
ar
X

iv
:1

50
3.

06
88

3v
1

 [m
at

h.
O

C
]

24
 M

ar
 2

01
5

Fast, Accurate Second Order Methods for Network Optimization

Rasul Tutunov, Haitham Bou Ammar, and Ali Jadbabaie

Abstract— Dual descent methods are commonly used to solve
network flow optimization problems, since their implementation
can be distributed over the network. These algorithms, however,
often exhibit slow convergence rates. Approximate Newton
methods which compute descent directions locally have been
proposed as alternatives to accelerate the convergence rates of
conventional dual descent. The effectiveness of these methods, is
limited by the accuracy of such approximations. In this paper,
we propose an efficient and accurate distributed second order
method for network flow problems. The proposed approach
utilizes the sparsity pattern of the dual Hessian to approximate
the the Newton direction using a novel distributed solver for
symmetric diagonally dominant linear equations. Our solver is
based on a distributed implementation of a recent parallel solver
of Spielman and Peng (2014). We analyze the properties of
the proposed algorithm and show that, similar to conventional
Newton methods, superlinear convergence within a neighbor-
hood of the optimal value is attained. We finally demonstrate
the effectiveness of the approach in a set of experiments on
randomly generated networks.

I. INTRODUCTION

Conventional methods for distributed network optimiza-
tion are based on sub-gradient descent in either the primal
or dual domains, see [8], [9], [10], [13]. For a large class
of problems, these techniques yield iterations that can be
implemented in a distributed fashion by only using local
information. Their applicability, however, is limited by in-
creasingly slow convergence rates. Second order Newton
methods [3], [4] are known to overcome this limitation
leading to improved convergence rates.

Unfortunately, computingexactNewton directions based
only on local information is challenging. Specifically, to
determine the Newton direction, the inverse of the dual Hes-
sian is needed. Determining this inverse, however, requires
global information. Consequently, authors in [5], [6] pro-
posed approximate algorithms for determining these Newton
iterates in a distributed fashion. Accelerated Dual Descent
(ADD) [6], for instance, exploits the fact that the dual Hes-
sian is the weighted Laplacian of the network and performs
a truncated Neumann expansion of the inverse to determine
a local approximate to the exact direction. ADD allows for a
tradeoff between accurate Hessian approximations and com-
munication costs through the N-Hop design, where increased

This research was supported in parts by the AFOSR Complex Networks
Program and ONR Basic Research Challenge Program in Decentralized and
Online

R. Tutunov is with the Computer and Information Science Department,
University of Pennsylvaniatutunov@seas.upenn.edu

H. Bou Ammar is with the Computer and Information Science Depart-
ment, University of Pennsylvaniahaithamb@seas.upenn.edu

A. Jadbabaie is with the Department of Electrical Engineering, University
of Pennsylvaniajadbabai@seas.upenn.edu

N allows for more accurate inverse approximations arriving
at increased cost, and lower values of N reduce accuracy
but improve computational times. Though successful, the
effectiveness of these approaches highly depend on the
accuracy of the truncated Hessian inverse which is used to
approximate the Newton direction. As shown in Section VI,
the approximated iterate can resemble high variation to the
real Newton direction, decreasing the applicability of these
techniques.

Exploiting the sparsity pattern of the dual Hessian, in
this paper we tackle the above problem and propose a
Newton method for network optimization that is both faster
and more accurate. Using recently-developed solvers for
symmetric diagonally dominant (SDDM) linear equations,
we approximate the Newton direction up-to any arbitrary
precisionǫ > 0. The solver is a distributed implementation
of [11] constructing what is known as an inverse chain. We
analyze the properties of the proposed algorithm and show
that, similar to conventional Newton methods, superlinear
convergence within a neighborhood of the optimal value
is attained. We finally demonstrate the effectiveness of the
approach in a set of experiments on randomly generated
networks. Namely, we show that our method is capable of
significantly outperforming state-of-the-art methods in both
the convergence speeds and in the accuracy of approximating
the Newton direction.

The remainder of the paper is organized as follows.
Section II draws upon background material needed for the
remainder of the paper. Section III defines the network
flow optimization problem targeted in this paper. Section IV
details our proposed distributed solver for SDDM linear sys-
tems. Section V introduces the approximate Newton method
and rigorously analyzes its theoretical guarantees. Section VI
presents the experimental results. Finally, Section VII con-
cludes pointing-out interesting directions for future research.

II. BACKGROUND

A. SDDM Linear Systems

To determine the Newton direction, we need to solve a
symmetric diagonally dominant system of linear equations,
defined as:

M0x = b0 (1)

whereM0 is a Symmetric Diagonally Dominant M-Matrix
(SDDM). Namely,M0 is symmetric positive definite with
non-positive off diagonal elements, such that for alli =
1, 2, . . . , n:

[M0]ii ≥ −
n
∑

j=1,j 6=i

[M0]ij

http://arxiv.org/abs/1503.06883v1

The system of Equations in 1 can be interpreted as repre-
senting an undirected weighted graph,G, with M0 being its
Laplacian. Namely,G = (N , E ,W), with N representing
the set of nodes,E denoting the edges, andW representing
the weighted graph adjacency. Nodesvi andvj are connected
with an edgee = (i, j) iff Wij > 0, where:

Wij = [M0]ii (if i = j), or Wij = − [M0]ij , otherwise.

Following [11], we seekǫ-approximate solutions tox⋆, being
the exact solution ofM0x = b0, defined as:

Definition 1: Let x⋆ ∈ R
n be the solution ofMx = b0.

A vector x̃ ∈ R
n is called anǫ− approximate solution, if:

||x⋆ − x̃||M0
≤ ǫ ||x⋆||M0

, where||u||2M0
= uTM0u.

(2)
The R-hop neighbourhood of nodevk is defined as

Nr (vk) = {v ∈ N : dist(vk,v) ≤ r}. We also make
use of the diameter of a graph,G, defined as diam(G) =
maxvi,vj∈N dist(vi,vj).

Definition 2: A matrix A ∈ R
n×n is said to have a

sparsity pattern corresponding to the R-hop neighborhood
if Aij = 0 for all i = 1, . . . , n and for all j such that
vj /∈ Nr (vi).

We will denote the spectral radius of a matrixA by
ρ (A) = max |λi|, whereλi represents an eigenvalue of the
matrix A. Furthermore, we will make use of the condition
number1, κ (A) of a matrix A defined asκ =

∣

∣

∣

λmax(A)
λmin(A)

∣

∣

∣
.

In [?] it is shown that the condition number of the graph
Laplacian is at mostO

(

n3Wmax
Wmin

)

, whereWmax andWmin

represent the largest and the smallest edge weights inG. Fi-
nally, the condition number of a sub-matrix of the Laplacian
is at mostO

(

n4Wmax
Wmin

)

, see [11].

B. Standard Splittings & Approximations

For determining the Newton direction, we propose a fast
distributed solver for symmetric diagonally dominant linear
equations. Our approach is based on a distributed imple-
mentation of the parallel solver of Spielman and Peng [11].
Before detailing the parallel solver, however, we next provide
basic notions and notations required.

Definition 3: The standard splitting of a symmetric matrix
M0 is:

M0 = D0 −A0. (3)

Here,D0 is a diagonal matrix such that[D0]ii = [M0]ii
for i = 1, 2, . . . , n, and A0 representing a non-negative
symmetric matrix such that[A0]ij = − [M0]ij if i 6= j,
and [A0]ii = 0.
We also define the Loewner ordering:

Definition 4: Let S(n) be the space ofn × n-symmetric
matrices. The Loewner ordering� is a partial order on
S(n) such thatY � X if and only if X − Y is positive
semidefinite.

Finally, we define the “≈α” operation used in the sequel
to come as:

1Please note that in the case of the graph Laplacian, the condition number
is defined as the ratio of the largest to the smallest nonzero eigenvalues.

Definition 5: Let X andY be positive semidefinite sym-
metric matrices. ThenX ≈α Y if and only iff

e−αX � Y � eαX (4)

with A � B meaningB −A is positive semidefinite.
Based on the above definitions, the following lemma

represents the basic characteristics of the≈α operator:
Lemma 1: [11] Let X,Y ,Z and,Q be symmetric pos-

itive semi definite matrices. Then

(1) If X ≈α Y , then X + Z ≈α Y + Z, (2) If
X ≈α Y andZ ≈α Q, thenX +Z ≈α Y +Q

(3) If X ≈α Y andZ ≈α Q, thenX+Z ≈α Y +Q,
(4) If X ≈α1 Y andY ≈α2 Z, thenX ≈α1+α2 Z

(5) If X, andY are non singular andX ≈α Y , then
X−1 ≈α Y −1, (6) If X ≈α Y andV is a matrix,
thenV TXV ≈α V TY V

The next lemma shows that good approximations ofM−1
0

guarantee good approximated solutions ofM0x = b0.
Lemma 2:Let Z0 ≈ǫ M−1

0 , and x̃ = Z0b0. Then x̃ is
√

2ǫ(eǫ − 1) approximate solution ofM0x = b0.
Proof: The proof can be found in the appendix.

C. The Parallel SDDM Solver

The parallel SDDM solver proposed in [11] is a paral-
lelized technique for solving the problem of Section II-A. It
makes use of inverse approximated chains (see Definition 6)
to determinex̃ and can be split in two steps. In the first
step, denoted as Algorithm 1, a “crude” approximation,x0,
of x̃ is returned.x0 is driven to theǫ-close solution,x̃,
using Richardson Preconditioning in Algorithm 2. Before
we proceed, we start with the following two Lemmas which
enable the definition of inverse chain approximation.

Lemma 3: [11] If M = D−A is an SDDM matrix, with
D being positive diagonal, andA denoting a non-negative
symmetric matrix, thenD −AD−1A is also SDDM.

Lemma 4: [11] Let M = D −A be an SDDM matrix,
whereD is positive diagonal and,A a symmetric matrix.
Then

(D −A)−1 =
1

2

[

D−1 +
(

I +D−1A
) (

D −AD−1A
)−1

(5)
(

I +AD−1
)

]

.

Given the results in Lemmas 3 and 4, we now can consider
inverse approximated chains ofM0:

Definition 6: Let C = {M0,M1, . . . ,Md} be a collec-
tion of SDDM matrices such thatMi = Di −Ai, with Di

a positive diagonal matrix, andAi denoting a non-negative
symmetric matrix. ThenC is an inverse approximated chain if
there exists positive real numbersǫ0, ǫ1, . . . , ǫd such that: (1)
For i = 1, . . . , d: Di −Ai ≈ei−1 Di−1 −Ai−1D

−1
i−1Ai−1,

(2) Di ≈ǫi−1 Di−1, and (3)Dd ≈ǫd Dd −Ad.
The quality of the “crude” solution returned by Algo-

rithm 1 is quantified in the following lemma:
Lemma 5: [11] Let {M0,M1, . . . ,Md} be the inverse

approximated chain and denoteZ0 be the operator defined by

Algorithm 1 ParallelRSolve(M0,M1, . . . ,Md, b0)

1: Input : Inverse approximated chain,
{M0,M1, . . . ,Md}, andb0 being

2: Output : The “crude” approximation,x0, of x⋆

3: for i = 1 to d do
4: bi =

(

I +Ai−1D
−1
i−1

)

bi−1

5: end for
6: xd = D−1

d bd
7: for i = d− 1 to 0 do
8: xi =

1
2

[

D−1
i bi +

(

I +D−1
i Ai

)

xi+1

]

9: end for
10: return x0

ParallelRSolve(M0,M1, . . . ,Md, b0), namely,x0 = Z0b0.
Then

Z0 ≈∑
d
i=0 ǫi

M−1
0 (6)

Algorithm 1 returns a “crude” solution toM0x = b. To
obtain arbitrary close solutions, Spielmanet. al [11] intro-
duced thepreconditioned Richardson iterative scheme, sum-
marized in Algorithm 2. Following their analysis, Lemma 6
provides the iteration count needed by Algorithm 2 to arrive
at x̃.

Algorithm 2 ParallelESolve(M0,M1, . . . ,Md, b0, ǫ)

1: Input : Inverse approximated chain{M0,M1, . . . ,Md},
b0, andǫ.

2: Output : ǫ close approximation,̃x, of x∗

3: Initialize : y0 = 0;
χ = ParallelRSolve(M0,M1, . . . ,Md, b0) (i.e., Algo-
rithm 1)

4: for k = 1 to q do
5: u

(1)
k = M0yk−1

6: u
(2)
k = ParallelRSolve

(

M0,M1, . . . ,Md,u
(1)
k

)

7: yk = yk−1 − u
(2)
k + χ

8: end for
9: x̃ = yq

10: return x̃

Lemma 6: [11] Let {M0,M1 . . .Md} be an inverse
approximated chain such that

∑d
i=1 ǫi < 1

3 ln 2. Then
ParallelESolve(M0,M1, . . . ,Md, b0, ǫ) arrives at anǫ close
solution ofx⋆ in q = O

(

log 1
ǫ

)

iterations.

III. NETWORK FLOW OPTIMIZATION

We consider a network represented by a directed graph
G = (N , E) with node setN = {1, . . . , N} and edge
set E = {1, . . . , E}. The flow vector is denoted byx =
[

x(e)
]

e∈E , with x(e) representing the flow on edgee. The
flow conservation conditions at nodes can be compactly
represented as

Ax = b,

whereA is the N × E node-edge incidence matrix ofG
defined as

Ai,j =







1 if edgej leaves nodei
−1 if edgej enters nodei
0 otherwise,

and the vectorb ∈ 1
⊥ denotes the external source, i.e.,

b(i) > 0 (or b(i) < 0) indicatesb(i) units of external flow
enters (or leaves) nodei. A cost functionΦe : R → R

is associated with each edgee. Namely,Φe(x
(e)) denotes

the cost on edgee as a function of the edge flowx(e).
We assume that the cost functionsΦe are strictly convex
and twice differentiable. Consequently, the minimum cost
networks optimization problem can be written as

min
x

E
∑

e=1

Φe(x
(e)) (7)

s.t.Ax = b

Our goal is to investigate Newton type methods for solving
the problem in 7 in a distributed fashion. Before diving
into these details, however, we next present basic ingredients
needed for the remainder of the paper.

A. Dual Subgradient Method

The dual subgradient method optimizes the problem in
Equation 7 by descending in the dual domain. The La-
grangian,l : RE × R

N → R is given by

l(x,λ) = −
E
∑

e=1

Φe(x
(e)) + λT(Ax− b).

The dual functionq(λ) is then derived as

q(λ) = inf
x∈RE

l(x,λ)

= inf
x∈RE

(

−
E
∑

e=1

Φe(x
(e)) + λTAx

)

− λTb

=
E
∑

e=1

inf
x(e)∈R

(

−Φe(x
(e)) +

(

λTA
)(e)

x(e)
)

− λTb.

Hence, it can be clearly seen that the evaluation of the dual
functionq(λ) decomposes into E one-dimensional optimiza-
tion problems. We assume that each of these optimization
problems have an optimal solution, which is unique by the
strict convexity of the functionsΦe. Denoting the solutions
by x(e)(λ) and using the first order optimality conditions, it
can be seen that for each edge, e,x(e)(λ) is given by2

x(e)(λ) = [Φ̇e]
−1
(

λ(i) − λ(j)
)

, (8)

where i ∈ N and j ∈ N denote the source and destining
nodes of edgee = (i, j), respectively (see [6] for details).
Therefore, for an edgee, the evaluation ofx(e)(λ) can be
performed based on local information about the edge’s cost
function and the dual variables of the incident nodes,i and
j.

2Note that if the dual is not continuously differentiable, the a generalized
Hessian can be used.

The dual problem is defined asmaxλ∈RN q(λ). Since the
dual function is convex, the optimization problem can be
solved using gradient descent according to

λk+1 = λk − αkgk for all k ≥ 0, (9)

with k being the iteration index, andgk = g (λk) = ∇q(λk)
denoting the gradient of the dual function evaluated atλ =
λk. Importantly, the computation of the gradient can be
performed asgk = Ax (λk)− b, with x(λk) being a vector
composed ofx(e)(λk) as determined by Equation 8. Further,
due to the sparsity pattern of the incidence matrixA, theith

element,g(i)k , of the gradientgk can be computed as

g
(i)
k =

∑

e=(i,j)

x(e)(λk)−
∑

e=(j,i)

x(e)(λk)− b(i). (10)

Clearly, the algorithm in Equation 9 can be implemented
in a distributed fashion, where each node,i, maintains
information about its dual,λ(i)

k , and primal,x(e)(λk), iterates
of the outgoing edgese = (i, j). Gradient components can
then be evaluated as per 10 using only local information.
Dual variables can then be updated using 9. Given the
updated dual variables, the primal variables can be computed
using 8.

Although the distributed implementation avoids the cost
and fragility of collecting all information at centralizedlo-
cation, practical applicability of gradient descent is hindered
by slow convergence rates. This motivates the consideration
of Newton methods discussed next.

B. Newton’s Method for Dual Descent

Newton’s method is a descent algorithm along a scaled
version of the gradient. Its iterates are typically given by

λk+1 = λk + αkdk for all k ≥ 0, (11)

with dk being the Newton direction at iterationk, andαk

denoting the step size. The Newton direction satisfies

Hkdk = −gk, (12)

with Hk = H(λk) = ∇2q(λk) being the Hessian of the
dual function at the current iterationk.

1) Properties of the Dual and Assumptions:Here, we
detail some assumptions needed by our approach. We also
derive essential Lemmas quantifying properties of the dual
Hessian.

Assumption 1:The graph,G, is connected, non-bipartite
and has algebraic connectivity lower bound by a constantω.

Assumption 2:The cost functions,Φe(·), in Equation 7
are

1) twice continuously differentiable satisfying

γ ≤ Φ̈e(·) ≤ Γ,

with γ andΓ are constants; and
2) Lipschitz Hessian invertible for all edgese ∈ E

∣

∣

∣

∣

1

Φe(x)
− 1

Φe(x̂)

∣

∣

∣

∣

≤ δ |x− x̂| .

The following two lemmas [5], [6] quantify essential
properties of the dual Hessian which we exploit through our
algorithm to determine the approximate Newton direction.

Lemma 7:The dual objectiveq(λ) = λT(Ax(λ) − b)−
∑

eΦe(x(λ)) abides by the following two properties [?]:
1) The dual Hessian,H(λ), is a weighted Laplacian of

G:

H(λ) = ∇2q(λ) = A
[

∇2f(x(λ))
]−1

AT.

2) The dual HessianH(λ) is Lispshitz continuous with
respect to the Laplacian norm (i.e.,|| · ||L) whereL is
the unweighted laplacian satisfyingL = AAT with A

being the incidence matrix ofG. Namely,∀λ, λ̄:

||H(λ̄)−H(λ)||L ≤ B||λ̄ − λ||L,
with B = µn(L)δ

γ
√

µ2(L)
whereµn(L) and µ2(L) denote

the largest and second smallest eigenvalues of the
LaplacianL.

Proof: See Appendix.
The following lemma follows from the above and is needed
in the analysis later:

Lemma 8: If the dual HessianH(λ) is Lipschitz continu-
ous with respect to the Laplacian norm||·||L (i.e., Lemma 7),
then for anyλ and λ̂ we have

||∇q(λ̂)−∇q(λ)−H(λ)(λ̂− λ)||L ≤ B

2
||λ̂ − λ||2L.

Proof: See Appendix.
As detailed in [6], the exact computation of the inverse

of the Hessian needed for determining the Newton direction
can not be attained exactly in a distributed fashion. Authors
in [5], [6] proposed approximation techniques for computing
this direction. The effectiveness of these algorithms, how-
ever, highly depend on the accuracy of such an approxima-
tion. In this work, we propose a distributed approximator for
the Newton direction capable of acquiringǫ-close solutions
for any arbitraryǫ. Our results show that this new algorithm
is capable of significantly surpassing others in literature
where its performance accurately traces that of the standard
centralized Newton approach. Next, we detail our distributed
SDD solver being at the core of our approximator.

IV. SDD DISTRIBUTED SOLVERS

We propose a distributed solver for SDDM systems which
can be used to determine an approximation to the Newton
direction up to any arbitraryǫ > 0 (see Section V). Our
method is based on a distributed implementation of the
parallel solver of Section II-C. Similar to [11], we first
introduce an approximate inverse chain which can be com-
puted in a distributed fashion. This leads us to a distributed
version of the “crude” solver (i.e., Algorithm II-C). Contrary
to [11], however, we then generalize the “crude” distributed
solver to acquireexactsolutions to an SDDM system. For a
generic SDDM system of linear equations, our main results
for determining anǫ-close solution (i.e.,||x̃ − x∗||M0 ≤
ǫ||x∗||M0) is summarized by3:

3The complete proofs can be found at https://db.tt/MbBW15Zx

Lemma 9:For the system of equations represented by
M0x = b, there is a distributed algorithm that uses only
R-Hop information and computes theǫ-close solution,x̃,
in T (n, ǫ) = O

((

βκ(M0)
R

+ βdmaxR
)

log
(

1
ǫ

)

)

time steps,

with κ(M0) being the condition number ofM0, β =

min
{

n,
dR−1

max −1
dmax−1

}

representing the upper bound on the size
of the R-Hop neighborhood,dmax the maximal degree ofG,
andǫ ∈ (0, 1

2] being the precision parameter.
Analogous to [11], we will develop and analyze two

distributed solvers for SDDM systems (i.e., “crude” R-Hop
solver and “exact” R-Hop solver) leading to the proof of the
above lemma.

A. “Crude” R-Hop SDDM Solver

Algorithm 3 presents the “crude” R-Hop solver for SDDM
systems. Each node receives thekth row of M0 , kth

component,[b0]k of b0, the length of the inverse chain,d,
and the local communication bound4 R as inputs, and outputs
the kth component of the “rude” approximation ofx⋆.

Analysis of Algorithm 3 The following Lemma shows
that RDistRSolve computes thekth component of the
“crude” approximation ofx⋆ and provides the algorithm’s
time complexity

Lemma 10:Let M0 = D0−A0 be the standard splitting
and letZ ′

0 be the operator defined by RDistRSolve, namely,
x0 = Z ′

0b0. Then,Z ′
0 ≈ǫd M−1

0 . RDistRSolve requires

O
(

2d

R
β + βRdmax

)

, whereβ = min

{

n,
(dR+1

max −1)
(dmax−1)

}

, to

arrive atx0.
Proof: See Appendix.

B. “Exact” Distributed R-Hop SDDM Solver

Next, we provide the exact R-Hop solver. Similar to
RDistRSolve, each nodevk receives thekth row M0, [b0]k,
d, R, and a precision parameterǫ as inputs, and outputs the
kth component of theǫ close approximation of vectorx⋆.

Analysis of Algorithm 6: The following Lemma shows
that EDistRSolve computes thekth component of theǫ
close approximation tox⋆ and provides the time complexity
analysis.

Lemma 11:Let M0 = D0 − A0 be the standard split-
ting. Further, letǫd < 1/3 ln 2. Then Algorithm 6 requires
O
(

log 1
ǫ

)

iterations to return thekth component of theǫ
close approximation tox⋆.

Proof: See Appendix.
Next, the following Lemma provides the time complexity
analysis of EDistRSolve.

Lemma 12:Let M0 = D0 − A0 be the standard split-
ting and let ǫd < 1/3 ln 2, then EDistRSolve requires
O ((2d/Rβ + βRdmax) log (1/ǫ)) time steps. Moreover, for
each nodevk, EDistRSolve only uses information from the
R-hop neighbors.

Proof: See Appendix.
The complexity of the proposed algorithms depend on the
length of the inverse approximated chain,d. Here, we provide

4For simplicity, R is assumed to be in the order of powers of 2, i.e.,
R = 2ρ.

Algorithm 3 RDistRSolve({[M0]k1, . . . , [M0]kn}, [b0]k, d, R)

Part One:
{[A0D

−1
0]k1, . . . , [A0D

−1
0]kn} =

{

[A0]k1

[D0]11
, . . . , [A0]kn

[D0]nn

}

,

{[D−1
0 A0]k1, . . . , [D

−1
0 A0]kn} = { [A0]k1

[D0]kk
, . . . , [A0]kn

[D0]kk
}

[C0]k1, . . . , [C0]kn = Comp0 ([M0]k1, . . . , [M0]kn, R),
[C1]k1, . . . , [C1]kn = Comp1 ([M0]k1, . . . , [M0]kn, R)

Part Two:
for i = 1 to d do

if i− 1 < ρ
[u

(i−1)
1]k = [A0D

−1
0 bi−1]k

for j = 2 to 2i−1 do
[u

(i−1)
j]k = [A0D

−1
0 u

(i−1)
j−1]k

end for
[bi]k = [bi−1]k + [u

(i−1)
2i−1]k

if i− 1 ≥ ρ
li−1 = 2i−1/R

[u
(i−1)
1]k = [C0bi−1]k

for j = 2 to li−1 do
[u

(i−1)
j]k = [C0u

(i−1)
j−1]k

end for
[bi]k = [bi−1]k + [u

(i−1)
li−1

]k
end for

Part Three:
[xd]k = [bd]k/[D0]kk

for i = d− 1 to 1 do
if i < ρ
[η

(i+1)
1]k = [D−1

0 A0xi+1]k
for j = 2 to 2i do
[η

(i+1)
j]k = [D−1

0 A0η
(i+1)
j−1]k

end for
[xi]k = 1

2

[

[bi]k
[D0]kk

+ [xi+1]k + [ηi+1
2i]k

]

if i ≥ ρ
li = 2i/R

[η
(i+1)
1]k = [C1xi+1]k

for j = 2 to li do
[η

(i+1)
j]k = [C1η

(i+1)
j−1]k

end for
[xi]k = 1

2

[

[bi]k
[D0]kk

+ [xi+1]k + [ηi+1
li

]k

]

end for
[x0]k = 1

2

[

[b0]k
[D0]kk

+ [x1]k + [D−1
0 A0x1]k

]

return [x0]k

an analysis to determine the value ofd which guarantees
ǫd < 1

3 ln 2 in C = {A0,D0,A1,D1, . . . ,Ad,Dd}. These
results are summarized the following lemma

Lemma 13:Let M0 = D0 − A0 be the
standard splitting and letκ denote the condition
number of M0. Consider the inverse approximated
chain C = {A0,D0,A1,D1, . . . ,Ad,Dd} with

length d = ⌈log
(

2 ln
(

3√2
3√2−1

)

κ
)

⌉, then D0 ≈ǫd

D0 −D0

(

D−1
0 A0

)2d

, with ǫd < 1/3 ln 2.

Algorithm 4 Comp0 ([M0]k1, . . . , [M0]kn, R)

for l = 1 to R− 1 do
for j s.t.vj ∈ Nl+1(vk) do
[

(A0D
−1
0)l+1

]

kj
=

∑

r:vr∈N1(vj)

[D0]rr
[D0]jj

[(A0D
−1
0)l]kr [A0D

−1
0]jr

end for
end for
return c0 = {[(A0D

−1
0)R]k1, . . . , [(A0D

−1
0)R]kn}

Algorithm 5 Comp1([M0]k1, . . . , [M0]kn, R)

for l = 1 to R− 1 do
for j s.t.vj ∈ Nl+1(vk) do
[

(D−1
0 A0)

l+1
]

kj
=

∑

r:vr∈N1(vj)

[D0]jj
[D0]rr

[(D−1
0 A0)

l]kr[D
−1
0 A0]jr

end for
end for
return c1 = {[(D−1

0 A0)
R]k1, . . . , [(D

−1
0 A0)

R]kn}

Proof: See Appendix.
Combining the above results finalizes the proof of

Lemma 9. The usage of this distributed solver to approximate
the Newton direction, as detailed in the next section, en-
ables fast and accurate distributed Newton methods capable
of approximating centralized Newton directions up to any
arbitraryǫ.

V. FAST & ACCURATE DISTRIBUTED NEWTON
METHOD

Our approach only requires R-Hop communication for the
distributed approximation of the Newton direction. Given
the results of Lemma 7, we can determine the approximate
Newton direction by solving a system of linear equations
represented by an SDD matrix5 according to Section IV,
with M0 = Hk = H(λk).

Formally, we consider the following iteration scheme:

λk+1 = λk + αkd̃k, (13)

with k representing the iteration number,αk the step-size,
and d̃k denoting the approximate Newton direction. We

5Due to space constraints, we refrain some of the proofs to theappendix.

Algorithm 6 EDistRSolve({[M0]k1, . . . , [M0]kn}, [b0]k, d, R, ǫ)

Initialize : [y0]k = 0, and [χ]k =
RDistRSolve({[M0]k1, . . . , [M0]kn}, [b0]k, d, R)
for t = 1 to q do

[u
(1)
t]k = [D0]kk[yt−1]k −∑j:vj∈N1(vk)

[A0]kj [yt−1]j

[u
(2)
t]k = RDistRSolve({[M0]k1, . . . , [M0]kn}, [u(1)

t]k, d, R)

[yt]k = [yt−1]k − [u
(2)
t]k + [χ]k

end forend for
return [x̃]k = [yq]k

determined̃k by solvingHkdk = −gk using Algorithm 6. It
is easy to see that our approximation of the Newton direction,
d̃k, satisfies

||d̃k − dk||Hk
≤ ǫ||dk||Hk

with d̃k = −Zkgk,

whereZk approximatesH†
k according to the routine of Al-

gorithm 6. The accuracy of this approximation is quantified
in the following Lemma

Lemma 14:Let Hk = H(λk) be the Hessian of the dual
function, then for any arbitraryǫ > 0 we have

e−ǫ2vTH
†
kv ≤ vTZkv ≤ eǫ

2

vTH
†
kv, ∀v ∈ 1

⊥.
Proof: See Appendix.

Given such an accurate approximation, next we analyze
the iteration scheme of our proposed method showing that
similar to standard Newton methods, we achieve superlinear
convergence within a neighborhood of the optimal value. We
start by analyzing the change in the Laplacian norm of the
gradient between two successive iterations

Lemma 15:Consider the following iteration scheme
λk+1 = λk +αkd̃k with αk ∈ (0, 1], then, for any arbitrary
ǫ > 0, the Laplacian norm of the gradient,||gk+1||L, follows:

||gk+1||L ≤
[

1− αk + αkǫ
µn(L)
µ2(L)

√

Γ

γ

]

||gk||L (14)

+
α2
kBΓ2(1 + ǫ)2

2µ2
2(L)

||gk||2L,

with µn(L) andµ2(L) being the largest and second smallest
eigenvalues ofL, Γ and γ denoting the upper and lower
bounds on the dual’s Hessian, andB ∈ R is defined in
Lemma 8.

Proof: See Appendix.
At this stage, we are ready to present the main results quan-
tifying the convergence phases exhibited by our approach:

Theorem 1:Let γ, Γ, B be the constants defined in
Assumption 2 and Lemma 7,µn(L) andµ2(L) representing
the largest and second smallest eigenvalues of the normalized

laplacianL, ǫ ∈
(

0, µ2(L
µn(L)

√

Γ
γ

)

the precision parameter for
the SDDM (Section IV) solver, and letting the optimal step-

size parameterα∗ = e−ǫ2

(1+ǫ)2

(

γ
Γ

µ2(L)
µn(L)

)2

. Then the proposed

algorithm given by theλk+1 = λk + α∗d̃k exhibits the
following three phases of convergence:

1) Strict Decreases Phase:While ||gk||L ≥ η1:

q(λk+1)− q(λk) ≤ −1

2

e−2ǫ2

(1 + ǫ)2
γ3

Γ2

µ2
2(L)

µ4
n(L)

η21 .

2) Quadratic Decrease Phase:While η0 ≤ ||gk||Lη1:

||gk+1||L ≤ 1

η1
||gk||2L.

3) Terminal Phase: When ||gk||L ≤ η0:

||gk+1||L ≤

√

√

√

√

[

1− α∗ + α∗ǫ
µn(L)
µ2(L)

√

Γ

γ

]

||gk||L,

whereη0 = ξ(1−ξ)
ζ

andη1 = 1−ξ
ζ

, with

ξ =

√

√

√

√

[

1− α∗ + α∗ǫ
µn(L)
µ2(L)

√

Γ

γ

]

(15)

ζ =
B(α∗Γ(1 + ǫ))2

2µ2
2(L)

Proof: We will proof the above theorem by handling
each of the cases separately. We start by considering the case
when ||gk||L > η1 (i.e., Strict Decrease Phase). We have:

q(λk+1) = q(λk) + gT

k (λk+1 − λk)

+
1

2
(λk+1 − λk)

TH(z)(λk+1 − λk)

= q(λk) + αkg
T

k d̃k +
α2

k

2
d̃T

kH(z)d̃k

≤ q(λk) + αkg
T

k d̃k +
α2
k

2γ
d̃T

kLd̃k,

where the last steps holds sinceH(·) � 1
γ
L. Noticing

that ||d̃k||2L ≤ Γ2(1+ǫ)2

µ2
2(L)

||gk||2L (see Appendix), the only

remaining step needed is to evaluategT

k d̃k. Knowing that
d̃k = −Zkgk, we recognize

gT

k d̃k = −gT

kZkgk ≤ e−ǫ2gT

kH
†
kgk (Lemma 14)

≤ − e−ǫ2

µn(Hk)
gT

k gk ≤ − e−ǫ

µn(L)
gT

k gk

≤ − e−ǫ2γ

µn(L)
gT

kLgk
µn(L)

=
e−ǫ2γ

µ2
n(L)

||gk||2L,

where the last step follows from the fact that∀v ∈ R
n :

vTv ≥ vTLv
µn(L) . Therefore, we can write

q(λk+1)− q(λk) ≤ −
[

αk

e−ǫ2γ

µ2
n(L)

− α2
k

Γ2(1 + ǫ)2

2γµ2
2(L)

]

||gk||2L.

It is easy to see thatαk = α∗ = e−ǫ2

(1+ǫ)2

(

γ
Γ

µ2(L)
µn(L)

)2

minimizes the right-hand-side of the above equation. Using
||gk||L gives the constant decrement in the dual function
between two successive iterations as

q(λk+1)− q(λk) ≤ −1

2

e−2ǫ2

(1 + ǫ)2
γ3

Γ2

µ2
2(L)

µ4
n(L)

η21 .

Considering the case whenη0 ≤ ||gk||2Lη1 (i.e., Quadratic
Decrease Phase), Equation 14 can be rewritten as

||gk+1||L ≤ ξ2||gk||L + ζ||gk||2L,

with ξ andζ defined as in Equation 15. Further, noticing that
since||gk||L ≥ η0 then||gk||L ≤ 1

η0
||gk||2L = ζ

ξ(1−ξ) ||gk||2L.
Consequently the quadratic decrease phase is finalized by

||gk+1||L ≤ ζ

(

ξ

1− ξ
+ 1

)

||gk||2L =
ζ

1− ξ
||gk||2L

=
1

η1
||gk||2L.

Finally, we handle the case where||gk||L ≤ η0 (i.e.,
Terminal Phase). Since ||gk||2L ≤ η0||gk||L, it is easy to
see that

||gk+1||L ≤ (ξ2 + ζη0)||gk||L = (ξ2 + ξ(1− ξ))||gk||L

ξ||gk||L =

√

√

√

√

[

1− α∗ + α∗ǫ
µn(L)
µ2(L)

√

Γ

γ

]

||gk||L.

Having proved the three convergence phases of our algo-
rithm, we next analyze the number of iterations needed by
each phase. These results are summarized in the following
lemma:

Lemma 16:Consider the algorithm given by the following
iteration protocol:λk+1 = λk+1+α∗d̃k. Letλ0 be the initial
value of the dual variable, andq∗ be the optimal value of
the dual function. Then, the number of iterations needed by
each of the three phases satisfy:

1) The strict decrease phaserequires the following
number iterations to achieve the quadratic phase:

N1 ≤ C1
µn(L)2
µ3
2(L)

[

1− ǫ
µn(L)
µ2(L)

√

Γ

γ

]−2

,

where C1 = C1 (ǫ, γ,Γ, δ, q(λ0), q
⋆) = 2δ2(1 +

ǫ)2 [q(λ0)− q⋆] Γ2

γ
.

2) Thequadratic decrease phaserequires the following
number of iterations to terminate:

N2 = log2





1
2 log2

([

1− α∗
(

1− ǫµn(L)
µ2(L)

√

Γ
γ

)])

log2(r)



 ,

wherer = 1
η1
||gk′ ||L, with k′ being the first iteration

of the quadratic decrease phase.
3) The radius of theterminal phase is characterized by:

ρterminal≤
2
[

1− ǫµn(L)
µ2(L)

√

Γ
γ

]

e−ǫ2γδ
µn(L)

√

µ2(L).
Proof: See Appendix.

Given the above result, the total mes-
sage complexity can then be derived as
O
(

(N1 +N2)nβ
(

κ(Hk)
1
R
+Rdmax

)

log
(

1
ǫ

))

.

VI. EXPERIMENTS AND RESULTS

We evaluated our approach on two randomly generated
networks. The first consisted of 30 nodes and 70 edges,
while the second contained 90 nodes with 200 edges. The
edges were chosen uniformly at random. The flow vectors,
b, were chosen to place source and sink nodes diam(G) away
from each other. Anǫ of 1

10,000 , a gradient threshold of
10−10, and an R-Hop of 1 were provided to our SDDM
solver for determining the approximate Newton direction.
We compared the performance of our algorithm, referred to
SDDM-ADD hereafter, to ADD, standard gradient descent,
and the exact Newton method (i.e., centralized Newton
iterations). The values of the primal objective and feasibility
were chosen as performance metric.

Iterations
100 101 102 103 104

||
A

x
-b

||

10-15

10-10

10-5

100

105

SDDM-ADD
ADD
Gradient Descent
Exact Newton

(a) ||Ax− b|| on a random network
with 30 nodes and 70 edges

Iterations
0 500 1000 1500 2000 2500 3000

f(
x

k
)

102

103

104
SDDM-ADD
ADD
Gradient Descent
Exact Newton

(b) f (xk) on a random network with
30 nodes and 70 edges

Iterations
100 102 104

||A
x-

b|
|

10-10

10-5

100

105

SDDM-ADD
ADD
Gradient Descent
Exact Newton

(c) ||Axk−b|| on a random network
with 90 nodes and 200 edges

Iterations
0 1000 2000 3000

f(x
k)

100

105

1010

1015

1020

SDDM-ADD
ADD
Gradient Descent
Exact Newton

(d) f(xk) on a random network with
90 nodes and 200 edges

Fig. 1. Performance metrics on two randomly generated networks, showing the primal objective,f (xk), and feasibility||Axk − b|| as a function of the
number of iterationsk. On a relatively small network (i.e.,30 nodes and70 edges) we outperform ADD and gradient descent by approximately an order
of magnitude. On larger networks (i.e., 90 nodes and 200 edges), SDDM-ADD is superior to both ADD and gradient descent, where the primal objective
of the latter two algorithms converges to105 after 3000 iterations. It is also worth noting that we perform closely to the exact Newton method computed
according to a centralized approach.

Figure 1 shows these convergence metrics comparing
SDDM-ADD, to ADD [6], standard gradient descent, and
the exact Newton method (i.e., centralized Newton iteration).
On relatively small networks, 30 nodes and 70 edges, our
approach converges approximately an order of magnitude
faster compared to both ADD and gradient descent as
demonstrated in Figures 1(a) and 1(b). It is also clear that
on such networks, SDDM-ADD is capable of closely tracing
the exact Newton method where convergence to the optimal
primal objective is achieved after≈ 200 iterations compared
to ≈ 500 for ADD and≈ 2000 for gradient descent.

In the second set of experiments that goal was to eval-
uate the performance of SDDM-ADD on large networks
where both ADD and gradient descent underperform. Results
reported in Figures 1(c) and 1(d) on the larger 90 nodes
and 200 edges network clearly demonstrate the effective-
ness of our approach. Benefiting from the approximation
accuracy of the Newton direction, SDDM-ADD is capable
of significantly outperforming state-of-the-art methods.As
shown in Figure 1(d) convergence to the optimal solution (as
computed by exact Newton iterations) is achieved after 3000
iterations, while ADD and gradient descent underperform by
converging to a primal value of105.

VII. CONCLUSIONS

In this paper we proposed a fast and accurate distributed
Newton method for network flow optimization problems. Our
approach utilizes the sparsity pattern of the dual Hessian
to approximate the Newton direction using only local infor-
mation. We achieveǫ-close approximations by proposing a
novel distributed solver for symmetric diagonally dominant
systems of linear equations involving M-matrices. Our solver
provides a distributed implementation of the algorithm of
Spielam and Peng by considering an approximate inverse
chain that can be computed in a distributed fashion.

The proposed approximate Newton method utilizes the
distributed solver to obtainǫ-close approximations to the
exact Newton direction up-to any arbitraryǫ > 0. We
further analyzed the properties of the resulting approximate
algorithm showing that, similar to conventional Newton
methods, superlinear convergence within a neighborhood of

the optimal value can be attained. Finally, we demonstrated
the effectiveness of our method in a set of experiments on
randomly generated networks. Results showed that on both
small and large networks, our algorithm, outperforms state-
of-the-art techniques in a variety of convergence metrics.

Possible extensions include applications to network utility
maximization [7], general wireless communication optimiza-
tion problems [14], and stochastic settings [15].

REFERENCES

[1] S. Authuraliya and S. H. Low,Optimization flow control with newton-
like algorithm, Telecommunications Systems15 (200), 345-358.

[2] D.P. Bertsekas,Nonlinear programming, Athena Scientific, Cam-
bridge, Massachusetts, 1999.

[3] D.P. Bertsekas, A. Nedic, and A.E. Ozdaglar,Convex analysis and
optimization, Athena Scientific, Cambridge, Massachusetts, 2003.

[4] S. Boyd and L. Vandenberghe,Convex optimization, Cambridge Uni-
versity Press, Cambridge, UK, 2004.

[5] A. Jadbabaie, A. Ozdaglar, and M. Zargham,A distributed newton
method for network optimization, Proceedings of IEEE CDC, 2009.

[6] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie,Accelerated
Dual Descent for Network Optimization, Proceedings of IEEE, 2011.

[7] E. Wei, A. Ozdaglar, and A. Jadbabaie,A distributed newton method
for network utility maximization, LIDS Technical Report 2823 (2010).

[8] J. Sun and H. Kuo,Applying a newton method to strictly convex sep-
arable network quadratic programs, SIAM Journal of Optimization,
8, 1998.

[9] R. Tyrrell Rockafellar,Network Flows and Monotropic Optimization,
J. Wiley & Sons, Inc., 1984.

[10] E. Gafni and D. P. Bertsekas,Projected Newton Methods and Opti-
mization of Multicommodity Flows, IEEE Conference on Decision and
Control (CDC), Orlando, Fla., Dec. 1982.

[11] R. Peng, and D. A. Spielman,An efficient parallel solver for SDD
linear systems, The 46th Annual ACM Symposium on Theory of
Computing2014.

[12] A. Nedic and A. Ozdaglar,Approximate primal solutions and rate
analysis for dual subgradient methods, SIAM Journal on Optimization,
forthcoming (2008).

[13] S. Low and D.E. Lapsley,Optimization flow control, I: Basic algorithm
and convergence,IEEE/ACM Transactions on Networking7 (1999),
no. 6, 861-874.

[14] A. Ribeiro and G. B. Giannakis,Separation theorems of wireless
networking,IEEE Transactions on Information Theory (2007).

[15] A. Ribeiro, Ergodic stochastic optimization algorithms for wireless
communication and networking,IEEE Transactions on Signal Pro-
cessing (2009).

APPENDIX

The complete proofs can be found at:
https://db.tt/MbBW15Zx

	I INTRODUCTION
	II BACKGROUND
	II-A SDDM Linear Systems
	II-B Standard Splittings & Approximations
	II-C The Parallel SDDM Solver

	III NETWORK FLOW OPTIMIZATION
	III-A Dual Subgradient Method
	III-B Newton's Method for Dual Descent
	III-B.1 Properties of the Dual and Assumptions

	IV SDD DISTRIBUTED SOLVERS
	IV-A ``Crude'' R-Hop SDDM Solver
	IV-B ``Exact'' Distributed R-Hop SDDM Solver

	V FAST & ACCURATE DISTRIBUTED NEWTON METHOD
	VI EXPERIMENTS AND RESULTS
	VII CONCLUSIONS
	References

