uti = ν | st = s̃t]dηdν

In (30), since agent i remains content and sticks with its
acceptance strategy from the previous period,

Pr[x+
i | sa = s+, st = s̃t] =

{
1 if s+

i = sai
0 otherwise .

Case (iii) agent i is discontent:
For (31),

Pr[sai = s+
i | st = s̃t] =

{
1 if s+

i = sti
0 otherwise .

In (30), agent i’s probability of becoming content depends only
on its received payoff during the acceptance phase; it becomes
content with probability ε1−ua

i and remains discontent with
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probability 1− ε1−ua
i . Hence, if x+

i = [s+
i , C],

Pr

[
x+
i = [s+

i , C] | sa = s+, st = s̃t
]

=

∫ 1

0

ε1−η Pr[uai = η | sa = s+, st = s̃t]dη.

Then,

Pr

[
x+
i = [s+

i , D] | sa = s+, st = s̃t
]

= 1− Pr

[
x+
i = [s+

i , C] | sa = s+, st = s̃t
]

Now that we have established transition probabilities for
process P ε, we may state the following lemma.

Lemma 2: The process P ε is a regular perturbation of P 0.
It is straightforward to see that P ε satisfies the first two

conditions of Definition 2 with respect to P 0. The fact that
transition probabilities satisfy the third condition, Equation
(20), follows from the fact that the dominant terms in P εx→y
are polynomial in ε. This is immediately clear in all but the in-
corporation of realized utilities into the transition probabilities,
as in (29). However, for any joint strategy, s, and associated
average payoff ui, since

E[ui] = E

[
1

p̄

`+p̄−1∑
τ=`

Ui(s(z(τ)))

]
= Ui(s).

for any time period of length p̄ in which joint strat-
egy s is played throughout the entire period. Moreover,
Var
[
Ui(s(z(τ)))

]
≤ 1. Therefore, we may use Chebyschev’s

inequality and the fact that p̄ = d1 / εnc+2e to see that

Pr
[∣∣ui − Ui(s)∣∣ ≥ ε] ≤ Var

[
Ui(s(z(τ)))

]
p̄ε2

≤ εnc. (32)

Note that this applies for all average utilities, ubi , u
t
i, and uai

in the aforementioned state transition probabilities.

Part 3: Determining the stochastically stable states

We begin by defining

C? := {x = {[si,mi]}i∈N
: q(s) ∈ CCE and mi = C, ∀i ∈ N} ⊆ C0

Here, we show that, if C? is nonempty, then a state x is
stochastically stable if and only if q(s) satisfies (22). The fact
that q(s) must satisfy (23) when C? = ∅ follows in a similar
manner. To accomplish this task, we (1) establish resistances
between recurrent classes, and (2) compute stochastic poten-
tials of each recurrent class.

Resistances between recurrent classes

We summarize resistances between recurrent classes in the
following claim.

Claim 1: Resistances between recurrent classes satisfy:
For x ∈ C0 with corresponding joint strategy s,

r(D0 → x) =
∑
i∈N

(1− Ui(s)). (33)

For a transition of the form x → y, where x ∈ C? and y ∈
(C0 ∪D0) \ {x},

r(x→ y) ≥ 2c. (34)

For a transition of the form x → y where x ∈ C0 \ C? and
y ∈ (C0 ∪D0) \ {x},

r(x→ y) ≥ c. (35)

For every x ∈ C0 \ C?, there exists a path x = x0 → x1 →
· · · → xm ∈ C? ∪D0 with resistance

r(xj → xj+1) = c, ∀j ∈ {0, 1, . . . ,m− 1}. (36)

These resistances are computed in a similar manner to the
proof establishing resistances in [22]; however, care must be
taken due to the fact that there is a small probability that
average received utilities fall outside of the window Ui(s)± ε
during a phase in which joint strategy s is played. We illustrate
this by proving (33) in detail; the proofs are omitted for other
types of transitions for brevity.

Proof: Let x ∈ D0, x+ ∈ C0 with xi = [si, D] and
x+
i = [s+

i , C] for each i ∈ N. Again, for notational brevity, we
drop the dependence on state x in the following probabilities.
Note that all agents must select st = s+

i in order to transition
to state xi = [s+

i , C]; otherwise the transition probability is 0.
we have

P εx→x+

(a)
= Pr[x+ | sa = s+, st = s+]

× Pr[sa = s+ | st = s+] Pr[st = s+]

(b)
= Pr[x+ | sa = s+, st = s+] Pr[st = s+]

(c)
= Pr[x+ | sa = s+, st = s+]

∏
i∈N

1 / |Si|

=
∏
i∈N

1

|Si|
Pr[x+

i | sa = s+, st = s+]

where: (a) follows from the fact that sai = sti since mi =
D in state x for all i ∈ N , (b) Pr[sa = s+ | st = s+] =
1 since all agents are discontent and hence commit to their
trial strategies during the acceptance period, and (c) Pr[st =
s+] =

∏
i∈N 1 / |Si| since each discontent agent selects its

trial strategy uniformly at random from Si.
We now show that

0 < lim
ε→0+

P εx→x+

ε
∑

i∈N 1−Ui(s+)
<∞ (37)

satisfying (20). For notational simplicity, we define

U+
i := Ui(s

+) + ε,

U−i := Ui(s
+)− ε. (38)

We first lower bound P εx→x+ :

P εx→x+

=
∏
i∈N

1

|Si|
Pr[x+i | s

a = s+, st = s+]

=
∏
i∈N

1

|Si|

∫ 1

0

Pr[uai = η | sa = s+, st = s+]ε1−ηdη
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≥
∏
i∈N

1

|Si|

∫ U+
i

U−i

Pr[uai = η | sa = s+, st = s+]ε1−ηdη

(a)

≥
∏
i∈N

ε1−U
−
i

|Si|

∫ U+
i

U−i

Pr[uai = η | sa = s+, st = s+]dη

(b)

≥
∏
i∈N

ε1−U
−
i

|Si|
(1− εnc)

=
ε
∑

i∈N 1−U−i +O(εnc)∏
i∈N |Si|

(39)

where (a) is from the fact that ε1−η is continuous and
increasing in η for ε ∈ (0, 1), and (b) follows from (32).
Continuing in a similar fashion, it is straightforward to show

P εx→x+ ≤ ε
∑

i∈N (1−U+
i ) +O(εnc). (40)

Given (39) and (40), and the fact that U+
i and U−i sat-

isfy (38), we have that P εx→x+ satisfies (20) with resistance∑
i∈N (1− Ui(s+)) as desired.

Stochastic potentials

The following lemma specifies stochastic potentials of each
recurrent class. Using resistances from Claim 1, the stochastic
potentials follow from the same arguments as in [22]. The
proof is repeated below for completeness.

Lemma 3: Let x ∈ C0 \ C? with corresponding joint
strategy s, and let x? ∈ C? with corresponding joint strategy
s?. The stochastic potentials of each recurrent class are:

γ(D0) = c|C0 \ C?|+ 2c|C?|,
γ(x) =

(
|C0 \ C?| − 1

)
c+ 2c|C?|+

∑
i∈N

(1− Ui(s)),

γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?)),

Proof: In order to establish the stochastic potentials for each
recurrent class, we will lower and upper bound them.
Lower bounding the stochastic potentials: To lower bound the
stochastic potentials of each recurrent class, we determine the
lowest possible resistance that a tree rooted at each of these
classes may have.

1) Lower bounding γ(D0):

γ(D0) ≥ c|C0 \ C?|+ 2c|C?|
In a tree rooted at D0, each state in C0 must have an exiting
edge. In order to exit a state in C0 \ C?, only a single
agent must experiment, contributing resistance c. To exit a
state in C?, at least two agents must experiment, contributing
resistance 2c.

2) Lower bounding γ(x), x ∈ C0 \ C?:

γ(x) ≥
(
|C0 \ C?| − 1

)
c+ 2c|C?|+

∑
i∈N

(1− Ui(s))

Here, each state in C0 \ {x} must have an exiting edge,
which contributes resistance

(
|C0 \ C?| − 1

)
c+ 2c|C?|. The

recurrent class D0 must also have an exiting edge, contributing
at least resistance

∑
i∈N (1− Ui(s)).

3) Lower bounding γ(x?), x? ∈ C?:

γ(x?) ≥ |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?))

Again, each state in C0 \ {x?} must have an exiting edge,
which contributes resistance

(
|C0 \ C?| − 1

)
c+ 2c|C?|. The

recurrent class D0 must also have an exiting edge, contributing
resistance at least

∑
i∈N (1− Ui(s?)).

Upper bounding the stochastic potentials: In order to upper
bound the stochastic potentials, we construct trees rooted
at each recurrent class which have precisely the resistances
established above.

1) Upper bounding γ(D0):

γ(D0) ≤ c|C0 \ C?|+ 2c|C?|
Begin with an empty graph with vertices X . For each state
x ∈ C0 \ C?, add a path ending in C? ∪ D0 so that each
edge has resistance c. This is possible due to Claim 1. Now
eliminate redundant edges; this contributes resistance at most
c|C0\C?| since each state in C0\C? has exactly one outgoing
edge. Finally, add an edge x? → D0 for each x? ∈ C0; this
contributes resistance 2c|C?|.
2) Upper bounding γ(x), x ∈ C0 \ C?:

γ(x) ≤
(
|C0 \ C?| − 1

)
c+ 2c|C?|+

∑
i∈N

(1− Ui(s)),

This follows by a similar argument to the previous upper
bound, except here we add an edge D0 → x which contributes
resistance

∑
i∈N (1− Ui(s)).

3) Upper bounding γ(x?), x? ∈ C? :

γ(x?) ≤ |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?)),

This follows from an identical argument to the previous bound.

We now use Lemma 3 to complete the proof of Theorem 1.
For the first part, suppose C? is nonempty, and let

x? ∈ arg max
x∈C?

∑
Ui(s),

where joint strategy s corresponds to state x. Then,

γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s∗))

< |C0 \ C?|c+ 2c|C?| (since c ≥ n)
= γ(D).

For x ∈ C0,

γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?))

< |C0 \ C? − 1|c+ 2c (|C?|) +
∑
i∈N

(1− Ui(s))

= γ(x).

For x ∈ C? with

x /∈ arg max
x∈C?

∑
Ui(s),

10



γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?))

< |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s)

= γ(x).

Applying Theorem 2, x? is stochastically stable. Since all
other states have strictly larger stochastic potential, only states
x? ∈ C? with x? ∈ arg maxx∈C?

∑
Ui(s) are stochastically

stable. From state x?, if each agent plays according to its
baseline strategy, then the probability that joint action a ∈ A is
played at any given time is Pr(a = a′) = qa

′(s?). This implies
that a CCE which maximizes the sum of agents’ payoffs is
played with high probability as ε → 0, after sufficient time
has passed.

The second part of the theorem follows similarly by con-
sidering the case when C? = ∅.
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