
ar
X

iv
:1

50
3.

08
38

3v
1 

 [m
at

h.
O

C
]  

29
 M

ar
 2

01
5

Stability of Interconnected DC Converters

Gustavo Cezar1, Ram Rajagopal2 and Baosen Zhang3

Abstract— This paper addresses stability issues of DC net-
works with constant power loads (CPL). Common DC net-
works, such as automotive electrical systems and DC micro-
grids, typically have a step-up/down converter connected in
one side to the main bus and, on the other, to the load. When
load is constant power it can generate destabilizing effects
if not proper controlled. This paper shows that converters
driving CPLs can make the system unstable, even if they are
individually stable, depending on network parameters. We mit-
igate this problem by means of passive components externally
connected to the converter/CPL subsystem. The analysis is
verified through simulations. We are able to show that certain
converter circuit configurations achieve the so called plug-and-
play property, which stabilizes the interconnected systemfor
all network parameters. This property is desirable since it is
does not require the knowledge of detailed system topology
and parameters, which can be time varying and difficult to
obtain. This method also contrasts to existing practices ofload
augmentation, which can lead to severe efficiency losses.

I. I NTRODUCTION

The electricity grid is undergoing a significant change in
both generation and demand sides. Increasing penetration of
renewables has led to increased deployment of wind and
solar generation, in particular distributed photovoltaics. The
profile of loads has also faced a significant change with
increased adoption of electronic devices such as computer
power supplies, LED lights, cellphones electric vehicles and
home storage units. These different supply and demand
technologies are connected to the electric grid through power
electronics converters forming an interconnected network.

Examples of power electronic components are DC/AC (or
AC/DC) inverter and DC/DC converter. Inverters are used to
transform alternating current (AC) systems to direct current
(DC) systems, and vice-versa. Converters are usually used
to step-up or step-down DC voltages to meet bus and loads
operating points. Traditionally, inverters and converters have
been studied as individual components, focusing on their
efficiency and other performance criteria.

A main challenge in design of such components is ensur-
ing stable operations. These devices present a destabilization
characteristic due to their intrinsic nonlinearity when tightly
regulated in the presence of loads that are constant power [1].
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Constant power loads (CPL) display a negative impedance
characteristic [2][3][4]. Operations instability arisesas the
converter tries to keep the output power constant. Thus, when
the input current decreases, the input voltage increases (and
vice-versa). The aggregate effect is of a negative impedance
that acts as a positive feedback to the system. Prior research
has paid significant attention to this issue and studied the
stability of a single source, inverter and load system based
on linear, non-linear and passivity based control techniques
[5], [1], [4], [6], [7], [8]. Yet, not much is known in terms of
power electronics control stability in networks of converters
connected to constant power loads.

In this paper, we focus on a network of connected DC/DC
converters. Such a network could arise in practice as a DC
Microgrid, a standalone power system on large ships and
planes, or even a home with multiple types of distributed
energy resources. We choose to focus on DC networks1

because most new devices such as rooftop solar and storage
are inherently DC devices.

We show that even though single converters may be stable,
the network is not necessarily stable. In fact, we show that
if each converter only has access to its own states, then no
feedback controller can ensure that the system is stable for
all network parameters. Also, we show that as the size of the
network increases, the system becomes unstable for all most
all line resistance parameters. Intuitively, the disturbances in
the network propagate from converter to converter and is not
controllable even if each converter is stable by themselves.

We design different external circuit topologies where pas-
sive components, such as capacitors and resistors, are added
in different parts of the system. We show that with input
capacitive filters, we can achieve a plug-and-play property
that ensures that a network is stable for all line resistance
parameters. Our method does not require modifications to
the internal structure of converters, allowing off-the-shelf
components to be used. Front-end filter contrasts with ex-
isting designs in [9], [10], which consider passive damping
strategies by inserting passive components either to the filter
elements in the converter or in parallel with the load at the
output of the converter.

The paper is organized as follows. In Section II, the
concepts of CPLs and negative impedance are presented.
Also, a derivation of the dynamics of a buck converter
operating in continuous conduction mode feeding CPL is
shown. In Section III a simple nonlinear control is develop to
make a single buck converter feeding a CPL stable. Also we

1This is different then the DC approximation used in for AC power
systems. Here by DC system we mean that all lines are resistive and voltages
are not sinusoidal.
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show that instability may arise when cascading converters
on the same bus and show through simulations that the
more converters are added to the bus, more likely it is for
the system to become unstable. Section IV studies different
scenarios where passive components can be added to stabilize
the system. Finally, concluding remarks are presented in
Section V.

II. CONVERTER AND LOAD MODELS

The increased number of sources and electronic loads that
need to regulate their voltage in order to meet bus voltage and
load operating conditions creates stability issues in DC sys-
tems. The issues arise as voltage regulation occurs by means
of converters. Converters are devices that regulate voltage
but keep power constant. When a converter is connected to
a load, it forms a system that can be represented as a CPL.
Ideally, a CPL can be represented by:

Io(t) =
P

Vo(t)
, ∀Vmin

o ≤Vo(t)≤Vmax
o . (1)

where P is the power required by the load,Vo(t) is the
load operating voltage, andIo(t) is the current draw by the
load. Constant power loads behavior is qualitatively different
than more standard load models such as constant resistance
loads. As voltage increases, constant power loads draw less
current, whereas constant resistance loads draw more current.
The latter acts as a damping element for a circuit, whereas
the former acts as a positive feedback and tends to amplify
disturbances in the system. In practice, this leads to large
voltage and current swings, and the load shuts off if voltage
is outside of the design range[Vmin

o ,Vmax
o ]. Next, we describe

the mathematical model used to analyze buck converters
driving constant power loads.

A. Buck Converter Modeling

We concentrate on the ideal buck converter in this paper
due to its popularity. Similar analysis can be carried out for
other types of DC/DC converters.

D(t)1

2
P

Vg
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−

+

Fig. 1. Buck converter feeding a constant power load.D(t) is the duty
cycle of the switch, which is the main control knob of the system.

An ideal Buck converter (see Fig. 1) is a switched circuit,
where the switching duty cycle is denotedD(t) by power
electronic convention [11]. The notation is slightly mislead-
ing sinceD(t) is not a function of time, rather it is a fraction
of nominal periodT. Rigorously, lett|T denote the modulo
operation, that is,t|T = t−kT wherek is the unique integer
where kT ≤ t < (k+ 1)T. The duty cycleD(t) is defined
only for t = nT for integern and takes on values between
0 and 1. Then the switch is at position 1 (connected to

the main line) if t|T
T ≤ D(kT); otherwise the switch is at

position 2 (grounded). Therefore to be rigorous, the system
needs to be thought as a discrete time system moduloT.
However, most converters have switching frequency of tens
to hundreds of kHz, soT is much shorter than any other
time constants/periods in the system. Hence we can think of
the circuit as a switched continuous time system whereD(t)
is understood to mean the (possibly changing) duty cycle.

The state of the Buck converter can be described by
the current through the inductor and the voltage across the
capacitor, denoted asI(t) andV(t), respectively. The input to
the control system is changes in the duty cycle. The evolution
of the state depend on the position of the switch:

• Switch at position 1 (connected to main line):

L
dI
dt

=Vg−V(t) C
dV
dt

= I(t)−
P

V(t)
. (2)

• Switch at position 2 (grounded):

L
dI
dt

=−V(t) C
dV
dt

= I(t)−
P

V(t)
. (3)

Theaverage signal modelenables a continuous time analysis
of switched electronic circuits that can summarize eqs. (2)
and (3). In this model, for a given signalx(t), its average is
defined by

< x(t)>=
1
T

∫ t+T

t
x(τ)dτ, (4)

where T is the some time period that is often taken to
be the switching period. By applying the average model to
the converters equations (2) and (3), the states of the Buck
converter can be expressed as:

L
d < I >

dt
= D(t)(<Vg >−<V >), (5)

C
d <V >

dt
=< I >−

P
V
. (6)

Eqs (5) and (6) form a set of differential equations
neither linear nor time invariant. In order to asses stability
and evaluate controllers a LTI model of the circuit needs
to be obtained. A common technique used is thesmall
signal analysis. By assuming that currents and voltages of a
converter consist of a dc component and a small ac variation,
the average model can be linearized by Taylor expansion.
For an average signal< x(t) >= X + x(t), whereX is the
dc component and lower casex(t) is the small ac variation.
Therefore, (5) and (6) can be rewritten as:

L
d(I + i(t))

dt
= [D+d(t)][Vg+ vg(t)]− [V+ v(t)], (7)

C
d(V + v(t))

dt
= (I + i(t))−

P
(V + v(t))

. (8)

Expanding (7) and (8) and approximating the nonlinear
termP/(V+v(t)) to P/V−v(t)P/V2, making the derivatives
of the DC component on the left side equal to zero, neglect-
ing second order terms, and canceling the DC components
on the right side, the small signal LTI model is written as:



L
d(i(t))

dt
= [Dvg(t)+Vgd(t)]− v(t) (9)

C
d(v̂(t))

dt
= i(t)−

v(t)P
V2 (10)

Letting x = [v(t) î(t)] and u= d(t). Therefore the duty
cycle can be thought of as the control knob in the system.
Writing (9) and (10) in matrix form as:

ẋ = Ax+Bu (11)

where

A =

[ P
CV̄2

1
C

− 1
L 0

]

B =

[

0
Vg
L

]

, (12)

andV̄ is the average steady state value of the output voltage.

III. F EEDBACK CONTROL

A. Feedback Control of Single Converter

To analyze the dynamics of a Buck converter feeding a
CPL one has to look at the eigenvalues of the matrixA in
(11). These eigenvalues are given by:

λ =
1
2
{P/CV̄2±

√

(P/CV̄2)2−4/LC}. (13)

Therefore the system with a CPL is open loop unstable due
to a pair of eigenvalues with positive real part. However, it
can be easily shown that this system is controllable, thus
there exists a closed loop controller.

To show the open loop instability behavior of a Buck
converter and the closed loop response, a simulation was
performed with the standard softwarePSIM. The parameters
of the circuit were:Vi = 110VDC, L = 20µH, C = 29µF,
Po = 1kW, and fsw = 200kHz. Fig. 2 shows open loop and
closed loop output voltage. They are overlayed in the same
graph for comparison. For the open loop case, the system
response is oscillatory with output voltage swings around
60V. This result, in practice, will never happen because
loads operate only in a narrow band of voltages determined
by their specifications. In the closed loop case, using a
proportional controller, output voltage swings significantly
decreased, with a peak to peak amplitude of around 0.2V.

B. Stability of Cascaded Converters

The main focus of design has been on a single converter
because the performance of many applications such as auto-
motive drives are dominated by the main converter. With
increased penetration of renewables and electronic based
loads, converters are likely to be connected in anetwork.
For example, Fig. 3 shows two cascaded converters. We say
that a converter is individually stable if it is stable by itself as
a standalone circuit connecting a power source to a constant
power load.

Theorem 1 shows that no matter how the feedback control
is designed for each individual converter, there are networks
parameters where the whole system is not stable.
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Fig. 2. Open loop and closed loop output voltage response of abuck
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Fig. 3. Cascaded converters driving constant loads. The lines are modeled
as resistors with valueR.

Theorem 1:Suppose two Buck converters are connected
in series as in Fig. 3, each driving a constant load. Assume
that all connecting lines have the same resistanceR. Suppose
each converters is individually stabilized by linear state
feedback control. Then for all linear feedback controllers,
there are values ofR such that the network is not stable.

The proof of Theorem 1 is given in the Appendix and
Fig. 4 illustrates the unstable behavior. The equal resistance
assumption simplifies the derivation but is not required.
Most commercial converters are embedded with a feedback
control mechanism to ensure that it is stable when driving
constant power loads. Theorem 1 shows that no matter how
individual controllers are designed, the networked systemcan
be unstable.

Figure 5 shows the situation worsens as the number of
converters in the network increases. It plots the largest line
resistance such that the cascaded system is stable where each
converter is individually stable. As the number of converters
increases, the maximum line resistance decreases to 0. Since
controllers are often hardcoded in commercial converters,
this means that a large network of converters is likely to be
unstable. Corollary 1 formalizes this phenomenon.

Corollary 1: Consider a line network withn converters
driving constant power loads. Suppose all the lines have
resistanceR. Fix feedback controllers of each individual
converter. For any values ofR> 0, there existsN0 such that
the network is unstable ifn> N0.



0.6 0.65 0.7 0.75 0.8 0.85
10

20

30

40

50

Time(ms)

O
ut

pu
t V

ol
ta

ge
 (

V o)

 

 
Converter 1
Converter 2

0.6 0.65 0.7 0.75 0.8 0.85

20

40

60

80

100

Time(ms)

O
ut

pu
t C

ur
re

nt
 (

I o)

 

 
Converter 1
Converter 2

Fig. 4. Instability of cascaded converters
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Fig. 5. Relation between number of converters and line resistances. The
shaded region is where the system is stable.

C. Distributed Control

We have demonstrated that feedback stability of individual
converters does not guarantee stability of a network con-
verters. One possible solution to this problem is to globally
design a controller based on the output of all converters.
However, since converters switch at frequencies of tens to
hundreds of kHz and have no communication capabilities,
sharing information is impractical. Therefore, the feedback
controller is sparsity constrained, where the duty cycle of
a converter in the network only depend on its own mea-
surements. This problem is a challenging due to its non-
convexity, and have recently received a lot of attention (see,
e.g. [12], [13] and references within). However, this approach
is still hard to implement since it requires the knowledge
of network topology and parameters of all components. In
practice, devices are connected in ad-hoc basis and converters
from different manufactures have different parameters. In
the next section, we design converters with plug-and-play
capabilitiesby modifying passive electronics.

IV. CASCADED CONVERTER STABILITY BY MEANS OF

PASSIVE COMPONENTS

The last section showed that network converters are un-
stable and designing distributed controllers require topology
and parameter information that is often not available. In
this section, we explore ways to ensure that converters have
plug-and-play capabilities. That is, the networked systemis
guaranteed to be stable for all parameters.

Due to space constraints and for simplicity, we focus
on a network with two cascaded converters as in Fig. 3.
We assume that the internal structure of the converters
cannot be changed and any modification must be achieved
in the circuitry around the converters. Fig. 6 shows three
possible designs to change the behavior of the converters.
The performance capabilities of these designs are stated in

DC/DC

Vin

(a) Resistance at output

DC/DC

Vin

(b) Input RC filter at ground

DC/DC

Vin

(c) Input shunt capacitor

Fig. 6. Three possible designs to change the behavior of the converter.
The top figure shows the most popular design with a shunt resistance at the
output. The middle figure adds a RC filter between ground and the converter.
The bottom figure adds a shunt capacitor at the input. Out of the three, we
show the bottom design is the best one.

Theorem 2.
Theorem 2: Consider a network of two cascade convert-

ers where each one is modified according to one of the
circuits in Fig. 6. If both converters are modified as Fig. 6(c),
then the network is stable for all line resistances for some
capacitor value. If both converters are modified as Fig. 6(a),
to guarantee stability, at least half of the total power would
be dissipated in the shunt resistor. If the both converters are
modified as Fig. 6(b), the system cannot be guaranteed to be
stable.
The proof is stated in the Appendix.

Out of the three designs in Figure 6, the top design is the
most popular. It adds a shunt resistor to counteract the effects
of the constant power load [1]. Intuitively, for a small enough
shunt resistance, the aggregated load at the output of the
converter acts like a resistor, which eliminates instabilities in
the system. However, as stated in Theorem 2, to achieve the
desired effect, the power lost in the resistor is at least as much
as the power consumed by the load. Therefore the efficiency



of converter is at most 50%, which is not acceptable in most
applications. The middle design is has the desired properties
that the RC filter does not effect other components in the
system, but it cannot make the network stable.

The bottom design in Fig. 6 can stabilize the system for
all line resistances. In essence, the capacitor acts as a storage
device that damps out the current propagation between two
cascaded converters. Therefore disturbances are localized,
and feedback controllers on each individual converter are
able to stabilize the system. Fig. 7 plots the states of the
system.
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Fig. 7. Output voltages and currents for schematic of Fig. 6(c)

Figure 7 shows that for a system with individually stable
converters driving a CPL but unstable when connected in a
network (refer to Fig. 3), can be made stable by adding a
shunt capacitor to the converter’s input. This shunt capacitor,
as mentioned before, will act as a storage device in order to
minimize the current drawn from the power source. Without
the shunt capacitor, whenever the current on the constant
power load starts increasing, more current will be drawn
from the power source. With this higher current coming
from the source, the voltage drop across the line resistances
will increase. Thus, the voltage at the input of the converter
will decrease and ultimately the load current will increase,
generating a destabilization effect. The shunt capacitor will
prevent more current being draw from the source by provid-
ing additional current to the system. Thus, this destabilization
effect is canceled. In addition, this solution comes at a lower
cost if compared to other solutions such as placing a resistor
in parallel with the load. The losses due to the equivalent
series resistance (ESR) of the capacitor are considerably
smaller than the losses in the load’s parallel resistor. First
because the ESR is a fraction of the parallel resistor needed,
and second because the shunt capacitor does not need to
provide all the load current, but just a small variation.

Note: The proof of Theorem 2 relies on the linear ap-
proximation of the system, which leads to input filters with
large C. Very large capacitors could introduce unwanted
ripples into the actual nonlinear system. Better understanding

performance and stability trade-offs in the nonlinear system
is an important area for future work.

V. CONCLUSIONS

This paper analyzed stability issues of dc systems. Most
practical dc systems can be viewed as a variation of this
problem where a main bus is connected to loads through a
step-down/up converter, i.e. automotive electrical system and
DC microgrids. These loads are seeing by the converter as
a constant power and thus introduce destabilizing effects on
the system such as voltage oscillations and collapse.

It was shown that even if a converter driving a CPL can be
made individually stable in closed loop, when connected in
a network, it can drive the system to an unstable condition.
Theorem 1 shows that independently of the feedback con-
troller used in each individual converter, there will be always
network parameters that drive the system to an unstable
condition. To solve this problem, instead of designing a
robust controller or adding components in parallel with the
load, which most of the time is not feasible to implement in
commercially available products, this paper takes a different
approach. It addresses the stability issue externally to the
converter by means of passive components. It was shown
that adding a shunt capacitor in parallel with each converter,
a system that was previously unstable can be made stable.
Future work will focus on hardware implementation and
testing and also study the destabilization effects of CPL on
AC systems.

APPENDIX I
PROOF OFTHEOREM 1

For simplicity of notation, we assume that both converter
have the same values forC,L andP. Fix feedback controllers
for each of the converters. We show that as the line resistance
R increases, the overall system is not stable.

The state of the system is[I1 V1 I2 V2]
T where I1 and I2

are the currents through inductors in converter 1 and 2, re-
spectively;V1 andV2 are the voltage across the capacitors in
converter 1 and 2, respectively. As in Section II, we use<>
to denote average quantities and lower cased letters to denote
small signal quantities. Since averaging is a linear operation,
when considering the switched operation of converter 1, the
signals from converter 2 is taken to be its averaged value
(similarly for converter 2). When the switch of converter 1
is connected to the line, the state evolution equations are

L
dI1
dt

=Vg− (I1+< I2 >)R−V1 C
dV1

dt
= I1−

P
V1

,

if the switch is grounded,

L
dI1
dt

=−V1 C
dV1

dt
= I1−

P
V1

.

For converter 2, if the switch is connected to the line, the
state evolution equations are

L
dI2
dt

=Vg− (< I1 >+I2)R− I2R−V2 C
dV2

dt
= I2−

P
V2

,



if the switch is grounded,

L
dI2
dt

=−V2 C
dV2

dt
= I2−

P
V2

.

Averaging and making the smaller signal assumptions, we
have the following linearized system equations

ẋ = Ax +Bu, (14)

wherex =
[

i1 v1 i2 v2
]T

, u =
[

d1 d2
]T

A =











−DR
L − 1

L −DR
L 0

1
C

P
CV̄1

0 0

−DR
L 0 − 2DR

L − 1
L

0 0 1
C

P
CV̄2











=

[

A1 A12

A21 A2

]

,

B =





















V̄1
L

... 0

0
... 0

. . . . . .

0
... V̄2

L

0
... 0





















=

[

B1 0
0 B2

]

,

andV̄1 andV̄2 are the average steady state values forV1 and
V2, respectively.

A linear state feedback controller is given in the form of
u = Fx, whereF is restricted to be in the form of

F =

[

F1 0 0
0 0 F2

]

since each converter controller only has access to its own
states. We say that each converter is individually stable if
A1+B1F1 is stable. Let̃A =A+BF. Because of the structure
of the feedback,̃A has the following sign structure

Ã =









− − −DR
L 0

+ + 0 0
−DR

L 0 − −
0 0 + +









=

[

Ã1 Ã12

Ã21 Ã2

]

, (15)

We show that asR increases, at least one eigenvalue ofÃ is
positive. This is equivalent to proving that the determinant of
Ã is negative. Following a standard result for the determinant
of block matrices [14], we have

det(Ã) = det(Ã1)det(Ã2− Ã12Ã
−1
1 Ã12). (16)

Since both eigenvalues of̃A1 have negative real parts
(converter 1 is individually stable), det(Ã) is positive. By
straightforward calculation, the matrix in the second term
has the form

Ã2− Ã12Ã
−1
1 Ã12 =

[

− −
+ +

]

−R2
[

c 0
0 0

]

, (17)

wherec is a positive constant. Therefore for large enough
R, the determinant of̃A2− Ã12Ã−1

1 Ã12 is negative. Implying
that at least one eigenvalue ofÃ has positive real part.

APPENDIX II
PROOF OFCOROLLARY 1

This proof follows from the proof of Theorem 1 by repeat-
edly using the block determinant formula for an-converter
network. The calculations are standard but somewhat tedious
and we skip them here due to space constraints. The final
result of the calculation is that the sign of the determinate
of the global system matrix is determined by the sign of

det(

[

− −
+ +

]

−nR2
[

c 0
0 0

]

),

where c is a positive constant. Asn grows, the above
determinate is negative, implying that not all eigenvalues
have positive real parts (there are always 2n eigenvalues).

APPENDIX III
PROOF OFTHEOREM 2

We prove the three cases in this theorem one by one. For
the circuit in Fig. 6(a), following the notation in Appendix
I, state matrices become

A1 =

[

−DR
L − 1

L
1
C

P
CV̄1

− 1
CRs

]

A2 =

[

− 2DR
L − 1

L
1
C

P
CV̄2

− 1
CRs

]

,

whereRs is the value of the shunt resistor. Due to the sparsity
constraints in the feedback controller, the only the top row
of A1 and A2 would be affected. ThereforeRs need to be
small enough such thatP

CV̄1
− 1

CRs
and P

CV̄2
− 1

CRs
are negative,

otherwise the result from Appendix I holds. The average loss
in converter 1 is given by

V̄2
1

Rs
≥ V̄2

1
P

V̄2
1

= P.

Similarly, the loss in converter is also greater thanP. Hence
at least 50% of power is wasted in the shunt elements.

For the circuit in Fig. 6(b), the RC filter at the input does
not change the sign of the second row of theA1 and A2.

That is, both matrices still have signs of

[

− −
+ +

]

. Repeating

the calculations in Appendix I shows that this setup cannot
stabilize the network.

For the circuit in Fig. 6(c), we expand the state space of to
include the voltage across the shunt capacitors at the inputs
to the converters. Denote them asvc1 andvc2 , respectively.
Let the new state bex =

[

vc1 i1 v1 vc2 i2 v2
]T

. Let
Cs be the value of the shunt capacitor. Following same steps
as in Appendix I, the new state evolution matrices are

A =





















− 2
CsR

− 1
Cs

0 1
CsR

0 0
D
L 0 − 1

L 0 0 0
0 1

C
P

CV̄2
1

0 0 0
1

CsR
0 0 − 1

CsR
− 1

Cs
0

0 0 0 D
L 0 − 1

L
0 0 0 0 1

C
P

CV̄2
2























and

B =

















0 0
V̄c1 0
0 0
0 0
0 V̄c2

0 0

















.

As Cs increases, the two system becomes essentially decou-
pled, and the feedback in each converter is able to stabilize
the system since each converter is individually stable.

It is important to note that the analysis here depend on
linearization and averaging. Therefore the adverse ripple
effect of increasingCs is not evident. A direction of future
work is to include the effects of a large input capacitor into
the calculations.
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