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Distributed Stochastic Optimization under Imperfect Information

Aswin Kannan Angelia Nedić Uday V. Shanbhag

Abstract— We consider a stochastic convex optimization
problem that requires minimizing a sum of misspecified agent-
specific expectation-valued convex functions over the intersec-
tion of a collection of agent-specific convex sets. This misspecifi-
cation is manifested in a parametric sense and may be resolved
through solving a distinct stochastic convex learning problem.
Our interest lies in the development of distributed algorithms
in which every agent makes decisions based on the knowledge
of its objective and feasibility set while learning the decisions
of other agents by communicating with its local neighbors over
a time-varying connectivity graph. While a significant body of
research currently exists in the context of such problems, we
believe that the misspecified generalization of this problem is
both important and has seen little study, if at all. Accordingly,
our focus lies on the simultaneous resolution of both problems
through a joint set of schemes that combine three distinct steps:
(i) An alignment step in which every agent updates its current
belief by averaging over the beliefs of its neighbors; (ii) A
projected (stochastic) gradient step in which every agent further
updates this averaged estimate; and (iii) A learning step in
which agents update their belief of the misspecified parameter
by utilizing a stochastic gradient step. Under an assumption
of mere convexity on agent objectives and strong convexity of
the learning problems, we show that the sequences generated
by this collection of update rules converge almost surely tothe
solution of the correctly specified stochastic convex optimization
problem and the stochastic learning problem, respectively.

I. I NTRODUCTION

Distributed algorithms have grown enormously in rele-
vance for addressing a broad class of problems in arising
in network system applications in control and optimization,
signal processing, communication networks, power systems,
amongst others (c.f. [1], [2], [3]). A crucial assumption in
any such framework is the need for precise specification
of the objective function. In practice however, in many
engineered and economic systems, agent-specific functions
may be misspecified from a parametric standpoint but may
have access to observations that can aid in resolving this
misspecification. Yet almost all of the efforts in distributed
algorithms obviate the question of misspecification in the
agent-specific problems, motivating the present work.

In seminal work by Tsitsiklis [4], decentralized and dis-
tributed approaches to decision-making and optimization
were investigated in settings complicated by partial coordi-
nation, delayed communication, and the presence of noise.
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In subsequent work [5], the behavior of general distributed
gradient-based algorithms was examined. In related work
on parallel computing [6], iterative approaches and their
convergence rate estimates were studied for distributing
computational load amongst multiple processors.

Consensus-based extensions to optimization with linear
constraints were considered in [7], while convergent algo-
rithms for problems under settings of general agent spe-
cific convex constraints were first proposed in [8], as an
extension of distributed multi-agent model proposed in [9],
and further developed in [10]. In [11] and [12], a problem
with common (global) inequality and equality constraints
is considered and distributed primal-dual projection method
is proposed. A more general case with agents having only
partial information with respect to shared and nonsmooth
constraints is studied in [13]. Recent work [14] compares
and obtains rate estimates for Newton and gradient based
schemes to solve distributed quadratic minimization, a form
of weighted least squares problem for networks with time
varying topology. In [15], a distributed dual-averaging al-
gorithm is proposed combining push-sum consensus and
gradient steps for constrained optimization over a static
graph, while in [16], a subgradient method is developed us-
ing push-sum algorithm on time-varying graphs. Distributed
algorithms that combine consensus and gradient steps have
been recently developed [17], [18] for stochastic optimization
problems. In recent work [19], the authors consider a setting
of asynchronous gossip-protocol, while stochastic extensions
to asynchronous optimization were considered in [20], [21],
[22], [23], convergent distributed schemes were proposed,
and error bounds for finite termination were obtained. All
aforementioned work assumes that the functions are either
known exactly or their noisy gradients are available.

While misspecification poses a significant challenge in
the resolution of optimization problems, general purpose
techniques for the resolution of misspecified optimization
problems through the joint solution of the misspecified
problem and a suitably defined learning problem have been
less studied. Our framework extends prior work on deter-
ministic [24] and stochastic [25], [26] gradient schemes.
Here, we consider a networked regime in which agents
are characterized by misspecified expectation-valued con-
vex objectives and convex feasibility sets. The overall goal
lies in minimizing the sum of the agent-specific objectives
over the intersection of the agent-specific constraint sets. In
contrast with traditional models, agents have access to the
stochastic convex learning metric that allows for resolving
the prescribed misspecification. Furthermore, agents only
have access to their objectives and their feasibility sets and
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may observe the decisions of their local neighbors as defined
through a general time-varying graph. In such a setting, we
considered distributed protocols that combine three distinct
steps: (i) Analignmentstep in which every agent updates
its current belief by averaging over the beliefs of its neigh-
bors based on a set of possibly varying weights; (ii) A
projected (stochastic)gradient step in which every agent
further updates this averaged estimate; and (iii) Alearning
step where agents update their belief of the misspecified
parameter by utilizing a stochastic gradient step. We show
that the produced sequences of agent-specific decisions and
agent-specific beliefs regarding the misspecified parameter
converge in an almost sure sense to the optimal set of
solutions and the optimal parameter, respectively under the
assumption of general time-varying graphs and note that this
extends the results in [8].

The paper is organized as follows. In Section II,we
define the problem of interest and provide a motivation for
its study. In Section III, we outline our algorithm and the
relevant assumptions. Basic properties of the algorithm are
investigated in Section IV and the almost sure convergence
of the produced sequences is established in Section V. We
conclude the paper with some brief remarks in Section VI.

II. PROBLEM FORMULATION AND MOTIVATION

We consider a networked multi-agent setting with time-
varying undirected connectivity graphs, where the graph at
time t is denoted byGt = {N , Et}, N , {1, . . . ,m} denotes
the set of nodes andEt is the set of edges at timet. Each
node represents a single agent and the problem of interest is

minimize
m∑

i=1

E[ϕi(x, θ
∗, ξ)]

subject to x ∈
m⋂

i=1

Xi,

(1)

where θ∗ ∈ R
p represents the (misspecified) vector of

parameters,E[ϕi(x, θ∗, ξ)] denotes the local cost function
of agenti, the expectation is taken with respect to a random
variableξ, defined asξ : Ω → R

d, and (Ω,F ,P) denotes
the associated probability space. The functionϕi : R

n ×
R
p × R

d→ R is assumed to be convex and continuously
differentiable inx for all θ ∈ Θ and allξ ∈ Ω.
(i) Local information . Agent i has access to its objective
functionE[ϕi(x, θ

∗, ξ)] and its setXi but is unaware of the
objectives and constraint sets of the other agents. Further-
more, it may communicate at timet with its local neighbors,
as specified by the graphGt;
(ii) Objective misspecification. The agent objectives are
parametrized by a vectorθ∗ unknown to the agents.

We assume that the true parameterθ∗ is a solution to a
distinct convex problem, accessible to every agent:

min
θ∈Θ

E[g(θ, χ)], (2)

whereΘ ⊆ R
p is a closed and convex set,χ : Ωθ → R

r is a
random variable with the associated probability space given
by (Ωθ,Fθ,Pθ), while g : Rp×R

r → R is a strongly convex

and continuously differentiable function inθ for everyχ. Our
interest lies in the joint solution of (1)–(2):

x∗ ∈ argmin
x

{
m∑

i=1

E[ϕi(x, θ
∗, ξ)] | x ∈

m⋂

i=1

Xi

}

,

θ∗ ∈ argmin
θ

{E[g(θ, χ)] | θ ∈ Θ} .
(3)

A sequential approach: Traditionally, such problems are
approached sequentially: (1) an accurate approximation of
θ∗ is first obtained; and (2) givenθ∗, standard compu-
tational schemes are then applied. However, this avenue
is inadvisable when the learning problems are stochastic
and accurate solutions are available via simulation schemes,
requiring significant effort. In fact, if the learning process
is terminated prematurely, the resulting solution may differ
significantly fromθ∗ and this error can only be captured in
an expected-value sense. Thus, such approaches can only
provide approximate solutions and, consequently,cannot
generally provide asymptotically exact solutions. Inspired
by recent work on learning and optimization in a central-
ized regime [25], we consider the development of schemes
for distributed stochastic optimization. We build onthe
distributed projection-based algorithm [8], which combines
local averaging with a projected gradient step for agent-based
constraints. In particular, we introduce an additional layer of
a learning step to aid in resolving the misspecification.
Motivating applications: Consensus-based optimization
problems arise in a range of settings including the dispatchof
distributed energy resources (DERs) [2], signal processing [],
amongst others. Such settings are often complicated by
misspecification; for instance, there are a host of charging,
discharging and efficiency parameters associated with storage
resources that often require estimation.

III. A SSUMPTIONS ANDALGORITHM

We begin by presenting a distributed framework for solv-
ing the problem in (3). To set this up more concretely, for all
i ∈ N , we let fi(x, θ) , E[ϕi(x, θ, ξ)] for all x andθ ∈ Θ
and h(θ) , E[g(θ, χ)] for all θ ∈ Θ. Then, problem (3)
assumes the following form:

x∗ ∈ argmin
x∈∩m

i=1
Xi

f(x, θ∗), wheref(x, θ) ,
m∑

i=1

fi(x, θ
∗),

θ∗ ∈ argmin
θ∈Θ

h(θ). (4)

We consider a distributed algorithm where agenti knows
fi and the setXi, while all agents have access toh. We
further assume thatith agent has access to oracles that
produce random samples∇xϕi(x, θ, ξ) and∇θg(θ, χ). The
information needed by agents to solve the optimization
problem is acquired through local sharing of the estimates
over a time-varying communication network. Specifically, at
iterationk, the ith agent has estimatesxki ∈ Xi andθki ∈ Θ
and at the next iteration, constructs a vectorvki , as an average



of the vectorsxkj obtained from its local neighbors, given by:

vki :=

m∑

j=1

aj,ki xkj for all i = 1, . . . ,m andk ≥ 0, (5)

where the weightsaj,ki are nonnegative scalars satisfying
∑m

j=1
aj,ki = 1 and are related to the underlying connectivity

graph Gk over which the agents communicate at timek.
Then, for i = 1, . . . , N , the ith agent updates itsx- and
θ-variable as follows:

xk+1
i := ΠXi

(
vki − αk

(
∇xfi(v

k
i , θ

k
i ) + wki

))
, (6)

θk+1
i := ΠΘ

(
θki − γk

(
∇h(θki ) + βki

))
, (7)

where wki , ∇xϕi(v
k
i , θ

k
i , ξ

k
i ) − ∇xfi(v

k
i , θ

k
i ) with

∇xfi(x, θ) = E[∇xϕi(x, θ, ξ)], and βki , ∇θg(θ
k
i , χ

k
i ) −

∇h(θki ) with ∇h(θki ) = E[∇θg(θ
k
i , χ)] for all i ∈ N and

all k ≥ 0. The parametersαk > 0 and γk > 0 represent
stepsizes at epochk, while the initial pointsx0i ∈ Xi and
θ0i ∈ Θ are randomly selected for each agenti. Theith agent
has access to

(
∇xfi(v

k
i , θ

k
i ) + wki

)
and not

(
∇xfi(v

k
i , θ

k
i )
)
.

The same is the case with the learning function. At time
epochk, agent i proceeds to average over its neighbors’
decisions by using the weights in (5) and employs this
average to update its decision in (6). Furthermore, agenti
makes a subsequent update in its belief regardingθ∗, by
taking a similar (stochastic) gradient update, given by (7).

The weightaj,ki used by agenti for the iterate of agentj
at timek is based on the connectivity graphGk. Specifically,
letting Eki be the set of neighbors of agenti:

Eki = {j ∈ N | {j, i} ∈ Ek} ∪ {i},
the weightsaj,ki are compliant with the neighbor structure:

aj,ki > 0 if j ∈ Eki and aj,ki = 0 if j 6∈ Eki .
We assume that each graphGk is connected and that matrices
are doubly stochastic, as given in the following assumption.

Assumption 1 (Graph and weight matrices):
(a) The matrixA(k) (whose(ij)th entry is denoted byaj,ki )
is doubly stochastic for everyk, i.e.,

∑m
i=1

aj,ki = 1 for every
j and

∑m
j=1

aj,ki = 1 for every i.
(b) The matricesA(k) have positive diagonal entries, and all
positive entries in everyA(k) are uniformly bounded away
from zero, i.e., there existsη > 0 such that, for alli, j, and
k, we haveaj,ki ≥ η wheneveraj,ki > 0.
(c) The graphGk is connected for everyk ≥ 0.
The instantaneous connectivity assumption on the graphsGk
can be relaxed by requiring that the union of these graphs is
connected everyT units of time, for instance. The analysis of
this case is similar to that given in this paper. We choose to
work with connected graphs in order to keep the analysis
somewhat simpler and to provide a sharper focus on the
learning aspect of the problem.

Next, we defineF0 , (x0i , θ
0
i ), i ∈ N} and Fk =

{(ξti , χti), i ∈ N , t = 0, 1, . . . , k − 1} for all k ≥ 1 and
make the following assumptions on the conditional first and

second moments of the stochastic errorswki andβki . These
assumptions are relatively standard in the development of
stochastic gradient schemes.

Assumption 2 (Conditional first and second moments):
(a)E[wki | Fk] = 0 andE[βki | Fk] = 0 for all k andi ∈ N .
(b) E[‖wki ‖2 | Fk] ≤ ν2 andE[‖βki ‖2 | Fk] ≤ ν2θ for all k
and i ∈ N .
(c) E[‖θ0i ‖2] is finite for all i ∈ N .
We now discuss the assumptions on agent objectives, the
learning metric and the underlying set constraints.

Assumption 3 (Feasibility sets):(a) For everyi ∈ N , the
setXi ⊂ R

n is convex and compact.
(b) The intersection set∩mi=1Xi is nonempty.
(c) The setΘ ⊆ R

p is convex and closed.
Note that under the compactness assumption on the setsXi,
we haveE[‖x0i ‖2] <∞ for all i ∈ N . Furthermore we have

max
xi,yi∈Xi

‖xi − yi‖ ≤ D (8)

for some scalarD > 0 and for all i. Next, we consider the
conditions for the agent objective functions.

Assumption 4 (Agent objectives):For every i ∈ N , the
function fi(x, θ) is convex in x for every θ ∈ Θ. Fur-
thermore, for everyi ∈ N , the gradients∇xfi(x, θ) are
uniformly Lipschitz continuous functions inθ for all x ∈
Xi: ‖∇xfi(x, θ

a) − ∇xfi(x, θ
b)‖ ≤ Lθ‖θa − θb‖ for all

θa, θb ∈ Θ, all x ∈ Xi, and alli ∈ N .
Assumption 5 (Learning metric):The function h is

strongly convex overΘ with a constantκ > 0, and its
gradients are Lipschitz continuous with a constantRθ, i.e.,
‖∇h(θa)−∇h(θb)‖ ≤ Rθ‖θa − θb‖ for all θa, θb ∈ Θ.

By the strong convexity ofh, the problem (2) has a unique
solution denoted byθ∗. From the convexity of the functions
fi in x (over Rn) for every θ ∈ Θ, as given in Assump-
tion 4, these functions are continuous. Thus, when∩mi=1Xi

is nonempty and eachXi is compact (Assumption 3), the
problemminx∈∩m

i=1
Xi

∑m
i=1

fi(x, θ
∗) has a solution.

IV. BASIC PROPERTIES OF THE ALGORITHM

In this section, we provide some basic relations for the
algorithm (5)–(7) that are fundamental to establishing the
almost sure convergence of the sequences produced by the
algorithm. The proofs of all the results can be found in [27].

A. Iterate Relations

We start with a simple result for weighted averages of a
finitely many points.

Lemma 1:Let y1, . . . , ym ∈ R
n and λ1, . . . , λm ∈ R,

with λi ≥ 0 for all i and
∑m

i=1
λi = 1. Then, for anyc ∈ R

n,
we have

∥
∥
∥
∥
∥

m∑

i=1

λiyi − c

∥
∥
∥
∥
∥

2

=

m∑

i=1

λi‖yi−c‖2−
1

2

m∑

j=1

m∑

ℓ=1

λjλℓ‖yj−yℓ‖2.



Proof: By using the fact thatλi are convex weights,
we write

∥
∥
∥
∥
∥

m∑

i=1

λiyi − c

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

m∑

i=1

λi(yi − c)

∥
∥
∥
∥
∥

2

=

m∑

i=1

m∑

j=1

λiλj(yi − c)T (yj − c).

Noting that2aT b = ‖a‖2 + ‖b‖2 − ‖a− b‖2, valid for any
a, b ∈ R

n, and applying it to each inner product, we obtain

∥
∥
∥
∥
∥

m∑

i=1

λiyi − c

∥
∥
∥
∥
∥

2

=
1

2

m∑

i=1

m∑

j=1

λiλj
(
‖yi − c‖2 + ‖yj − c‖2 − ‖yi − yj‖2

)

=
m∑

i=1

λi‖yi − c‖2 − 1

2

m∑

i=1

m∑

j=1

λiλj‖yi − yj‖2,

where the second equality follows by noting
that 1

2

∑m
i=1

∑m
j=1

λiλj
(
‖yi − c‖2 + ‖yj − c‖2

)
=

∑m
p=1

λp‖yp − c‖2, which can be seen by using
∑m

j=1
λj = 1.

We use the following lemma that provides a bound on the
difference between consecutivex-iterates of the algorithm
and an analogous relation for consecutiveθ-iterates.

Lemma 2:Let Assumptions 1–4 hold. Also, letX =
∩mi=1Xi and leth be strongly convex overΘ. Let the iterates
xki be generated according to (5)–(7). Then, almost surely,
we have for allx ∈ X andk ≥ 0,

m∑

i=1

E
[
‖xk+1

i − x‖2 | Fk
]
≤

m∑

j=1

‖xkj − x‖2

− η2
∑

{s,ℓ}∈T k

‖xks − xkℓ ‖2 +mα2
k(2S

2 + ν2) +mα2−τ
k L2

θD
2

+
(
ατk + 2α2

kL
2
θ

)
m∑

i=1

‖θki − θ∗‖2

− 2αk

m∑

i=1

(
fi(v

k
i , θ

∗)− fi(x, θ
∗)
)
,

whereT k is a spanning tree in the graphGk, τ ∈ (0, 2)
is an arbitrary but fixed scalar,θ∗ = argminθ∈Θ h(θ), and
S = maximaxx∈X̄ ‖∇xfi(x, θ

∗)‖, with X̄ being the convex
hull of the union∪mi=1Xi.

Proof: First, we note that by the strong convexity ofh,
the pointθ∗ ∈ Θ minimizingh overΘ exists and it is unique.
Next, we use the projection property for a closed convex set
Y , according to which we have,‖ΠY [x]− y‖2 ≤ ‖x− y‖2
for all y ∈ Y and allx. Therefore, for alli, and anyx ∈ X ,

we have

‖xk+1
i − x‖2

=
∥
∥ΠXi

(
vki − αk

(
∇xfi(v

k
i , θ

k
i ) + wki

))
− x
∥
∥
2

≤
∥
∥vki − αk

(
∇xfi(v

k
i , θ

k
i ) + wki

)
− x
∥
∥
2

≤ ‖vki − x‖2 + T kA + T kB, (9)

whereT kA , α2
k‖∇xfi(v

k
i , θ

k
i ) + wki ‖2, (10)

T kB , −2αk(v
k
i − x)T (∇xfi(v

k
i , θ

k
i ) + wki ). (11)

ExpandingT kA, we obtain that

T kA = α2
k‖∇xfi(v

k
i , θ

k
i ) + wki ‖2 = α2

k‖∇xfi(v
k
i , θ

k
i ) + wki ‖2

= α2
k‖∇xfi(v

k
i , θ

k
i )‖2 + α2

k‖wki ‖2

+ 2α2
k(w

k
i )
T∇xfi(v

k
i , θ

k
i ).

Taking the conditional expectations on both sides of (12)
with respect to the past and using Assumption 2 on the
stochastic gradients, we have that almost surely,

E
[
T kA | Fk

]

= α2
k‖∇xfi(v

k
i , θ

∗) +∇xfi(v
k
i , θ

k
i )−∇xfi(v

k
i , θ

∗)‖2

+ α2
k E
[
‖wki ‖2 | Fk

]

︸ ︷︷ ︸

≤ ν2

+2α2
k E
[
(wki )

T∇xfi(v
k
i , θ

k
i ) | Fk

]

︸ ︷︷ ︸

= 0

≤ α2
k(‖∇xfi(v

k
i , θ

∗)‖+ ‖∇xfi(v
k
i , θ

k
i )−∇xfi(v

k
i , θ

∗)‖)2

+ α2
kν

2

≤ α2
k(2S

2 + 2L2
θ‖θki − θ∗‖2 + ν2),

(12)

where in the last inequality we use(a + b)2 ≤ 2a2 +
2b2 valid for all a, b ∈ R, and the Lipschitz prop-
erty of ∇xfi(x, θ) (cf. Assumption 4). Furthermore, since
the setsXi are compact by Assumption 3, the convex
hull X̄ of ∪mi=1Xi is also compact, implying by continu-
ity of the gradients thatmaximaxk≥0 ‖∇xfi(v

k
i , θ

∗)‖ ≤
maximaxx∈X̄ ‖∇xfi(x, θ

∗)‖ = S, with S <∞.

Next, we consider the termT kB. By taking the
conditional expectation with respect toFk and using
E
[
(vki − x)Twki | Fk

]
= 0, we obtain

E
[
T kB | Fk

]

= −2αk(v
k
i − x)T (∇xfi(v

k
i , θ

k
i )−∇xfi(v

k
i , θ

∗))

− 2αk(v
k
i − x)T∇xfi(v

k
i , θ

∗)

≤ 2αk‖vki − x‖‖∇xfi(v
k
i , θ

k
i )−∇xfi(v

k
i , θ

∗)‖
− 2αk(v

k
i − x)T∇xfi(v

k
i , θ

∗).

By using the Lipschitz property of∇xfi(x, θ) (cf. Assump-
tion 4), the relation2αab = 2(

√
α2−τa)(

√
ατ b) valid for any

a, b ∈ R and anyτ > 0, and the Cauchy-Schwarz inequality,



we further obtain

E
[
T kB | Fk

]

≤ 2αkLθ‖vki − x‖‖θki − θ∗‖ − 2αk(v
k
i − x)T∇xfi(v

k
i , θ

∗)

≤ α2−τ
k L2

θ‖vki − x‖2 + ατk‖θki − θ∗‖2

− 2αk(v
k
i − x)T∇xfi(v

k
i , θ

∗)

≤ α2−τ
k L2

θD
2 + ατk‖θki − θ∗‖2

− 2αk
(
fi(v

k
i , θ

∗)− fi(x, θ
∗)
)
, (13)

where in the last inequality we also employ the convexity of
fi and boundedness of setsXi, together with the fact that
vki , x ∈ Xi for all i (cf. Assumption 3).

Now, we take the conditional expectation in relation (9)
and we substitute estimates (12) and (13), which yields
almost surely, for alli, all x ∈ X and allk,

E
[
‖xk+1

i − x‖2 | Fk
]

≤ ‖vki − x‖2 + α2
k(2S

2 + ν2) + α2−τ
k L2

θD
2

+
(
ατk + 2α2

kL
2
θ

)
‖θki − θ∗‖2

− 2αk
(
fi(v

k
i , θ

∗)− fi(x, θ
∗)
)
.

Summing the preceding relations overi = 1, . . . ,m, we have
the following inequality almost surely, for allx ∈ X and all
k ≥ 0,

m∑

i=1

E
[
‖xk+1

i − x‖2 | Fk
]

≤
m∑

i=1

‖vki − x‖2 +mα2
k(2S

2 + ν2) +mα2−τ
k L2

θD
2

+
(
ατk + 2α2

kL
2
θ

)
m∑

i=1

‖θki − θ∗‖2

− 2αk

m∑

i=1

(
fi(v

k
i , θ

∗)− fi(x, θ
∗)
)
. (14)

We now focus on the term‖vki − x‖2. Noting that
∑m

j=1
aj,ki = 1, by Lemma 1, it follows that for allx ∈ X

and allk ≥ 0,

‖vki − x‖2 =

∥
∥
∥
∥
∥
∥

m∑

j=1

aj,ki xkj − x

∥
∥
∥
∥
∥
∥

2

=
m∑

j=1

aj,ki ‖xkj − x‖2 − 1

2

m∑

j=1

m∑

ℓ=1

aj,ki aℓ,ki ‖xkj − xkℓ ‖2.

By summing these relations overi, exchanging the order
of summations, and using

∑m
i=1

aj,ki = 1 for all j and k
(cf. Assumption 1(a)), we obtain for allx ∈ X and allk ≥ 0,

m∑

i=1

‖vki − x‖2

=

m∑

j=1

‖xkj − x‖2 − 1

2

m∑

j=1

m∑

ℓ=1

m∑

i=1

aj,ki aℓ,ki ‖xkj − xkℓ ‖2.

By using the connectivity assumption on the graphGk and
the assumption on the entries in the matrixA(k) (cf. As-
sumptions 1(b) and(c)), we can see that there exists a
spanning treeT k ⊆ Gk such that

1

2

m∑

j=1

m∑

ℓ=1

m∑

i=1

aj,ki aℓ,ki ‖xkj − xkℓ ‖2 ≥
∑

{s,ℓ}∈T k

η2‖xks − xkℓ ‖2.

Therefore, for allx ∈ X and allk ≥ 0,
m∑

i=1

‖vki − x‖2 ≤
m∑

j=1

‖xkj − x‖2 − η2
∑

{s,ℓ}∈T k

‖xks − xkℓ ‖2,

and the stated relation follows by substituting the preceding
relation in equation (14).

Our next lemma provides a relation for the iteratesθki
related to the learning scheme of the algorithm.

Lemma 3:Let Assumptions 2 and 5 hold, and let the
iterates θki be generated by the algorithm (5)–(7). Then,
almost surely, we have for allk ≥ 0,

m∑

i=1

E
[
‖θk+1
i − θ∗‖2|Fk

]

≤
(
1− 2γkκ+ γ2kR

2
θ

)
m∑

i=1

‖θki − θ∗‖2 +mγ2kν
2
θ ,

with θ∗ = argminθ∈Θ h(θ).
Proof: By using the nonexpansivity of the projec-

tion operator, the strong monotonicity and Lipschitz con-
tinuity of ∇θh(θ), and by recalling the relationθ∗ =
Πθ [θ

∗ − γk∇θh(θ
∗)] , we obtain the following relation

‖θk+1
i − θ∗‖2

≤ ‖θki − γk(∇h(θki ) + βki )− θ∗ + γk∇h(θ∗)‖2

= ‖θki − θ∗‖2 + γ2k‖∇h(θki )−∇h(θ∗)‖2 + γ2k‖βki ‖2

− 2γk(∇h(θki )−∇h(θ∗))T (θki − θ∗)

− 2γk(β
k
i )
T (θki − θ∗ − γk(∇h(θki )−∇h(θ∗)))

≤ (1− 2γkκ+ γ2kR
2
θ)‖θki − θ∗‖2 + γ2k‖βki ‖2

− 2γk(β
k
i )
T (θki − θ∗ − γk(∇h(θki )−∇h(θ∗))).

Taking conditional expectation with respect to the pastFk,
we see that almost surely for alli andk,

E
[
‖θk+1
i − θ∗‖2 | Fk

]
≤ (1−2γkκ+γ

2
kR

2
θ)‖θki −θ∗‖2+γ2kν2θ ,

sinceE[(βki )
T (θki − θ∗ − γk(∇h(θki )−∇h(θ∗))) | Fk] = 0

andE[‖βki ‖2 | Fk] ≤ ν2θ (by Assumption 2). By summing
the preceding relations overi, we obtain the stated result.

The following lemma gives a key result that combines
the decrease properties forx- and θ-iterates established in
Lemmas 2 and 3.

Lemma 4:Let Assumptions 1–5 hold, and letX =
∩mi=1Xi. Let the sequences{xki }, {θki }, i ∈ N , be generated
according to (5)–(7), and define

V (xk, θk;x) :=

m∑

i=1

(
‖xki − x‖2 + ‖θki − θ∗‖2

)
for allx ∈ X.



Then, for allx ∈ X , all k ≥ 0, and allℓ ∈ N , the following
relation holds almost surely

E[V (xk+1, θk+1;x) | Fk] ≤ V (xk, θk;x) +mα2−τ
k L2

θD
2

− η2
∑

{j,s}∈T k

‖xkj − xks‖2 +mα2
k(2S

2 + ν2)

+ 2αkG

m∑

j=1

‖xkj − zk‖ − 2αk
(
f(zk, θ∗)− f(x, θ∗)

)

− γk

(

2κ− γkR
2
θ −

ατk + 2α2
kL

2
θ

γk

) m∑

i=1

‖θki − θ∗‖2

+mγ2kν
2
θ ,

where

zk = ΠX [yk] with yk =
1

m

m∑

j=1

xkj for all k ≥ 0,

T k denotes a spanning tree inGk, while S, X̄ and G
are defined asS , maximaxx∈X̄ ‖∇xfi(x, θ

∗)‖, X̄ ,

conv(∪mi=1Xi), andG , maxi∈N maxz∈X ‖∇xfi(z, θ
∗)‖.

Proof: By Lemma 2 we have almost surely for some
τ > 0 and for allx ∈ X and allk ≥ 0,

m∑

i=1

E
[
‖xk+1

i − x‖2 | Fk
]

≤
m∑

j=1

‖xkj − x‖2 − η2
∑

{s,ℓ}∈T k

‖xks − xkℓ ‖2

+mα2
k(2S

2 + ν2) +mα2−τ
k L2

θD
2

+
(
ατk + 2α2

kL
2
θ

)
m∑

i=1

‖θki − θ∗‖2

− 2αk

m∑

i=1

(
fi(v

k
i , θ

∗)− fi(x, θ
∗)
)
,

where T k is a spanning tree in the graphGk and θ∗ =
argminθ∈Θ h(θ), which exists and it is unique in view of
the strong convexity ofh. By Lemma 3 almost surely we
have for allk ≥ 0,

m∑

i=1

E
[
‖θk+1
i − θ∗‖2|Fk

]

≤
(
1− 2γkκ+ γ2kR

2
θ

)
m∑

i=1

‖θki − θ∗‖2 +mγ2kν
2
θ .

By combining Lemmas 2 and 3 and using the notationV ,
after regrouping some terms, we see that for allx ∈ X and
all k ≥ 0, the following holds almost surely:

E
[
V (xk+1, θk+1;x) | Fk

]
≤ V (xk, θk;x) +mα2−τ

k L2
θD

2

− η2
∑

{s,ℓ}∈T k

‖xks − xkℓ ‖2 +mα2
k(2S

2 + ν2)

+
(
ατk + 2α2

kL
2
θ

)
m∑

i=1

‖θki − θ∗‖2

− 2αk

m∑

i=1

(
fi(v

k
i , θ

∗)− fi(x, θ
∗)
)

− γk
(
2κ− γkR

2
θ

)
m∑

i=1

‖θki − θ∗‖2 +mγ2kν
2
θ . (15)

Next, we work with the term involving the function values.
We consider the summandfi(vki , θ

∗)− fi(x, θ
∗). Define

yk =
1

m

m∑

j=1

xkj , zk = ΠX [yk] for all k ≥ 0.

By adding and subtractingfi(zk), and by using the convexity
of fi(·, θ∗) (see Assumption 4), we can show that

fi(v
k
i , θ

∗)− fi(x, θ
∗)

≥ fi(z
k, θ∗)T (vki − zk) + fi(z

k, θ∗)− fi(x, θ
∗)

≥ −‖∇xfi(z
k, θ∗)‖‖vki − zk‖+ fi(z

k, θ∗)− fi(x, θ
∗).

SinceXℓ is bounded for everyℓ andzk ∈ X = ∩mi=1Xi, it
follows that

max
k≥0

‖∇xfi(z
k, θ∗)‖ ≤ G , max

i∈N

(

max
y∈X

‖∇xfi(y, θ
∗)‖
)

.

Thus,‖∇xfi(z
k, θ∗)‖‖vki − zk‖ ≤ G‖vki − zk‖, implying

m∑

i=1

(
fi(v

k
i , θ

∗)− fi(x, θ
∗)
)

≥ −G
m∑

i=1

‖vki − zk‖+ f(zk, θ∗)− f(x, θ∗),

where we also use notationf(·, θ) =
∑m

i=1
fi(·, θ). Re-

calling the definition of vki , and by using the doubly-
stochastic property of the weights and the convexity of
the Euclidean norm, we can see that

∑m
i=1

‖vki − zk‖ ≤
∑m

i=1

∑m
j=1

aj,ki ‖xkj − zk‖ =
∑m

j=1
‖xkj − zk‖. Hence,

m∑

i=1

(
fi(v

k
i , θ

∗)− fi(x, θ
∗)
)

≥ −G
m∑

j=1

‖xkj − zk‖+ f(zk, θ∗)− f(x, θ∗). (16)

Using (16) in inequality (15) yields the stated result.

B. Averages and Constraint Sets Intersection

Now, we focus on developing a relation that will be useful
for providing a bound on the distance of the iterate averages
yk = 1

m

∑m
j=1

xkj and the intersection setX = ∩mi=1Xi.
Specifically, the goal is to have a bound for

∑m
j=1

‖xkj −zk‖,
which will allow us to leverage on Lemma 4 and prove
the almost sure convergence of the method. We provide
such a bound for generic pointsx1, . . . , xm taken from sets
X1, . . . , Xm, respectively. For this, we strengthen Assump-
tion 3(b) on the setsXi by requiring that the interior ofX
is nonempty. This assumption has also been used in [8] to
ensure that the iteratesxki ∈ Xi have accumulation points
in X . This assumption and its role in such set dependent
iterates has been originally illuminated in [28].



Assumption 6:There exists a vector̄x ∈ int(X), i.e.,
there exists a scalarδ > 0 such that{z | ‖z − x̄‖ ≤ δ} ⊂ X .
By using Lemma 2(b) from [8] and boundedness of the
sets Xi, we establish an upper bound for

∑m
j=1

‖xj −
ΠX [ 1

m

∑m
ℓ=1

xℓ]‖ for arbitrary pointsxi ∈ Xi, as given in
the following lemma.

Lemma 5:Let Assumptions 3 and 6 hold. Then, for the
vector x̂ = 1

m

∑m
ℓ=1

xℓ, with xℓ ∈ Xℓ for all ℓ, we have
m∑

j=1

‖xj −ΠX [x̂]‖ ≤ m

(

1 +
mD

δ

)

max
j,ℓ∈N

‖xj − xℓ‖.

Under the interior-point assumption, we provide a re-
finement of Lemma 4, which will be the key relation for
establishing the convergence.

Lemma 6:Let Assumptions 1–6 hold, and letX =
∩mi=1Xi. Let the sequences{xki }, {θki }be generated accord-
ing to (5)–(7). Then, almost surely, we have for allx ∈ X ,
all k ≥ 0, and allℓ ∈ N ,

E[V (xk+1, θk+1;x) | Fk] ≤ V (xk, θk;x)

−
(

η2

m− 1
− ασk

)

max
j,s∈N

‖xkj − xks‖2

+mα2
k(2S

2 + ν2) +mα2−τ
k L2

θD
2

+ α2−σ
k G2m2

(

1 +
mD

δ

)2

− 2αk
(
f(zk, θ∗)− f(x, θ∗)

)

− γk

(

2κ− γkR
2
θ −

ατk + 2α2
kL

2
θ

γk

) m∑

i=1

‖θki − θ∗‖2

+mγ2kν
2
θ ,

whereσ > 0, while zk, yk and other variables and constants
are the same as in Lemma 4.

V. A LMOST SURE CONVERGENCE

We now prove the almost sure convergence of the se-
quences produced by the algorithm for suitably selected
stepsizesαk andγk. In particular, we impose the following
requirements on the stepsizes.

Assumption 7 (Stepsize sequences):The steplength se-
quences{αk} and{γk} satisfy the following conditions :

∞∑

k=0

γk = ∞,

∞∑

k=0

γ2k <∞,

∞∑

k=0

αk = ∞,

and for someτ ∈ (0, 2),

∞∑

k=0

α2−τ
k <∞, lim

k→∞

ατk
γk

= 0.

Example for the stepsizes:A set of choices satisfying the
above assumptions areγk = k−a1 andαk = k−a2 , where

• 1 > a2 > a1 >
1

2
;

• a2(2− τ) > 1 =⇒ τ < 2− 1/a2;
• a1 < τa2 =⇒ τ > a2/a1.

There is an infinite set of choices for(a1, a2, τ) that sat-
isfy these conditions; a concrete example is(a1, a2, τ) =
(0.51, 0.9, 0.75). Note that a2 > a1 implies that the
steplength sequence employed in computation decays faster
than the corresponding sequence of the learning updates.

To analyze the behavior of the sequences{θki }, i ∈ N , we
leverage the following super-martingale convergence result
from [29, Lemma 10, page 49].

Lemma 7:Let {vk} be a sequence of nonnegative random
variables adapted toσ-algebraF̃k and such that almost surely

E[vk+1 | F̃k] ≤ (1− uk)vk + ψk for all k ≥ 0,

where0 ≤ uk ≤ 1, ψk ≥ 0,
∑∞
k=0

uk = ∞,
∑∞

k=0
ψk <∞,

and limk→∞
ψk

uk
= 0. Then, almost surelylimk→∞ vk = 0.

Next, we establish a convergence property for theθ-
iterates of the algorithm.

Proposition 1 (Almost sure convergence of{θki }): Let
Assumptions 2 and 5 hold. Also, letγk satisfy the conditions
of Assumption 7. Let the iteratesθki be generated according
to (5)–(7). If θ∗ = argminθ∈Θ h(θ), then θki → θ∗ as
k → ∞ in an almost sure sense fori = 1, . . . , N.

Proof: We provide a brief proof. By Lemma 3 almost
surely for allk ≥ 0,

m∑

i=1

E
[
‖θk+1
i − θ∗‖2 | Fk

]

≤
(
1− 2γkκ+ γ2kR

2
θ

)
m∑

i=1

‖θki − θ∗‖2 +mγ2kν
2
θ .

Using Assumption 7, we can show that for allk ≥ k̂, γk ≤
κ
R2

θ

. Then, we have almost surely

m∑

i=1

E
[
‖θk+1
i − θ∗‖2 | Fk

]
≤ (1− γkκ)

m∑

i=1

‖θki − θ∗‖2

+mγ2kν
2
θ .

To invoke Lemma 7, we definevk =
∑m
i=1

‖θki − θ∗‖2.
Furthermore,uk = γkκ and ψk = mγ2kν

2
θ for all k ≥

0. We note that
∑

k≥0
uk = ∞,

∑∞
k=0

ψk < ∞, and
limk→∞

ψk

uk
= 0 by Assumption 7. Thus, Lemma 7 applies

to a shifted sequence{vk}k≥k̂ and we conclude thatvk → 0
almost surely.

Now, we analyze the behavior ofx-sequences, where we
leverage the following super-martingale convergence theo-
rem from [29, Lemma 11, page 50].

Lemma 8:Let vk, uk, ψk and δk be nonnegative ran-
dom variables adapted to aσ-algebraF̃k. If almost surely
∑∞

k=0
uk <∞,

∑∞
k=0

ψk <∞, and

E[vk+1 | F̃k] ≤ (1 + uk)vk − δk + ψk for all k ≥ 0,

then almost surelyVk is convergent and
∑∞

k=0
δk <∞.

As observed in Section III, under continuity of the func-
tionsfi(·, θ) (in view of Assumption 4) and the compactness
of eachXi, the problemminx∈∩m

i=1
Xi

∑m
i=1

fi(x, θ
∗) has a

solution. We denote the set of solutions byX∗. Therefore,
under Assumptions 3, 4, and 5, the problem (4) has a
nonempty solution set, given byX∗ × {θ∗}.

We have the following convergence result.
Proposition 2 (Almost sure convergence of{xki }): Let

Assumptions 1–7 hold, and letX = ∩mi=1Xi. Let the
sequences{xki }, {θki } be generated according to (5)–(7).



Then, the sequences{xkj } converge almost surely to the
same solution point, i.e., there exists a random vector
z∗ ∈ X∗ such that almost surely

lim
k→∞

xkj = z∗ for all j ∈ N .

Proof: In Lemma 4, we letx be an optimal solution
for the problemminx∈∩m

i=1
Xi

∑m
i=1

fi(x, θ
∗), i.e., x = x∗

with x∗ ∈ X∗. Thus, by Lemma 4 we obtain almost surely
for any x∗ ∈ X∗, all k ≥ 0, and allℓ ∈ N ,

E[V (xk+1, θk+1;x∗) | Fk]

≤ V (xk, θk;x∗)−
(

η2

m− 1
− ασk

)

max
j,s∈N

‖xkj − xks‖2

+mα2
k(2S

2 + ν2) +mα2−τ
k L2

θD
2

+ α2−σ
k G2m2

(

1 +
mD

δ

)2

− 2αk
(
f(zk, θ∗)− f(x∗, θ∗)

)

− γk

(

2κ− γkR
2
θ −

ατk + 2α2
kL

2
θ

γk

) m∑

i=1

‖θki − θ∗‖2

+mγ2kν
2
θ .

Next, sinceσ is an arbitrary positive scalar, we letσ = τ
whereτ ∈ (0, 2) is obtained from Assumption 7. Further-
more, letψk be defined as follows:

ψk , mα2
k(2S

2 + ν2) +mγ2kν
2
θ

+ α2−τ
k

(

mL2
θD

2 +G2m2

(

1 +
mD

δ

)2
)

.

Using the assumptions on the stepsizes we can show that
for all k ≥ k0, we have η2

m−1
− ατk ≥ ǫ and

2κ− γkR
2
θ −

ατk + 2α2
kL

2
θ

γk
≥ 0.

Therefore, almost surely for allx∗ ∈ X∗, all k ≥ k0, and
all ℓ ∈ N ,

E[V (xk+1, θk+1;x∗) | Fk] ≤ V (xk, θk;x∗)

− ǫ max
j,s∈N

‖xkj − xks‖2 − 2αk
(
f(zk, θ∗)− f(x∗, θ∗)

)
+ ψk.

Recall thatzk = ΠX [yk] with yk = 1

m

∑m
ℓ=1

xkℓ . In view of
optimality of x∗, we havef(zk, θ∗)− f(x∗, θ∗) ≥ 0 for all
k andx∗ ∈ X∗. Furthermore, the conditions on the stepsizes
in Assumption 7 Then, we verify that the conditions of
Lemma 8 are satisfied for the sequence{V (xk, θk;x∗)}k≥k0
for an arbitraryx∗ ∈ X∗. By Lemma 8 it follows that
V (xk, θk;x∗) is convergent almost surely for everyx∗ ∈ X∗,
and the following hold almost surely:

∞∑

k=0

max
j,s∈N

‖xkj − xks‖2 <∞, (17)

∞∑

k=0

αk
(
f(zk, θ∗)− f(x∗, θ∗)

)
<∞. (18)

By Proposition 1, we have thatθki → θ∗ al-
most surely for all i ∈ N . Since V (xk, θk;x∗) =
∑m

i=1

(
‖xki − x∗‖2 + ‖θki − θ∗‖2

)
and the assertion that

{V (xk, θk;x∗)} is convergent almost surely for everyx∗ ∈
X∗, we can conclude that
{∑m

i=1
‖xki − x∗‖2

}
is convergent a.s.∀ x∗ ∈ X∗. (19)

Since
∑∞
k=0

αk = ∞, the relation (18) implies that

lim inf
k→∞

f(zk, θ∗) = f∗, (20)

where f∗ is the optimal value of the problem, i.e.,f∗ =
f(x∗, θ∗) for anyx∗ ∈ X∗. The setX is bounded (since each
Xj is bounded by assumption), so the sequence{zk} ⊂ X
is also bounded. LetK denote the index set of a subsequence
along which the following holds almost surely:

lim
k→∞,k∈K

f(zk, θ∗) = lim inf
k→∞

f(zk, θ∗),

lim
k→∞,k∈K

zk = z∗ with z∗ ∈ X∗. (21)

We note thatK is a random sequence andz∗ is a randomly
specified vector fromX∗. Further, relation (17) implies
that all the sequences{xkj }, j = 1, . . . ,m, have the same
accumulation points (which exist since the setsXj are
bounded). Moreover, since{xkj } ⊂ Xj for each j ∈ N ,
it follows that the accumulation points of the sequences
{xkj }, j = 1, . . . ,m, must lie in the setX = ∩mj=1Xj .
Without loss of generality we may assume that the limit
limk→∞,k∈K x

k
j exists a.s. for eachj, so that in view of

the preceding discussion we have almost surely

lim
k→∞,k∈K

xkj = x̃, with x̃ ∈ X,

lim
k→∞,k∈K

yk = lim
k→∞,k∈K

1

m

m∑

ℓ=1

xkℓ = x̃.

Then, by the continuity of the projection operatorv 7→ ΠX [v]
and the factzk = ΠX [yk], we have almost surely

lim
k→∞,k∈K

zk = lim
k→∞,k∈K

ΠX [yk] = x̃.

The preceding relation and (21) yield̃x = z∗, implying that
for all j almost surely

lim
k→∞,k∈K

xkj = z∗, with z∗ ∈ X∗. (22)

Then, we can usex∗ = z∗ in relation (19) to conclude that
∑m

i=1
‖xki − z∗‖2 is convergent almost surely. This and the

subsequential convergence in (22) imply that
∑m

i=1
‖xki −

z∗‖2 → 0 almost surely.
Special cases:We note two special cases of relevance which
arise as a consequence of Propositions 1 and 2.
(i) Deterministic optimization and learning: First, note

that if the functionsfi(x, θ) and h(θ) are deterministic in
that the gradients∇xf(x, θ) and∇h(θ) may be evaluated at
arbitrary pointsx and θ, then the results of Propositions 1
and 2 show thatlimk→∞ θki = θ∗ and limk→∞ xki = x∗ for
somex∗ ∈ X∗ and for all i = 1, . . . ,m.
(ii) Correctly specified problems: Second, now suppose

that the parameterθ∗ is known to every agent, so there



is no misspecification. This case can be treated under al-
gorithm (5)–(7) where the iteratesθki are all fixed atθ∗.
Formally this can be done by setting the initial parameters
to the correct value, i.e.,θ0i = θ∗ for all i, and by using
the fact that the functionh(θ∗) is known, in which case the
algorithm reduces to: for alli = 1, . . . ,m andk ≥ 0,

vki :=

m∑

j=1

aj,ki xkj (23)

xk+1
i := ΠXi

(
vki − αk

(
∇xfi(v

k
i , θ

∗) + wki
))
. (24)

By letting Fi(x) = fi(x, θ
∗) we see that, by Proposition 2,

the iterates of the algorithm (23)–(24) converge almost surely
to a solution of problemminx∈∩m

i=1
Xi

∑m
i=1

Fi(x). Thus, the
algorithm solves this problem in a distributed fashion, where
both functions and the sets are distributed among the agents.
In particular, this result when reduced to a deterministic case
(i.e., noiseless gradient evaluations) extends the convergence
results established in [8] where two special cases have been
studied; namely, the case whenXi = X for all i, and the
case when the underlying graph is a complete graph and all
weights are equal (i.e.,aj,ki = 1

m
for all i, j andk ≥ 0).

Rate of convergence:While standard stochastic gradient
methods achieve the optimal rate of convergence in that
E[f(xk, θ

∗)] − E[f(x∗, θ∗)] ≤ O(1/k) in the correctly
specified regime, it remains to establish similar rates in
this instance particularly in the context of time-varying
connectivity graphs. Such rate bounds will aid in developing
practical implementations.

VI. CONCLUDING REMARKS

Traditionally, optimization algorithms have been devel-
oped under the premise of exact information regarding
functions and constraints. As systems grow in complexity,
an a priori knowledge of cost functions and efficiencies is
difficult to guarantee. One avenue lies in using observational
information to learn these functions while optimizing the
overall system. We consider precisely such a question in
a networked multi-agent regime where an agent does not
have access to the decisions of the entire collective, and
are furthermore locally constrained by their own feasibility
sets. Generally, in such regimes, distributed optimization can
be carried out by combining a local averaging step with a
projected gradient step. We overlay a learning step where
agents update their belief regarding the misspecified param-
eter and examine the associated schemes in this regime.
It is shown that when agents are characterized by merely
convex, albeit misspecified, problems under general time-
varying graphs, the resulting schemes produce sequences that
converge almost surely to the set of optimal solutions and
the true parameter, respectively.
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