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Joint Estimation and Localization in Sensor Networks

Nikolay Atanasov, Roberto Tron, Victor M. Preciado, and George J. Pappas

Abstract—This paper addresses the problem of collaborative
estimation and tracking of dynamic phenomena via a wireless
sensor network. A distributed linear estimator (i.e., a type of a
distributed Kalman filter) is derived. We prove that the filter is
mean square consistent when estimating static phenomena. In
large sensor networks, it is common that the sensors do not have
good knowledge of their locations, which affects the estimation
procedure. Unlike existing approaches for target tracking, we
investigate the performance of our filter when the sensor poses
need to be estimated by an auxiliary localization procedure.
A distributed Jacobi algorithm is used to localize the sensors
from noisy relative measurements. We prove strong convergence
guarantees for the localization method and in turn for the joint
localization and target estimation approach. The performance of
our algorithms is demonstrated in simulation on environmental
monitoring and vehicle tracking tasks.

I. INTRODUCTION

A central problem in networked sensing systems is the
estimation and tracking of evolving physical phenomena. Ex-
amples include environmental monitoring [1], [2], surveillance
and reconnaissance [3], [4], and social networks [5]. Individual
sensors typically receive partially informative measurements
which are insufficient to estimate the target state in isolation.
To address this challenge, the sensors need to engage in
information exchange with one another and solve a distributed
estimation problem. To complicate matters, it is often the case
that the sensors need to know their own locations with respect
to a common reference in order to utilize the target mea-
surements meaningfully. Hence, they face a joint localization
and estimation problem. Existing work in distributed target
estimation assumes implicitly that the localization problem is
solved, while all the literature on localization does not consider
the effect of the residual errors on a common estimation task.
The goal of this paper is to show that the two problems can
be solved jointly, and that, with simple measurement models,
the resulting estimators have strong convergence guarantees.
Assumptions and contributions. We assume that the sensors
obtain linear Gaussian measurements of the target state and
repeated sequential measurements of their relative positions
along the edges of a graph with known covariances. Our
contributions are as follows:
• We derive a distributed linear estimator for tracking

dynamic targets. We prove that the filter is mean square
consistent in the case of a static target.

• We provide a distributed algorithm for sensor localization
from sequential relative measurements and prove mean
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square and strong consistency.
• We prove that the joint localization and estimation proce-

dure has arbitrarily small asymptotic mean square error
Related work. Our target tracking algorithm was inspired
by Rahnama Rad and Tahbaz-Salehi [6], who propose an
approach for distributed static parameter estimation using
nonlinear sensing models. We specialize their model to het-
erogeneous sensors with linear Gaussian observations, derive
the update step of the resulting linear estimator, and show
stronger convergence results (mean-square consistency instead
of weak consistency). Finally, we add a prediction step to the
filter in order to handle dynamic targets. Our filter is similar
to the Kalman-Consensus [7], [8] and the filter proposed by
Khan et al. [9], [10] but uses different gains in the update
step and the performance guarantees (for static targets) we
obtain are stronger. Khan et al. [9] show that their filter can
track a dynamic target with bounded error if the norm of the
target system matrix is less than the network tracking capac-
ity. Shahrampour et al. [10] quantify the filter’s estimation
performance using a global loss function and show that the
asymptotic error depends on the loss function decomposition.
Kar et al. [11] study distributed static parameter estimation
with nonlinear observation models and noisy inter-sensor com-
munication. Related work also includes [12], which combines
the Jacobi over-relaxation method with dynamic consensus to
compute distributed weighted least squares.

Our localization algorithm follows the lines of the Jacobi
algorithm, first proposed for localization in sensor networks
by Barooah and Hespanha [13], [14]. In contrast to their ap-
proach, we consider repeated relative measurements and show
strong convergence guarantees for the resulting sequential
algorithm. Other work in sensor network localization typically
considers nonlinear and less informative measurement models.
For instance [15], [16], [17], [18] address range-only local-
ization, which is challenging because a graph with specified
edge lengths can have several embeddings in the plane. Khan
et al. [19] introduce a distributed localization algorithm, which
uses the barycentric coordinates of a node with respect to its
neighbors and show convergence via a Markov chain. Diao
et al. [20] relax the assumption that all nodes must be inside
the convex hull of the anchors. Localization has also been
considered in the context of camera networks [21].

None of the papers mentioned above, however, consider
state estimation and localization jointly. While the joint prob-
lem can be cast as a large distributed estimation task and
addressed with existing methods (e.g. the Kalman-Consensus
filter [7], [8]), the resulting solution will have each sensor
estimate the locations of all other sensors in the network. This
has slow convergence and is infeasible for large networks as
it requires repeated exchange of information that scales with

53rd IEEE Conference on Decision and Control
December 15-17, 2014. Los Angeles, California, USA

978-1-4673-6090-6/14/$31.00 ©2014 IEEE 6875



the size of the network. The proposed joint algorithm resolves
this challenge and in addition keeps the update rules linear.
Paper organization. The joint localization and estimation
problem is formulated precisely in Sec. II. The distributed
linear estimator for target tracking is derived in Sec. III as-
suming known sensor locations. A distributed Jacobi algorithm
is introduced in Sec. IV to localize the sensors using relative
measurements when the true locations are unknown. Mean-
square and strong consistency are proven. In Sec. V, we show
that the error of the target estimator, when combined with the
localization procedure, remains arbitrarily small. All proofs
are provided in the Appendix.

II. PROBLEM FORMULATION

Consider a sensor network composed of n sensors with
states {x1, . . . , xn} ⊂ X ∼= Rd. The state of a sensor may
include its position, orientation, and other operational param-
eters but we will refer to it, informally, as the sensor’s location.
The communication network interconnecting the sensors is
represented by an undirected graph G = (V,E) with vertices
V := {1, . . . , n} corresponding to the sensors and |E| = m
edges. An edge (j, i) ∈ E from sensor j to sensor i exists if
they can communicate. The set of nodes (neighbors) connected
to sensor i is denoted by Ni. The task of the sensors is to
estimate and track the state y(t) ∈ Y ∼= Rdy of a phenomenon
of interest (target), where Y is a convex set. The target evolves
according to the following target motion model:

y(t+ 1) = Fy(t) + η(t), η(t) ∼ N (0,W ), (1)

where η(t) is the process noise, whose values at any pair of
times are independent. Sensor i, depending on its location xi,
can obtain a measurement zi(t) of the target state y(t) at time
t according to the following sensor observation model:

zi(t) = Hi(xi)y(t)+vi(t, xi), vi(t, xi) ∼ N (0, Vi(xi)), (2)

where vi(t, xi) is a sensor-state-dependent measurement noise
that is independent at any pair of times and across different
sensors. The measurement noise is independent of the target
noise η(t) as well. The signals, zi(t), observed by a single sen-
sor, although potentially informative, do not reveal the target
state completely, i.e. each sensor faces a local identification
problem. We assume, however, that the target is observable if
one has access to the signals received by all sensors.

To use the signals zi(t) for estimation, the sensors need
to know their locations. However, it is common, especially
in large networks, that they have only a rough estimate
(prior). We suppose that each sensor has access to noisy
relative measurements of the positions of its neighbors, which
can be used to localize the sensors. In particular, at time t
sensor i receives the following noisy relative configuration
measurement from its neighbor j:

sij(t) = xj − xi + εij(t), εij(t) ∼ N (0, Eij), (3)

where εij(t) is a measurement noise, which is independent at
any pair of times and across sensor pairs. The relative measure-
ment noises are independent of the target measurement and

motion noises too. Since there is translation ambiguity in the
measurements (3) we assume that all sensors agree to localize
themselves in the reference frame of sensor 1. The location
estimates can then be used in place of the unknown sensor
positions during the target estimation procedure. The joint
localization and estimation problem is summarized below.

Problem (Joint Estimation and Localization). The task of
each sensor i is to construct estimators x̂i(t) and ŷi(t) of
its own location xi and of the target state y in a distributed
manner, i.e. using information only from its neighbors and the
measurements {sij(t) | j ∈ Ni} and {zi(t)}.

We use two scenarios to illustrate the results throughout
the paper. The first is an environmental monitoring problem
in which a sensor network of remote methane leak detectors
(RMLD), based on tunable diode laser absorption spectroscopy
[22], is deployed to estimate the methane concentration in a
landfill. The methane field is assumed static (F = Idy ,W = 0)
and can be modeled by discretizing the environment into cells
and representing the gas concentration with a Gaussian random
field, y ∈ Rdy (See Fig.5). It was verified experimentally in
[22] that the RMLD sensors fit the linear model in (2).

Second, we consider tracking a swarm of mobile vehicles
via a sensor network using range and bearing measurements
(See Fig. 1). The position (y1j , y

2
j ) ∈ R2 and velocity

(ẏ1j , ẏ
2
j ) ∈ R2 of the j-th target have discretized double

integrator dynamics driven by Gaussian noise:

yj(t+ 1)=

[
I2 τI2
0 I2

]
yj(t) + ηj(t), W := q

[
τ3

3 I2
τ2

2 I2
τ2

2 I2 τI2

]
,

where yj = [y1j , y
2
j , ẏ

1
j , ẏ

2
j ]T is the j-th target state, τ is the

sampling period is sec, and q is a diffusion strength measured
in ( m

sec2 )2 1
Hz . Each sensor in the network takes noisy range

and bearing measurements of each target’s position:

zij(t) =

[ √
(y1j − x1i )2 + (y2j − x2i )2

arctan
(
(y2j − x2i )/(y1j − x1i )

)]+ v(t, xi, yj), (4)

where xi := (x1i , x
2
i ) ∈ R2 is the sensor’s location and the

noise v grows linearly with the distance between the sensor
and the target. The observation model is nonlinear in this case
so we resort to linearization in order to apply our framework.

III. DISTRIBUTED TARGET TRACKING

Assuming for now that the sensors know their positions,
we begin with the task of estimating and tracking the target
state. We specialize the general parameter estimation scheme
of Rahnama Rad and Tahbaz-Salehi [6] to linear Gaussian
observation models such as (2). We show that the resulting dis-
tributed linear filter is mean-square consistent1 when the target
is stationary. This result is stronger than the weak consistency1

1A distributed estimator of a parameter y is weakly consistent if all esti-
mates, ŷi(t), converge in probability to y, i.e. lim

t→∞
P
(
‖ŷi(t)− y‖ ≥ ε

)
= 0

for any ε > 0 and all i. It is mean-square consistent if all estimates converge
in L2 to y, i.e. lim

t→∞
E
[
‖ŷi(t)− y‖2

]
= 0, ∀i.
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Fig. 1: A realization of the vehicle tracking scenario in
which a sensor network with 40 nodes (grey) tracks 10
mobile vehicles via range and bearing measurements.
The true and estimated vehicle trajectories are shown
by solid curves and red dotted curves, respectively.
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Fig. 2: Initial and final (after 20 steps) node locations (red) estimated by the
distributed localization algorithm on a randomly generated graph with 300 nodes
(blue) and 1288 edges (blue dotted lines)

shown in the general non-Gaussian case in [6, Thm.1]. Sup-
pose for now that the target is static, i.e. y := y(0)=y(1)= . . ..
To introduce the estimation scheme from [6], suppose also that
instead of the linear Gaussian measurements in (2), the sensor
receive measurements, zi(t), drawn from a general distribution
with conditional probability density function (pdf) li(·|y). As
before, the signals observed by sensor i are iid over time and
independent from the observations of all other sensors. In order
to aggregate the information provided to it over time, each
sensor i holds and updates a pdf pi,t over the target state space
Y . Consider the following distributed estimation algorithm:

pi,t+1(y) = ξi,tli(zi(t+ 1) | y)
∏

j∈Ni∪{i}

(
pj,t(y)

)κij

ŷi(t) ∈ arg max
y∈Y

pi,t(y)
(5)

where ξi,t is a normalization constant ensuring that pi,t+1 is a
proper pdf and κij > 0 are weights such that

∑
j∈Ni∪{i} κij =

1. The update is the same as the standard Bayes rule except
that sensor i does not just use its own prior but a geometric
average of its neighbors’ priors. Given a connected graph, the
authors of [6] show that (5) is weakly consistent under broad
assumptions on the observation models li.

Next, we specialize the estimator in (5) to the linear
Gaussian measurement model in (2). Let G(ω,Ω) denote
a Gaussian distribution (in information space) with mean
Ω−1ω and covariance matrix Ω−1. The quantities ω and Ω
are conventionally called information vector and information
matrix, respectively. Suppose that the pdfs pi,t of all sensors
i ∈ V at time t are that of Gaussian distributions G(ωi,t,Ωi,t).
We claim that the posteriors resulting from applying the update
in (5) remain Gaussian.

Lemma 1 ([23, Thm.2]). Let Yi ∼ G(ωi,Ωi) for i = 1, . . . , n
be a collection of random Gaussian vectors with associated
weights κi. The weighted geometric mean,

∏n
i=1 p

κi
i , of their

pdfs pi is proportional to the pdf of a random vector with
distribution G (

∑n
i=1 κiωi,

∑n
i=1 κiΩi).

Lemma 2 ([23, Thm.2]). Let Y ∼ G(ω,Ω) and V ∼
G(0, V −1) be random vectors. Consider the linear transforma-

tion Z = HY + V . The conditional distribution of Y | Z = z
is proportional to G(ω +HTV −1z,Ω +HTV −1H).

Lemma 1 states that if the sensor priors are Gaussian, then
after the geometric averaging in (5), the average distribution
will also be Gaussian and its information vector and infor-
mation matrix will be weighted averages of the prior ones.
Lemma 2 says that after applying Bayes rule the distribution
remains Gaussian. Combining the two allows us to derive the
following linear Gaussian version of the estimator in (5):

ωi,t+1 =
∑

j∈Ni∪{i}

κijωj,t +HT
i V
−1
i zi(t),

Ωi,t+1 =
∑

j∈Ni∪{i}

κijΩj,t +HT
i V
−1
i Hi,

ŷi(t) := Ω−1i,t ωi,t,

(6)

where Hi :=Hi(xi) and Vi :=Vi(xi). We prove a strong result
about the quality of the estimates in this linear Gaussian case.

Theorem 1. Suppose that the communication graph G is
connected and the matrix

[
HT

1 · · · HT
n

]T
has rank dy .

Then, the estimates in (6) of all sensors converge in mean
square to y, i.e. lim

t→∞
E
[
‖ŷi(t)− y‖22

]
= 0 for all i.

The procedure in (6) can be extended to track dynamic
targets as in (1) by adding a local prediction step, same as that
of the Kalman filter, at each sensor. The resulting distributed
linear filter is summarized in Alg. 1 and Thm. 1 guarantees its
mean square consistency for static targets. Its performance on
dynamic targets was studied in the vehicle tracking scenario
introduced in Sec. II and the results are presented in Fig. 1
and Fig. 3.

IV. LOCALIZATION FROM RELATIVE MEASUREMENTS

Target tracking via the distributed estimator in Alg. 1 re-
quires that the true sensor locations are known. As mentioned
earlier this is typically not the case, especially for large sensor
networks. This section describes a method for localization
from relative measurements (3), whose strong convergence
guarantees can be used to analyze the convergence of a joint
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Fig. 3: Root mean squared error of the estimated vehicle positions and velocities obtained
from averaging 50 simulated runs of the distributed linear estimator in the vehicle tracking
scenario (Fig. 1). The error increases because as the vehicles move away from the sensor
network the covariance of the measurement noise grows with the distance (V (dij) =
diag((0.07dij + 0.04)2 m2, (dij + 2)2 deg2) for dij := ‖xi − yj‖2). The errors of node
1 (blue) are lower because its location is known (x1 = 0) and always close to the starting
vehicle positions. The rest of the parameters were: n = 40, q = 1.5, τ = 0.2, Eij = 0.5I2.
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Fig. 4: Root mean squared error of the loca-
tion estimates obtained from averaging 50 sim-
ulated runs of the distributed localization al-
gorithm with randomly generated graphs with
300 nodes (e.g. Fig. 2), connectivity radius 10
m, and measurement covariances Eij = I2

Algorithm 1 Distributed Linear Estimator
Input: Prior (ωi,t,Ωi,t), messages (ωj,t,Ωj,t), ∀j ∈ Ni, and

measurement zi(t)
Output: (ωi,t+1,Ωi,t+1)

Update Step: ωi,t+1 =
∑

j∈Ni∪{i}
κijωj,t +HT

i V
−1
i zi(t)

Ωi,t+1 =
∑

j∈Ni∪{i}
κijΩj,t +HT

i V
−1
i Hi

ŷi(t+ 1) = Ω−1
i,t+1ωi,t+1

Prediction Step: Ωi,t+1 = (FΩ−1
i,t+1F

T +W )−1

ωi,t+1 = Ωi,t+1F ŷi(t+ 1)

localization and estimation procedure. The relative measure-
ments, received by all sensors at time t, can be written in
matrix form as follows:

s(t) = (B ⊗ Id)Tx+ ε(t),

where B ∈ Rn×m is the incidence matrix of the communica-
tion graph G. All sensors agree to localize relative to node 1
and know that x1 = 0. Let B̃ ∈ R(n−1)×m be the incidence
matrix with the row corresponding to sensor 1 removed.
Further, define E := E[ε(t)ε(t)T ] = diag(E1, . . . , Em), where
{Ek} is an enumeration of the noise covariances associated
with the edges of G. Given t measurements, the least squares
estimate of x leads to the classical Best Linear Unbiased
Estimator (BLUE), given by:

x̂(t) :=
(
B̃E−1B̃T

)−1
B̃E−1

∑t−1
τ=0 s(τ), (7)

where the inverse of B̃E−1B̃T exists as long as the graph G
is connected [13]. The computation in (7) can be distributed
via a Jacobi algorithm for solving a linear system as follows.
Each sensor maintains an estimate x̂i(t) of its own state at
time t and a history of the averaged measurements, σi(t) :=
1
t+1

∑t
τ=0

∑
j∈Ni

E−1ij sij(τ), received up to time t. Given
prior estimates (x̂i(t), σi(t)), the update of the distributed
Jacobi algorithm at sensor i is:

x̂i(t+ 1) =

(∑
j∈Ni

E−1ij
)−1(∑

j∈Ni

E−1ij x̂j(t)− σi(t)
)
,

σi(t+ 1) =
1

t+ 1

(
tσi(t) +

∑
j∈Ni

E−1ij sij(t)
)
.

(8)

Barooah and Hespanha [13], [14] show that, with a single
round of measurements, the Jacobi algorithm provides an
unbiased estimate of x. Here, we incorporate sequential mea-
surements and prove a much stronger performance guarantee.

Theorem 2. Suppose that the communication graph G is con-
nected. Then, the estimates x̂i(t) of the sensor configurations
in (8) are mean-square and strongly consistent estimators of
the true sensor states, i.e. for all i:

lim
t→∞

E
[
‖x̂i(t)− xi‖22

]
= 0, P

(
lim
t→∞

‖x̂i(t)− xi‖2 = 0
)

= 1

The performance of the distributed localization algorithm
was analyzed on randomly generated graphs. An instance of
the localization task is illustrated in Fig. 2, while the estimation
error is shown in Fig. 4. The location priors were chosen from
a normal distribution with standard deviation of 5 meters from
the true node positions.

V. JOINT LOCALIZATION AND ESTIMATION

Having derived separate estimators for the sensor locations
and the target state, we are ready to return to the original
problem of joint localization and estimation. At time t, the
location estimates {x̂i(t)} in (8) can be used in the target
estimator (6) instead of the true sensor positions. It is im-
portant to analyze the evolution of the coupled procedure
because it is not clear that the convergence result in Thm.
1 will continue to hold. Define the sensor acquisition matrix
Mi(x) := Hi(x)TVi(x)−1Hi(x). In an analogy with the cen-
tralized Kalman filter, the sensor acquisition matrix captures
the amount of information added to the inverse of the covari-
ance matrix during an update step of the Riccati map. From
this point of view, it is natural to describe sensor properties in
terms of the sensor acquisition matrix. A regularity assumption
which stipulates that nearby sensing locations provide similar
information gain is necessary.

Assumption. The sensor acquisition matrices Mi(x) are
bounded continuous functions of x for all i.

The following theorem ensures that the target state estimator
retains its convergence properties when used jointly with the
distributed localization procedure.

Theorem 3. Let {x̂i(t)} be strongly consistent estimators
of the sensor configurations, i.e. x̂i(t)

a.s.−−→ xi,∀i. Suppose
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Fig. 5: Methane emission monitoring via a sensor network. The true (unknown) sensor locations (red nodes), the sensing range (red circle),
and a typical realization of the methane field are shown on the left. The gas concentration varies from 0 to 800 parts per million (ppm)
and the standard deviation of the measurements is 5 ppm. The root mean squared error of the location estimates and of the field estimates
obtained from averaging 50 simulated runs of the joint localization and estimation algorithm with continuous sensor observation models are
shown in the two middle plots (for Eij = I2). In an additional experiment, the sensors were placed on the boundaries of the cells of the
discretized field. As the observation model for each sensor was defined in terms of the proximal environment cells, this made the observation
models discontinuous. The rightmost plot illustrates that the concentration estimation error does not vanish when discontinuities are present.

that the communication graph G is connected and the matrix[
H1(x1)T · · · Hn(xn)T

]T
has rank dy . Let δ > 0 be ar-

bitrary. If each sensor i updates its target estimate (ωi,t,Ωi,t)
as follows:

ωi,t+1 =
∑

j∈Ni∪{i}

κijωj,t + ĤT
i,tV̂

−1
i,t zi(t),

Ωi,t+1 =
∑

j∈Ni∪{i}

κijΩj,t + ĤT
i,tV̂

−1
it Ĥi,t,

ŷi(t+ 1) =
(
Ωi,t+1 + (t+ 1)δId

)−1
ωi,t+1,

(9)

where Ĥi,t := Hi(x̂i(t)) and V̂i,t := Vi(x̂i(t)), then the
asymptotic mean square error of target estimates is O(δ2):

lim
t→∞

E
[
‖ŷi(t)− y‖22

]
= δ2yT

( n∑
j=1

πjMj(xj) + δI
)−2

y,

for all i, where y is the true target state and xj is the true
position of sensor j.

According to Thm. 3, the combined procedure for esti-
mating the sensor locations and the target state, specified
by (8) and (9), has an arbitrarily small mean square error.
Its performance was evaluated on the methane concentration
estimation problem and the results are summarized in Fig. 5.

VI. CONCLUSION

This paper studied the problem of joint target tracking
and node localization in sensor networks. A distributed linear
estimator for tracking dynamic targets was derived. It was
proven that the filter is mean square consistent when esti-
mating static targets. Next, a distributed Jacobi algorithm was
proposed for localization and its mean square and almost sure
consistency were shown. Finally, the combined localization
and target estimation procedure was shown to have arbirarily
small asymptotic estimation error. Future work will focus on
more detailed simulations and real data experiments. Studying
the relationship between our distributed linear estimator, the
Kalman-Consensus filter [8], and the filter proposed by Khan
et al. [9] is of great interest as well.

APPENDIX A: PROOF OF THEOREM 1

Define the following:

ωt :=
[
ωT1t . . . ωTnt

]T
Ωt :=

[
ΩT1t . . . ΩTnt

]T
Mi := Hi(xi)

TV −1i (xi)Hi(xi) M :=
[
MT

1 . . . MT
n

]T
ζ(t) :=

[
H1V

−T
1 v1(t)T . . . HnV

−T
n vn(t)T

]T
.

The update equations of the filter (6) in matrix form are:

ωt+1 =
(
K ⊗ Idy

)
ωt +My + ζ(t),

Ωt+1 =
(
K ⊗ Idy

)
Ωt +M,

(10)

where K = [κij ] with κij = 0 if j /∈ Ni ∪ {i} is a stochastic
matrix. The solutions of the two linear dynamical systems are:

ωt =
(
K ⊗ Idy

)t
ω0 +

t−1∑
τ=0

(
K ⊗ Idy

)t−1−τ(
My + ζ(τ)

)
,

Ωt =
(
K ⊗ Idy

)t
Ω0 +

t−1∑
τ=0

(
K ⊗ Idy

)t−1−τ
M.

Looking at the i-th components again, we have:

ωit
t+ 1

=
1

t+ 1

n∑
j=1

[
Kt
]
ij
ωj0+

1

t+ 1

t−1∑
τ=0

n∑
j=1

[
Kt−τ−1

]
ij

(Mjy +HT
j V
−1
j vj(τ)),

Ωit
t+ 1

=
1

t+ 1

n∑
j=1

[
Kt
]
ij

Ωj0 +
1

t+ 1

t−1∑
τ=0

n∑
j=1

[
Kt−τ−1

]
ij
Mj .

Define the following to simplify the notation:

git := 1
t+1

∑n
j=1

[
Kt
]
ij
ωj0,

Git := 1
t+1

∑n
j=1

[
Kt
]
ij

Ωj0,

φit := 1
t+1

∑t−1
τ=0

∑n
j=1

[
Kt−τ−1

]
ij
HT
j V
−1
j vj(τ),

Cit := 1
t+1

∑t−1
τ=0

∑n
j=1

[
Kt−τ−1

]
ij
Mj ,

bit := git −Gity, Bit := 1
t+1Ωit.

(11)
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With the shorthand notation:

ωit
t+ 1

= git+φit+City, Bit =
Ωit
t+ 1

= Git+Cit, (12)

where φit is the only random quantity. Its mean is zero because
the measurement noise has mean zero, while its covariance is:

E[φitφ
T
it] =

1

(t+ 1)2
E
[(t−1∑

τ=0

n∑
j=1

[
Kt−τ−1

]
ij
HT
j V
−1
j vj(τ)

)

×
(t−1∑
s=0

n∑
η=1

[
Kt−s−1

]
iη
HT
η V
−1
η vη(s)

)T]

=
1

(t+ 1)2

n∑
j=1

t−1∑
τ=0

[
Kt−τ−1

]2
ij
HT
j V
−1
j E[vj(τ)vj(τ)T ]V −1j Hj

=
1

(t+ 1)2

n∑
j=1

t−1∑
τ=0

[
Kt−τ−1

]2
ij
Mj �

1

t+ 1
Cit, (13)

where the second equality uses the fact that vj(τ) and
vη(s) are independent unless the indices coincide, i.e.
Evj(τ)vη(s)T = δτsδjηVj . The Löwner ordering inequality
in the last step uses that 0 ≤

[
Kt−τ−1

]
ij
≤ 1 and Mj � 0.

Since G is connected, K corresponds to the transition
matrix of an aperiodic irreducible Markov chain with a unique
stationary distribution π so that Kt → π1T with πj > 0. This
implies that, as t→∞, the numerators of git and Git remain
bounded and therefore git → 0 and Git → 0. Since Cesáro
means preserve convergent sequences and their limits:

1

t+ 1

t−1∑
τ=0

[
Kt−τ−1

]
ij
→ πj , ∀i,

which implies that Cit →
∑n
j=1 πjMj . The full-rank as-

sumption on
[
HT

1 . . . HT
n

]T
and πj > 0 guarantee that∑n

j=1 πjMj is positive definite. Finally, consider the mean
squared error:

E
[
(ŷi(t)− y)T (ŷi(t)− y)

]
= E

∥∥∥∥( Ωit
t+ 1

)−1
ωit
t+ 1

−
(

Ωit
t+ 1

)−1(
Ωit
t+ 1

)
y

∥∥∥∥2
2

= E
∥∥B−1it (git + City + φit − (Git + Cit)y

)∥∥2
2

= E‖B−1it (bit + φit)‖22

= E
[
bTitB

−T
it B−1it bit + 2bTitB

−T
it B−1it φit + φTitB

−T
it B−1it φit

]
(a)
=== bTitB

−T
it B−1it bit + tr(B−1it E[φitφ

T
it]B

−T
it )

(b)

≤ bTitB
−T
it B−1it bit +

1

t+ 1
tr(B−1it CitB

−T
it )→ 0,

where (a) holds because the first term is deterministic, while
the cross term contains E[φit] = 0. Inequality (b) follows
from (13). In the final step, as shown before B−1it →(∑n

j=1 πjMj

)−1
and Cit →

∑n
j=1 πjMj � 0 remain

bounded, while bit → 0 and 1/(t+ 1)→ 0.

APPENDIX B: PROOF OF THEOREM 2

Define the generalized (matrix-weighted) degree matrix D ∈
Rnd×nd of graph G as the block-diagonal matrix with Dii :=∑
j∈Ni

E−1ij . Since Eij � 0 for all {i, j} ∈ E, the generalized
degree matrix is positive definite, D � 0. Define also the
generalized adjacency matrix A ∈ Rnd×nd as follows:

Aij :=

{
E−1ij if {i, j} ∈ E,
0 else.

The generalized Laplacian and the generalized signless Lapla-
cian of G are defined as L := D − A and |L| := D + A,
respectively. Further, let R := (B ⊗ Id)

T ∈ Rmd×nd and
define the block-diagonal matrix E ∈ Rmd×md with blocks
Eij for {i, j} ∈ E. It is straightforward to verify that
L = RTE−1R � 0 and |L| = (|B| ⊗ Id)E−1(|B| ⊗ Id)T � 0,
where |B| ∈ Rn×m is the signless incidence matrix of G.
Let B̃ ∈ R(n−1)×m and R̃ ∈ Rmd×(n−1)d be the matrices
resulting from removing the row corresponding to sensor 1
from B. Similarly, let D̃, Ã, L̃, |L̃| ∈ R(n−1)d×(n−1)d denote
the generalized degree, adjacency, Laplacian, and signless
Laplacian matrices with the row and column corresponding
to sensor 1 removed. Thm. 2.2.1 in [14] shows that L̃ � 0
provided that G is connected. The same approach can be used
to show that |L̃| � 0. Let x̃ ∈ R(n−1)d be the locations
of sensors 2, . . . , n in the reference frame of sensor 1 and
x̂(t) ∈ R(n−1)d be their estimates at time t obtained from (8).
The update in (8) can be written in matrix form as follows:

D̃x̂(t+ 1) = Ãx̂(t) + R̃TE−1
(
R̃x̃+

1

t+ 1

t∑
τ=0

ε(τ)

)
. (14)

Define the estimation error at time t as e(t) := x̃− x̂(t) and let
u(t) := 1

t+1

∑t
τ=0 ε(τ). The dynamics of the error state can

be obtained from (14):

e(t+ 1) = x̃− D̃−1Ãx̂(t)− D̃−1L̃x̃− D̃−1R̃TE−1u(t)

= x̃− D̃−1Ãx̂(t)− D̃−1
(
D̃ − Ã

)
x̃− D̃−1R̃TE−1u(t)

= D̃−1Ãe(t)− D̃−1R̃TE−1u(t).

The error dynamics are governed by a stochastic linear time-
invariant system, whose internal stability depends on the
eigenvalues of D̃−1Ã. To show that the error dynamics are
stable, we resort to the following lemma.

Lemma 3 ([24, Lemma 4.2]). Let L = D − A ∈ Cn×n be
such that D+D∗ � 0 and Lθ = D+D∗−(eiθA+e−iθA∗) � 0
for all θ ∈ R. Then ρ(D−1A) < 1.

Consider L̃θ := 2(D̃ − cos(θ)Ã). If cos θ = 0, then L̃θ =
2D̃ � 0. If cos θ ∈ (0, 1], then L̃θ � 2 cos θL̃ � 0. Finally,
if cos θ ∈ [−1, 0), then L̃θ � 2| cos θ||L̃| � 0. Therefore,
ρ
(
D̃−1Ã

)
< 1. The proof of the theorem is completed by the

following lemma with F := D̃−1Ã and G := −D̃−1R̃TE−1.

Lemma 4. Consider the discrete-time stochastic linear time-
invariant system, e(t+ 1) = Fe(t) + G 1

t+1

∑t
τ=0 ε(τ), driven
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by Gaussian noise ε(τ) ∼ N (0, E), which is independent at
any pair of times. If the spectral radius of F satisfies ρ(F) < 1,

then e(t)
a.s.,L2

−−−−→ 0.

Proof. By the strong law of large numbers [25, Thm.2.4.1],
u(t) := 1

t+1

∑t
τ=0 ε(τ) converges to 0 almost surely. Let Ω

be the set with measure 1 on which u(t) converges so that
for any γ > 0, ∃ T ∈ N such that ∀t ≥ T , ‖u(t)‖ ≤ γ. For
realizations in Ω, the solution with initial time T is:

e(t) = Ft−T e(T ) +
∑t−1
τ=T Ft−τ−1Gu(τ).

Then, ‖e(t)‖ ≤ ‖Ft−T e(T )‖+

t−1∑
τ=T

∥∥Ft−τ−1∥∥‖G‖γ. Taking

the limit of t and using that F is stable, we have

lim
t→∞

‖e(t)‖ ≤
( ∞∑
τ=0

∥∥Fτ∥∥)‖G‖γ.
Since ρ(F) < 1, the system is internally (uniformly) exponen-
tially stable, which is equivalent to

∑∞
τ=0 ‖Fτ‖ ≤ β for some

finite constant β [26, Ch.22]. Thus, limt→∞ ‖e(t)‖ ≤ β‖G‖γ,
which can be made arbitrarily small by choice of γ. We
conclude that e(t)→ 0 on Ω and consequently e(t) a.s.−−→ 0.

Next, we show convergence in L2. First, consider the
propagation of the cross term C(t) := (t + 1)Ee(t)u(t)T .
Note that Eu(t) = 0 and Eu(t)u(t)T = E

t+1 . Using the fact
that ε(t+ 1) is independent of e(t) and u(t) we have

C(t+ 1) = E
(
Fe(t) + Gu(t)

)(
(t+ 1)u(t) + ε(t+ 1)

)T
= FC(t) + (t+ 1)GEu(t)u(t)T = FC(t) + GE .

The solution of the above linear time-invariant system is:

C(t) = FtC(0) +
∑t−1
τ=0 F

t−τ−1GE

and since F is stable: lim
t→∞

Ee(t)u(t)T= lim
t→∞

1

t+ 1

t−1∑
τ=0

FτGE=0.

Now, consider the second moment of the error:

Σ(t+ 1) := Ee(t+ 1)e(t+ 1)T =

FΣ(t)FT +F

(
Ee(t)u(t)T

)
GT +G

(
Eu(t)e(t)T

)
FT+ 1

t+1GEG
T

= FΣ(t)FT +Q(t),

where Q(t) :=
1

t+ 1

(
FC(t)GT + GC(t)TFT + GEGT

)
. As

shown above Q(t)→ 0 as t→∞, i.e. for any δ > 0, ∃ T ′ ∈ N
such that ∀t ≥ T ′, ‖Q(t)‖ ≤ δ. With initial time T ′, for
t ≥ T ′:

Σ(t) = Ft−T
′
Σ(T ′)(FT )t−T

′
+

t−1∑
τ=T ′

Ft−τ−1Q(τ)(FT )t−τ−1

‖Σ(t)‖ ≤
∥∥Ft−T ′∥∥2‖Σ(T ′)‖+

t−T ′−1∑
τ=0

‖Fτ‖2δ

≤ α2µ2(t−T ′) + δα2
t−T ′−1∑
τ=0

µ2τ ,

where the existence of the constants α > 0 and 0 ≤ µ <
1 is guaranteed by the stability of F. We conclude that
limt→∞ ‖Σ(t)‖ ≤ δα2

1−µ2 , which can be made arbitrarily small

by choice of δ. In other words, e(t) L2

−−→ 0.

APPENDIX C: PROOF OF THEOREM 3

We use the same notation and approach as in the proof
of Thm 1, except that now the terms Hi, Vi, Mi, M , ζ(t),
φit, Cit, Bit are time-varying and stochastic because they
depend on the location estimates x̂i(t). To emphasize this,
we denote them by Ĥit, V̂it, M̂it, M̂t, ζ̂(t), φ̂it, Ĉit, B̂it, where
for example M̂it := Mi(x̂i(t)). The same linear systems (10)
describe the evolutions of ωt and Ωt except that they are
stochastic now and (12) becomes:
ωit
t+ 1

= git + Ĉity + φ̂it, B̂it :=
Ωit
t+ 1

= Git + Ĉit.

We still have that Kt → π1T with πj > 0. Also, git, Git, and
bit are still deterministic and converge to zero as t→∞. The
following observations are necessary to conclude that Ĉit still
converges to

∑n
j=1 πjMj .

Lemma 5. If x̂i(t)
a.s.−−→ xi, then M̂it

a.s.,L2

−−−−→Mi.

Proof. Almost sure convergence follows from the continuity
of Mi(·) and the continuous mapping theorem [25, Thm.3.2.4].
L2-convergence follows from the boundedness of Mi(·) and
the dominated convergence theorem [25, Thm.1.6.7].

Lemma 6. If at → a and bt → b, then 1
t

∑t−1
τ=0 at−τ bτ → ab.

Proof. The convergence of at implies its boundedness, |at| ≤
q <∞. Then, notice ab = 1

t

∑t−1
τ=0 ab and∣∣∣∣1t

t−1∑
τ=0

at−τ bτ − ab
∣∣∣∣ =

∣∣∣∣1t
t−1∑
τ=0

(
at−τ (bτ − b) + (at−τ − a)b

)∣∣∣∣
≤
∣∣∣∣1t

t−1∑
τ=0

at−τ (bτ − b)
∣∣∣∣+

∣∣∣∣1t
t−1∑
τ=0

(at−τ − a)b

∣∣∣∣
≤
∣∣∣∣q(1

t

t−1∑
τ=0

bτ − b
)∣∣∣∣+

∣∣∣∣(1

t

t∑
τ=1

aτ − a
)
b

∣∣∣∣,
where both terms converge to zero since Cesáro means pre-
serve convergent sequences and their limits.

Combining Lemma 5,
[
Kt
]
ij
→ πj , and Lemma 6, we have:

1

t+ 1

t−1∑
τ=0

[
Kt−τ−1

]
ij
M̂jτ

a.s.−−→
[
π1T

]
ij
Mj = πjMj .

Moreover, 0 ≤ [Kt]ij ≤ 1 and the boundedness of M̂jt imply,
by the bounded convergence theorem [25, Thm.1.6.7], that the
sequence above converges in L2 as well:

Ĉit
a.s.,L2

−−−−→
∑n
j=1 πjMj � 0. (15)

In turn, (15) guarantees that:

B̂−2it =
(
Git + Ĉit

)−2 a.s.−−→
(∑n

j=1 πjMj

)−2
(16)

6881



but is not enough to ensure that E
[
B̂−2it

]
remains bounded

as t → ∞. The parameter δ > 0 is needed to guarantee the
boundedness. In particular, define B̂it(δ) := B̂it + δIdy . Then

B̂it(δ)
−2 =

(
Git + Ĉit + δIdy

)−2 ≺ 1

δ2
Idy

and by the bounded convergence theorem and (16):

B̂it(δ)
−2 a.s.,L1

−−−−→
(∑n

j=1 πjMj + δIdy
)−2

, (17)

so that limt→∞ E
[
B̂it(δ)

−2] <∞. From (15) and the bound-
edness of B̂it(δ)−1 and Ĉit, we also have:

B̂it(δ)
−1ĈitB̂it(δ)

−T a.s.,L2

−−−−→ (18)( n∑
j=1

πjMj + δIdy

)−1( n∑
j=1

πjMj

)( n∑
j=1

πjMj + δIdy

)−T
.

Since Ĥit and V̂it depend solely on x̂i(t), they are independent
of vi(t). Because E[vj(τ)] = 0, E[ĤT

jτ V̂
−1
jτ vj(τ)] = 0 and as

before E[φ̂it] = 0. Since B̂it(δ) is independent of vi(t) as well,
E
[
B̂it(δ)

−2φ̂it
]

= 0 and a result equivalent to (13) holds:

E[B̂it(δ)
−1φ̂itφ̂

T
itB̂it(δ)

−T ]

= E
[
B̂it(δ)

−1
(

1

(t+ 1)2

n∑
j=1

t−1∑
τ=0

[
Kt−τ−1

]2
ij
M̂jτ

)
B̂it(δ)

−T
]

� 1

t+ 1
E
[
B̂it(δ)

−1ĈitB̂it(δ)
−T ]. (19)

Finally, consider the mean squared error:

E
[
‖ŷi(t)− y‖22

]
= E

∥∥∥∥B̂it(δ)−1 ωit
t+ 1

− B̂it(δ)−1B̂it(δ)y
∥∥∥∥2
2

= E
∥∥∥∥B̂it(δ)−1(git + Ĉity + φ̂it − (Git + Ĉit + δIdy )y

)∥∥∥∥2
2

= E‖B̂it(δ)−1(bit + φ̂it + δy)‖22

= E
[
bTitB̂it(δ)

−2bit + φ̂TitB̂it(δ)
−2φ̂it + δ2yT B̂it(δ)

−2y

+ 2bTitB̂it(δ)
−2φ̂it + 2δyT B̂it(δ)

−2φ̂it + 2δbTitB̂it(δ)
−2y

]
= bTitE

[
B̂it(δ)

−2]bit + tr(E
[
B̂it(δ)

−1φ̂itφ̂
T
itB̂it(δ)

−T ])
+ δ2yTE

[
B̂it(δ)

−2]y + 2δbTitE
[
B̂it(δ)

−2]y
(19)
≤ bTitEB̂it(δ)−2bit + 2δbTitEB̂it(δ)−2y + δ2yTEB̂it(δ)−2y

+
1

t+ 1
tr

(
E
[
B̂it(δ)

−1ĈitB̂it(δ)
−T
])

→ δ2yT
( n∑
j=1

πjMj + δIdy
)−2

y.

In the final step, the first two terms go to zero because bit → 0
and limt EB̂it(δ)−2 <∞ from (17), the third term converges
in view of (17) again, while the last term goes to zero because
the trace is bounded in the limit in view of (18).
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