arxXiv:1503.06883v1l [math.OC] 24 Mar 2015

Fast, Accurate Second Order Methods for Network Optimizaton

Rasul Tutunov, Haitham Bou Ammar, and Ali Jadbabaie

Abstract— Dual descent methods are commonly used to solve N allows for more accurate inverse approximations arriving
network flow optimization problems, since their implementdion gt increased cost, and lower values of N reduce accuracy
can be distributed over the network. These algorithms, howeer, but improve computational times. Though successful, the

often exhibit slow convergence rates. Approximate Newton ffecti f th h hiahly d d th
methods which compute descent directions locally have been €TECUVENESS O (hese approaches highly depend on the

proposed as alternatives to accelerate the convergence estof ~accuracy of the truncated Hessian inverse which is used to
conventional dual descent. The effectiveness of these metts, is approximate the Newton direction. As shown in Secfich VI,
limited by the accuracy of such approximations. In this pape the approximated iterate can resemble high variation to the

we propose an efficient and accurate distributed second orde ; ; ; ; i
method for network flow problems. The proposed approach ::;I]r']\ilgl\:vetgn direction, decreasing the applicability ofsthe

utilizes the sparsity pattern of the dual Hessian to approxinate o . . .
the the Newton direction using a novel distributed solver fo Exploiting the sparsity pattern of the dual Hessian, in
symmetric diagonally dominant linear equations. Our solve is this paper we tackle the above problem and propose a

based on a distributed implementation of a recent parallelslver Newton method for network optimization that is both faster
of Spielman and Peng (2014). We analyze the properties of 544 more accurate. Using recently-developed solvers for

the proposed algorithm and show that, similar to conventiol N - . .
Newton methods, superlinear convergence within a neighber symmetric diagonally dominant (SDDM) linear equations,

hood of the optimal value is attained. We finally demonstrate W€ approximate the Newton direction up-to any arbitrary
the effectiveness of the approach in a set of experiments on precisione > 0. The solver is a distributed implementation

randomly generated networks. of [11] constructing what is known as an inverse chain. We
analyze the properties of the proposed algorithm and show
I. INTRODUCTION that, similar to conventional Newton methods, superlinear

Conventional methods for distributed network optimizaconvergence within a neighborhood of the optimal value
tion are based on Sub-gradient descent in either the pr|m§| attained. We flna”y demonstrate the effectiveness of the
or dual domains, see [8], [9], [10], [13]. For a large clas@pproach in a set of experiments on randomly generated
of problems, these techniques yield iterations that can Betworks. Namely, we show that our method is capable of
implemented in a distributed fashion by only using locasignificantly outperforming state-of-the-art methods ottb
information. Their applicability, however, is limited by-i the convergence speeds and in the accuracy of approximating
creasingly slow convergence rates. Second order Newtof'e Newton direction.
methods [3], [4] are known to overcome this limitation The remainder of the paper is organized as follows.
leading to improved convergence rates. Sectionl draws upon background material needed for the

Unfortunately, computingxactNewton directions based remainder of the paper. Sectign]lll defines the network
only on local information is challenging. Specifically, toflow optimization problem targeted in this paper. Seclioh IV
determine the Newton direction, the inverse of the dual He$letails our proposed distributed solver for SDDM linear-sys
sian is needed. Determining this inverse, however, reguiré€ms. Sectiof V introduces the approximate Newton method
global information. Consequently, authors in [5], [6] pro-@nd rigorously analyzes its theoretical guarantees. G¢di
posed approximate algorithms for determining these Newtdiesents the experimental results. Finally, Sedfion VH-co
iterates in a distributed fashion. Accelerated Dual Descefludes pointing-out interesting directions for futureeash.
(ADD_) [[?]] for .inr.:,:agcl_e, (elxp!oits ;ht(:] fact tthatkthe (cjiual fHes— Il. BACKGROUND
sian is the weighted Laplacian of the network and perform .
a truncated Neumann expansion of the inverse to determi SDDM Linear Systems
a local approximate to the exact direction. ADD allows for a To determine the Newton direction, we need to solve a
tradeoff between accurate Hessian approximations and cofymmetric diagonally dominant system of linear equations,
munication costs through the N-Hop design, where increasé@fined as:

Mo.’B = b() (1)

This research was supported in parts by the AFOSR Complewxdvies

Program and ONR Basic Research Challenge Program in Datieatrand Where My is a Symmetric Diagonally Dominant M-Matrix
Online o _ _ (SDDM). Namely, M, is symmetric positive definite with
R. Tu_tunov is with the‘ Computer and Information Science Diepent, non-positive off diagonal elements, such that for al=
University of Pennsylvaniz utunov@seas.upenn.edu

H. Bou Ammar is with the Computer and Information Science &¢tp 1,2,... 0
ment, University of Pennsylvanihaithamb@seas.upenn.edu

A. Jadbabaie is with the Department of Electrical Engimagrniversity [Mo]ii > = Z [Mo]ij
of Pennsylvaniajadbabai@seas.upenn.edu j=1,j#i '

http://arxiv.org/abs/1503.06883v1

The system of Equations [d 1 can be interpreted as repre-Definition 5: Let X andY be positive semidefinite sym-
senting an undirected weighted gragh,with M, being its metric matrices. TheiX =, Y if and only iff

Laplacian. NamelyG = (N, &, W), with A/ representing

the set of nodes; denoting the edges, arld representing e X Y "X (4)
the weighted graph adjacency. Nodgsindwv; are connected

with an edgee — (i, j) ifft Wy, > 0, where: with A < B meaningB — A is positive semidefinite.

Based on the above definitions, the following lemma
Wi; = [My],, (if i=j), or Wi =—[My], otherwise represents the basic characteristics ofhgoperator:

Lemma 1: [11] Let X,Y, Z and,@ be symmetric pos-
itive semi definite matrices. Then

DX ~, Y, thenX +Z ~,Y + 2, 2)1If
X~,YandZ =, Q,thenX +Z~,Y +Q
B IfX~,YandZ ~, Q,thenX+Z ~, Y +Q,

Following [11], we seek-approximate solutions to*, being
the exact solution oMyx = by, defined as:

Definition 1: Let x* € R"™ be the solution ofMx = by.
A vectorz € R" is called ane— approximate solution, if:

llx* —Z[|pg, < ellz™|pg, » Where||u||?v[0 = u" Myu. M If X =, YandY =~,, Z, thenX ~,, 10, Z
(2) (5) If X, andY are non singular anX =, Y, then
The R-hop neighbourhood of node; is defined as X '=,Y ! 6)If X ~,Y andV is a matrix,
N, (vy) = {v € N : dist(vy,v) < r}. We also make thenVTXV ~, VYV
use of the diameter of a grapli, defined as diarG) = The next lemma shows that good approximationaf *
maxy, ;e dist(vi, v)). guarantee good approximated solutionshdfx = by.

Definition 2: A matrix A € R"*" is said to have a |Lemma 2:Let Z;, ~. Mo—l, and& = Zyby. Thenz is
sparsity pattern corresponding to the R-hop neighborhoqqge(ee — 1) approximate solution oMyx = by.
if A;; = 0foralli=1,...,n and for all j such that Proof: The proof can be found in the appendix. m
v, ¢ NT (’UZ)

We will denote the spectral radius of a matrix by C. The Parallel SDDM Solver
p (A) = max |\;|, where; represents an eigenvalue of the

X A Furth il mak t th diti The parallel SDDM solver proposed in [11] is a paral-
matrix A. Furthermore, We will make use o t E C?I“) N eized technique for solving the problem of Section JI-A. |
numbel, k(A) of a matrix A defined asx = |{&

Amn(A) | makes use of inverse approximated chains (see Defirlition 6)
In [?] it is shown that the condition number of the grapho determinez and can be split in two steps. In the first
Laplacian is at mostO (n?"’u‘j—mmaX) where Wiax and Wi, step, denoted as Algorithid 1, a “crude” approximatiag,
represent the largest and the smallest edge weighgs - of & is returned.z, is driven to thee-close solution,z,
nally, the condition number of a sub-matrix of the Laplaciamsing Richardson Preconditioning in Algorithimh 2. Before

is at most® (M%), see [11]. we proceed, we start with the following two Lemmas which
o o enable the definition of inverse chain approximation.
B. Standard Splittings & Approximations Lemma 3: [11] If M = D— A is an SDDM matrix, with

For determining the Newton direction, we propose a fasb being positive diagonal, and denoting a non-negative
distributed solver for symmetric diagonally dominant Bne symmetric matrix, therD — AD~' A is also SDDM.
equations. Our approach is based on a distributed imple-Lemma 4: [11] Let M = D — A be an SDDM matrix,
mentation of the parallel solver of Spielman and Peng [11jvhere D is positive diagonal andA a symmetric matrix.
Before detailing the parallel solver, however, we next jlev Then
basic notions and notations required.

_ 1 _ _ _ -1
Definition 3: The standard splitting of a symmetric matrix (D — A) = 3 [D L (I +D 1A) (D —AD 1A)

M, is:)
My = Dy — Ap. 3
0=Do— Ao) (1+4D7)].

Here, Dy is a diagonal matrix such thaDy],, = [Mo]; Given the results in Lemma&$ 3 aid 4, we now can consider
for i = 1,2,...,n, and A, representing a non-negativeinverse approximated chains 8f:
symmetric matrix such thatA|,, = —[Mo]; if i # j, Definition 6: Let C = {My, M, ..., M} be a collec-
and[Ao]; = 0. _ tion of SDDM matrices such thavf; = D; — A;, with D;
We also define the Loewner ordering: ~ apositive diagonal matrix, and; denoting a non-negative

Definition 4: Let S,,) be the space of: x n-symmetric symmetric matrix. Thed is an inverse approximated chain if
matrices. The Loewner ordering is a partial order on there exists positive real numbegse, . . ., ¢4 such that: (1)
S(ny such thaty = X if and only if X — Y is positive Fori=1,...,d: D;— A; ~.,_, D;_1 — A, 1D} A; 1,
semidefinite. _ _ (2) D; ~., , D;_1, and (3)Dy ~., D; — A,.

Finally, we define the~," operation used in the sequel The quality of the “crude” solution returned by Algo-
to come as: rithm [is quantified in the following lemma:

Iplease note that in the case of the graph Laplacian, thet@mmdumber Lemma 5: [11] Let {MOv M,..., Md} be the inverse

is defined as the ratio of the largest to the smallest nonzgemealues. approximated chain and dendfg be the operator defined by

Algorithm 1 ParallelRSolvé M, My, ..., My, bg)

1: Input: Inverse approximated chain, 1 ifedge; leaves node
{M,, M, ..., M}, andby being A; ;=< —1 Iifedgej enters ner
2: Output: The “crude” approximationg,, of x* 0 otherwise,
¥ for i =1 tod do . and the vectorb € 1+ denotes the external source, i.e.,
4: bi=(I+Ai1D;) bis b > 0 (or b < 0) indicatesb® units of external flow
> end for . enters (or leaves) nodée A cost function®, : R — R
6: zq =D, ba is associated with each edge Namely, ®.(=(¢)) denotes
7. for i=d—1100do B the cost on edge as a function of the edge flow(®).
8 x; =3 [D;'b+ (I+D;"A;)xiyi] ; :
: N g R i f) itl We assume that the cost functiods, are strictly convex
9'_ end for and twice differentiable. Consequently, the minimum cost
10: return o networks optimization problem can be written as
E
i ®,(z 7
ParallelRSolvé My, My, ..., My, by), namelyxo = Zyby. mwm; () "
Then st Az =b
Zy s, Mt (6) o . -
Algorithm [returns a “crude” solution tdZyz = b. To Our goal is to investigate Newton type methods for solving

obtain arbitrary close solutions, Spielman al [11] intro- the problem in[¥7 in a distributed fashion. Before diving
duced thepreconditioned Richardson iterative scheraem- into these details, however, we next present basic ingneslie
marized in Algorithn{2. Following their analysis, Lemifia 6needed for the remainder of the paper.

provides the iteration count needed by Algorithin 2 to amve, oo Subgradient Method

atx.
The dual subgradient method optimizes the problem in
Algorithm 2 ParallelESolvé My, My, ..., My, by, €) Equation[¥ by descending in the dual domain. The La-
i .RE N i R
1: Input: Inverse approximated cha{dVy, M, ..., My}, grangian/ : R* x R — R is given by

by, ande. E
2: Output: e close approximationg, of * o, A) ==Y @ (z)) + AT(Az — b).
3: Initialize : yo = 0; e=1

X h: Pn?)raIIeIRSOIveMO,Ml, -+, Ma, bo) (i-e, Algo- The dual functiony(\) is then derived as
rithm

4: for k=11to q do g(A) = inf I(z,N)

. (1) TERE

5: u,. :Moyk_l E

6w = ParalleRSolvg Mo, M, ..., My, uf’) — inf (—Zée(x@) AT Aw) T

TzERE
Yk = Yk—1 — u,(f) + X . e=1
8: end for . (e)
— _ (€) T <e>) AT

% > it (- + (AT4) 7 al) - T,
10: return & =

Hence, it can be clearly seen that the evaluation of the dual
) functiong(\) decomposes into E one-dimensional optimiza-
Lemma 6: [11] Let {MO’Mla"Md} be an inverse tjon problems. We assume that each of these optimization
approximated chain such thdf;_; ¢; < gln2. Then proplems have an optimal solution, which is unique by the
ParallelESolvg Mo, My, ..., Ma, by, €) arrives at an close strict convexity of the function,. Denoting the solutions
solution ofz* in ¢ = O (log 1) iterations. by z(¢)(\) and using the first order optimality conditions, it

can be seen that for each edgez&) () is given by
IIl. NETWORK FLOW OPTIMIZATION

We consider a network represented by a directed graph 2O = [@] 7 (/\(i) -)‘(j)) ; (8)

g = (N.£) with node set\” = {1,...,N} and edge wherei € N andj € N denote the source and destining

se;ce)g = L ’% The flow vector is denoted by = ;4aq of edge — (i,), respectively (see [6] for details).
f[II Jeeer With 2 rep(rjg;entmg thedflow on Ed‘ﬁ The Therefore, for an edge, the evaluation of:(¥)(A) can be
ow conservation conditions at nodes can be COmp"’mtpferformed based on local information about the edge’s cost

represented as N) function and the dual variables of the incident nodeand
T = ;
9]

wh_ereA is the N x E nOde'edge incidence matrix ¢f 2Note that if the dual is not continuously differentiablee t generalized
defined as Hessian can be used.

The dual problem is defined asaxycp~ ¢(A). Since the The following two lemmas [5], [6] quantify essential
dual function is convex, the optimization problem can b@roperties of the dual Hessian which we exploit through our
solved using gradient descent according to algorithm to determine the approximate Newton direction.

Lemma 7:The dual objectivey(A) = AT(Az(\) — b) —
>, ®c(x(N)) abides by the following two propertie][
with k being the iteration index, ang, = g (Ax) = Vq(Ax) 1) The dual HessianH (\), is a weighted Laplacian of
denoting the gradient of the dual function evaluated at g:
Ak. Importantly, the computation of the gradient can be H(\) = vgq()\) A [vzf(w()\))]flAT
performed ag,. = Ax (A;) — b, with 2()\;) being a vector '
composed of:(®) (\,,) as determined by Equati@h 8. Further, 2) The dual HessiadH (\) is Lispshitz continuous with
due to the spar3|ty pattern of the incidence mattixthe i*" respect to the Laplacian norm (i.€.; ||z) whereL is
element,g,(c , of the gradieng;, can be computed as the unweighted laplacian satisfyimy= AA™ with A

being the incidence matri . Namely, ¥\, X:
AR DI R DRI R U1 e . Namely
e=(4,5) e=(4,i) ||H()‘) _H()‘)”E < B||>_)\||La

Ari1 = Ap — argr forall k>0, 9)

Clearly, the algorithm in Equatidd 9 can be implemented with B = % where p1,,(£) and p2(L£) denote
in a distributed fashion, where each node, maintains the largest and second smallest eigenvalues of the
information about its dual\\”, and primalz(<) (A, iterates Laplacian..
of the outgoing edges = (i, j). Gradient components can Proof: See Appendix. m

then be evaluated as per]10 using only local informatiorthe following lemma follows from the above and is needed
Dual variables can then be updated usidg 9. Given thg the analysis later:
updated dual variables, the primal variables can be cordpute | emma 8:1f the dual HessiarH () is Lipschitz continu-

using[8. ous with respect to the Laplacian nothi|. (i.e., LemmaT),
Although the distributed implementation avoids the costhen for anyA and A we have

and fragility of collecting all information at centralizdd-

cation, practical applicability of gradient descent isdgred [Va(A) = Vg(A) = HA)(A = Nz < —||)\ A7
by slow convergence rates. This motivates the consideratio Proof: See Appendix. u
of Newton methods discussed next. As detailed in [6], the exact computation of the inverse

of the Hessian needed for determining the Newton direction
can not be attained exactly in a distributed fashion. Author
Newton’s method is a descent algorithm along a scaleg [5], [6] proposed approximation techniques for compgtin
version of the gradient. Its iterates are typically given by this direction. The effectiveness of these algorithms, how
- ever, highly depend on the accuracy of such an approxima-
Akt = A ardy forall k20, (11) tion. In this work, we propose a distributed approximatar fo
with dj, being the Newton direction at iteratidny and o, ~ the Newton direction capable of acquiriagclose solutions
denoting the step size. The Newton direction satisfies for any arbitrarye. Our results show that this new algorithm
is capable of significantly surpassing others in literature

B. Newton’s Method for Dual Descent

Hydy = —gx, 12) \where its performance accurately traces that of the stdndar
with Hy, = H(X\:) = V2¢(\,) being the Hessian of the centralized Newton approach. Next, we detail our distetlut
dual function at the current iteration SDD solver being at the core of our approximator.

1) Properties of the Dual and Assumptionstere, we IV. SDD DISTRIBUTED SOLVERS

detfaul some stumptlons needgd _by our approach. We aIS({Ne propose a distributed solver for SDDM systems which
derive essential Lemmas quantifying properties of the dual

. can be used to determine an approximation to the Newton
Hessian. direction up to any arbitrary > 0 (see Sectiofi_V). Our
Assumption 1:The graph,G, is connected, non-bipartite P y Y

. Y method is based on a distributed implementation of the
and has algebraic connectivity lower bound by a constant . - .
Assumption 2:The cost functions®. (-), in Equation¥ parallel solver of Sectioh IH4C. Similar to [11], we first

introduce an approximate inverse chain which can be com-

are)))) o puted in a distributed fashion. This leads us to a distridhute
1) twice continuously differentiable satisfying version of the “crude” solver (i.e., AlgorithfT TC). Coatry
N < ‘ie(-) <T, to [11], howevgr, we then generalize the “crude” distriloute
solver to acquirexactsolutions to an SDDM system. For a
with v andT" are constants; and generic SDDM system of linear equations, our main results
2) Lipschitz Hessian invertible for all edges= £ for determining ane-close solution (i.e.)|Z — z*||ar, <
1 1 ellx*||a,) 1S sSummarized
- <dlr—2z|.

Q.(x) P(2) 3The complete proofs can be found at https://db.tt/MbBW15Zx

Lemma 9:For the system of equations represented bilgorithm 3 RDistRSolve({[Mo]x1,. .., [Molkn}, [bo]k, d, R)

Myx = b, there is a distributed algorithm that uses only Part One:

R-Hop information and computes theclose solution,z, {[AODo‘l]kl,...,[AoDo Jkn} = { ?)?)ﬁ ’ [[?)ﬁkn }
n Tn,6) = O (245 + Sy low (1)) time Seps, (D" Agls,.... (D" Aulen) = (Jes, .., [
with n(MO) being the condition number oM, 5 = [Colk1s-- -, [Colkn = Comp ([Mol1s-- -, [Mo]kn, R),
min 4 7, d;a:x —- ¢ representing the upper bound on the size [Cili1, ..., [Ci]kn = Comp ([Mo]k1, - - ., [Molkn, R)

of the R- Hop neighborhoodmax the maximal degree df,
ande € (0,] being the precision parameter. Part Two:
Analogous to [11], we will develop and analyze two for i=1tod do

distributed solvers for SDDM systems (i.e., “crude” R-Hop
solver and “exact” R-Hop solver) leading to the proof of the
above lemma.

A. “Crude” R-Hop SDDM Solver

Algorithm[3 presents the “crude” R-Hop solver for SDDM
systems. Each node receives th& row of M, , k"
component[by]; of by, the length of the inverse chaid,
and the local communication bo as inputs, and outputs
the k** component of the “rude” approximation af*.

Analysis of Algorithm B] The following Lemma shows
that RDistRSolve computes thé&!* component of the
“crude” approximation ofx* and provides the algorithm’s
time complexity

Lemma 10:Let M, = Dy — Ay be the standard splitting

if i—1<p
[ui' V] = [AoDg bisa]i
for j =2to 2! do

[l V] = [AoDg ul=)y
end for _
[bilk = [bi—1]k + [u;j)]k
ifi—1>p

L1 =2 /n
[w gz 1)]k = [Cobi_1]k

for j=2tol; , do
[V = [Coul i
end for

bilk = i1l + [ul

end for

and IetZ0 be the operator defmed by RDistRSolve, namely, Part Three:

xo = Zpbo. Then, Z; ~, M0 RDistRSolve requires
R+1
(%ﬁ—kﬂRdmm), where 5 = min {m (Eimaxll))}’ o
arrive atx.
Proof: See Appendix. -

B. “Exact” Distributed R-Hop SDDM Solver

Next, we provide the exact R-Hop solver. Similar to
RDistRSolve, each node, receives thé:'" row My, [bo]s,

d, R, and a precision parametelas inputs, and outputs the
k" component of the close approximation of vectae*.

Analysis of Algorithm Bl The following Lemma shows
that EDistRSolve computes the'® component of thee
close approximation ta:* and provides the time complexity
analysis.

Lemma 1l:Let My, = Dy — Ay be the standard split-
ting. Further, lete; < 1/31n2. Then Algorithm[® requires
O (log 1) iterations to return thes'” component of the:
close approximation te:*.

Proof: See Appendix. |

[iﬂd]k = [bd] k/[Do]kk
fori=d—-1to1do

if i <p
iV = = [Dg ' Aoz iy
for j =2to 2" do

[n(l+1)] [1A n(1+1)]

J

end for .

@il = 3 [+ ol + 5]
if i>p

li = 2i/R

[77§1H)]k = [Clwi+1]k

for j=2tol;do
m{ Ve = [Cind)k
end for N
@il = 3 [B + [@irale + nf i)

end for
[:E()]k g % [gs]]:k + [wl]k + [Dgleml]k}
return [xg

k

Next, the following Lemma provides the time complexity
analysis of EDistRSolve.

Lemma 12:Let My, = Dy — A, be the standard split-
ting and lete; < 1/3In2, then EDistRSolve requires .
O ((2*/rRB + BRdmaz) log (/) time steps. Moreover, for
each nodevy, EDistRSolve only uses information from the
R-hop neighbors.

Proof: See Appendix.
The complexity of the proposed algorithms depend on th
length of the inverse approximated chainHere, we provide

an anaIyS|s to determine the value éfwhich guarantees

+In2in C = {Ag, Dy, A1, Dy,...,Aq,Dy}. These

results are summarized the following lemma

Lemma 13:Let
standard splitting and

M = D, — Ay, be the
letk denote the condition

umber of Mj,. Consider the inverse approximated
ain C = {Ao,Do,Al,Dl,...,Ad,Dd} with
_ V2 ~
length d = [log (2 In (\3/5_1) n)], then Dy =~

4For simplicity, R is assumed to be in the order of powers of 2, i.e.,
R =2°.

Do - Dy (D;' Ay,

with e < 1/31n2.

Algorithm 4 Comp, ([Mo]k1, - -
fori=1to R—1do

for j s.tw; € Nj4q(vg) do

[(AODO—I)HJ} =

-, [Mo)kn, R)

kj
> (40D) ke [A0 Dy ;e
rv, €Ny (v))
end for

end for

return co = {[(AoDy) Fr1, -, [(AoDy ") Frn}

Algorithm 5 Comp, ([Mo)k1, - -
fori=1to R—1do

for j s.tw; € Nj4q(vg) do

[(Do—lAO)lHLﬁ =

-, [Mo]kn, R)

> o (D! Ag) i Dy Ao
riv, €Ny (v;)
end for

end for

return ¢; = {[(Dy "' A0) %1, ..., [(Dg " Ao)Flin}

Proof: See Appendix. |

Combining the above results finalizes the proof of
Lemmd®. The usage of this distributed solver to approximaﬂz:qk+1 e <
the Newton direction, as detailed in the next section, en-
ables fast and accurate distributed Newton methods capable
of approximating centralized Newton directions up to any

arbitrarye.

V. FAST & ACCURATE DISTRIBUTED NEWTON
METHOD

determined;, by solving Hyd;, = —gy, using Algorithni®. It
is easy to see that our approximation of the Newton direction
d,, satisfies

i — dil|r, < elldl|m,
with de = —Zxgk,

where Zj, approximateﬂ,z according to the routine of Al-
gorithm[8. The accuracy of this approximation is quantified
in the following Lemma

Lemma 14:Let H, = H () be the Hessian of the dual
function, then for any arbitrary > 0 we have

efiszH,Iv <v' Zpw < eiszH,Iv, Vo e 1t
Proof: See Appendix. [|

Given such an accurate approximation, next we analyze
the iteration scheme of our proposed method showing that
similar to standard Newton methods, we achieve superlinear
convergence within a neighborhood of the optimal value. We
start by analyzing the change in the Laplacian norm of the
gradient between two successive iterations

Lemma 15:Consider the following iteration scheme
Air1 = Ak + ady with oy, € (0, 1], then, for any arbitrary
e > 0, the Laplacian norm of the gradiefig;.+1|| 2, follows:

pn(L) [T
1— oy + —~
(D) \/;

a2 BT?(1 +¢€)?
213(L)
with i, (£) andus (L) being the largest and second smallest

eigenvalues ofZ, I" and « denoting the upper and lower
bounds on the dual's Hessian, afi$l € R is defined in

llgrllc (14)

llgrllZ

Our approach only requires R-Hop communication for theemmal3.
distributed approximation of the Newton direction. Given ~ Proof: See Appendix.]
the results of LemmBl 7, we can determine the approximaf¥ this stage, we are ready to present the main results quan-
Newton direction by solving a system of linear equationdfying the convergence phases exhibited by our approach:
represented by an SDD mafffiraccording to Sectiofi IV,

with My = H;, = H(\y). Theorem 1:Let v, I', B be the constants defined in

Formally, we consider the following iteration scheme:
(13)

with k representing the iteration number; the step-size,

Abt1 = Ak + agdy,

and d;, denoting the approximate Newton direction. Wegjze parameten* —

5Due to space constraints, we refrain some of the proofs tagpendix.

Assumptior? and Lemmnid 7, (£) and 2 (L) representing
the largest and second smallest eigenvalues of the noedaliz

laplacianz, € € (0, :2(3 % the precision parameter for

the SDDM (Sectiol 1V) solver, and letting the optimal step-

e~ p2(L) 2
(EE (fun(ﬁ)) . Then the proposed

algorithm given by the\y. 1 = A\p + a*d), exhibits the

following three phases of convergence:

- - 1) Strict Decreases PhaseWhile ||gx||z > m:
Algorithm 6 EDistRSolve{[Mo]x1, ..., [Molen}, [bolk. d, R, €) o s
and [x]r = 1 e 7 a(L) o

Initialize: [yo]k = 0, d A1) — g Ap) < —= s)

RDIStRSOV&{ [Moly1, . . ., [Molin }, [bolk, d, R) 2(1+¢€)202 ph(L) ™

for t=1toq do 2) Quadratic Decrease PhaseWhile 1y < ||gx||zm:
[T = [Dolik [y 11k = X, e, o) [Aol [W1-1];

[u!?]), = RDIStRSONVE{ [Mo]s1, ..., [Molen}, [ulM]s, d, R)

1
grt1lle < —llgkllZ
m

3) Terminal Phase: When||gk||z < no:

n(L T
llgrt1lle < \l ll -t a*eug((ﬁ) \/j] llgkllc,

[wilk = o]k — [u”

end forend for
return (&) = [yqlk

Ik + [x]k

=
)

1=€ i
: , with

§—\l ll—a*—i—a*e

_ B(a*T'(1+ €))?
<= 2p5(L)

wheren, = @ andn, =

=

n(£)
p2(L)

(15)

g

Proof: We will proof the above theorem by handling
each of the cases separately. We start by considering tee cas

when||gk||z > m (i.e., Strict Decrease Phase We have:

a(Mkt1) = () + gp N1 — Ar)

1
+ 5 Ak = Ak)TH (2) (M1 — Ax)
B S
= q(Ar) + argrdi + 7dkH(z)dk
2
~ « ~
< q(Ak) + argldi + 2—,1;5155(11@,
where the last steps holds sindd(-) =< %ﬁ. Noticing
~ 2 € 2 .
that ||dy||2 < F#(%l&)) lgx||2 (see Appendix), the only

remaining step needed is to evalug;t@dk. Knowing that
d; = —Zgx, We recognize

~ 2
grdy = —g} Zrg, < e gf H} g, (Lemma[T}

752 —€

e T e T
99k < —— 9, 9k
) r pn (L) i

< -
B Mn(Hk

ey glLge ey

T (L) pn(L) p3(L)

where the last step follows from the fact théb € R™ :

T .
vl > 2 (ch) Therefore, we can write

g1z

762

q(Ak+1) —q(Ax) < — |ag ;%(g)

) I?(1+¢)?
2yp5(L)

gkl 2.

_e2

(i)2 g #2(£) ’
“+€

T pn(L)

It is easy to see thaty, = o

minimizes the right-hand-side of the above equation. Using
|lgx||z gives the constant decrement in the dual functiofPiven

between two successive iterations as

1e 300
2(T+ o2 T2 ud(L) ™

qAkt1) —q(Ag) < —

Considering the case whep < ||gx||%m: (i.e., Quadratic
Decrease Phage Equatio I} can be rewritten as

llgirille < €llgrlle + CllgrllZ,

Finally, we handle the case wheigy:|l: < o (i.e.,
Terminal Phase. Since||gk||Z2 < mollgkllz, it is easy to
see that

llgirille < (€2 +¢no)llgrllc = (€2 + €1 = &)llgnllc

llgillc = J [1 ~ o arelnld) \/ﬂ lgillc.

p2(L)
|

Having proved the three convergence phases of our algo-
rithm, we next analyze the number of iterations needed by
each phase. These results are summarized in the following
lemma:

Lemma 16:Consider the algorithm given by the following
iteration protocolA,1 = Ak11 +a*dy. Let Ay be the initial
value of the dual variable, ang’ be the optimal value of
the dual function. Then, the number of iterations needed by
each of the three phases satisfy:

1) The strict decrease phaserequires the following
number iterations to achieve the quadratic phase:

Hn (£)2
13 (L)

—2

r
~y)

262(1 +

pin(£)
Mz(ﬁ)

Where Cl = Cl (61 v, Fa 67 q(AO)a q*)
2

)7 [g(Xo) — ¢*] =

Thequadratic decrease phaseequires the following

number of iterations to terminate:

3 log, ({1 —a* (1 - EZZ((g)) g)D

log, (r)

Ny <y

2)

Ny = log,

wherer = ll||gk/||£, with &’ being the first iteration
of the quagratic decrease phase.
3) The radius of theerminal phaseis characterized by:

9 [1 _ k(L) F}

n2(L) \/ ~

Pterminal < o270 pin (L) p2(L).
Proof: See Appendix. [|
the above result, the total mes-
sage complexity can then be derived as

O (N1 + Na) nB (k(Hy) % + Rdpax) log (1)).
VI. EXPERIMENTS AND RESULTS

We evaluated our approach on two randomly generated
networks. The first consisted of 30 nodes and 70 edges,
while the second contained 90 nodes with 200 edges. The
edges were chosen uniformly at random. The flow vectors,
b, were chosen to place source and sink nodes @amaway

with £ and¢ defined as in EquatidiL5. Further, noticing thafrom each other. Ane of 5475, @ gradient threshold of

sincel[gx||z > o then|gillz < -llgrllz = grteyllgnlZ:

10719, and an R-Hop of 1 were provided to our SDDM

Consequently the quadratic decrease phase is finalized byolver for determining the approximate Newton direction.

¢

1-¢
1 2
LAY
a2

llgkllZ

lowslle <¢ (55 +1) lauli2 -

We compared the performance of our algorithm, referred to
SDDM-ADD hereafter, to ADD, standard gradient descent,
and the exact Newton method (i.e., centralized Newton
iterations). The values of the primal objective and fedigjbi
were chosen as performance metric.

5 5 20
10 10 —SDDM-ADD 10 10
—ADD
Gradient Descent|
0 |—Exact Newton
10 10'® —SDDM-ADD
—ADD
= — Gradient Descent
3 5 X 3 X 10 —Exact Newton
% 10" =spow-A00 g1 =10
= —ADD
Gradient Descent| 10—
10 | —Exact Newton —SDDM-ADD 5
10 —ADD 10
Gradient Descent| /
—Exact Newton
-10
1018 2 10 10°
10° 10! 102 10° 10 100500 1000 1500 2000 2500 3000 10° 10? 10 0 1000 2000 3000
Iterations Iterations Iterations Iterations

(@) ||A« — b|| on a random networtb) f (x;) on a random network witkc) || Az, — b|| on a random netwo(kl) f(x;) on a random network with
with 30 nodes and 70 edges 30 nodes and 70 edges with 90 nodes and 200 edges 90 nodes and 200 edges

Fig. 1. Performance metrics on two randomly generated msyshowing the primal objectivef, (x;,), and feasibility|| Ax) — b|| as a function of the
number of iterationgs. On a relatively small network (i.e30 nodes and’0 edges) we outperform ADD and gradient descent by approgisnain order
of magnitude. On larger networks (i.e., 90 nodes and 20083d&DDM-ADD is superior to both ADD and gradient descenterehthe primal objective
of the latter two algorithms converges 16° after 3000 iterations. It is also worth noting that we perfazlosely to the exact Newton method computed
according to a centralized approach.

Figure 1 shows these convergence metrics comparitige optimal value can be attained. Finally, we demonstrated
SDDM-ADD, to ADD [6], standard gradient descent, ancthe effectiveness of our method in a set of experiments on
the exact Newton method (i.e., centralized Newton itergtio randomly generated networks. Results showed that on both
On relatively small networks, 30 nodes and 70 edges, osmall and large networks, our algorithm, outperforms state
approach converges approximately an order of magnituad-the-art techniques in a variety of convergence metrics.
faster compared to both ADD and gradient descent as Possible extensions include applications to networktytili
demonstrated in Figurgs Ifa) ahd 1(b). It is also clear thataximization [7], general wireless communication optiaiz
on such networks, SDDM-ADD is capable of closely tracingion problems [14], and stochastic settings [15].
the exact Newton method where convergence to the optimal
primal objective is achieved aftet 200 iterations compared
to ~ 500 for ADD and = 2000 for gradient descent. [1] S. Authuraliya and S. H. LowQptimization flow control with newton-

In th d t of - ts that | t | like algorithm Telecommunications Systemi$ (200), 345-358.

n the second set ol experiments that goal was 10 evalp) p p Bertsekas,Nonlinear programming Athena Scientific, Cam-
uate the performance of SDDM-ADD on large networks bridge, Massachusetts, 1999. ‘
where both ADD and gradient descent underperform. Result§] D-P. Bertsekas, A. Nedic, and A.E. Ozdagl@lonvex analysis and

. . optimization Athena Scientific, Cambridge, Massachusetts, 2003.
reported n F'QUFGEF) ar@d) on the |arger 90 nOde§4 S. Boyd and L. Vandenbergh€&€onvex optimizationCambridge Uni-

and 200 edges network clearly demonstrate the effective- versity Press, Cambridge, UK, 2004.
ness of our approach. Benefiting from the approximatior{5] A. Jadbabaie, A. Ozdaglar, and M. Zargha,distributed newton

. . . method for network optimizatipriProceedings of IEEE CDC, 2009.
accuracy of the Newton direction, SDDM-ADD is capable [6] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabdecelerated

of significantly outperforming state-of-the-art methods Dual Descent for Network OptimizatipProceedings of IEEE, 2011.
shown in Figuré I(d) convergence to the optimal solution (ag7] E: Wei, A. Ozdaglar, and A. Jadbabait,distributed newton method

; . . . for network utility maximizationLIDS Technical Report 2823 (2010).
computed by exact Newton iterations) is achieved after 3006k ;g5 and H. KuoApplying a newton method to strictly convex sep-

iterations, while ADD and gradient descent underperform by = arable network quadratic programsSIAM Journal of Optimization,
converging to a primal value afo’. 8, 1998. o
[9] R. Tyrrell Rockafellar,Network Flows and Monotropic Optimization
J. Wiley & Sons, Inc., 1984.

VII. CONCLUSIONS [10] E. Gafni and D. P. Bertseka®rojected Newton Methods and Opti-
. - ization of Multi dity Flow$EEE Conf Decisi d

In this paper we proposed a fast and accurate distributed g')znat‘rgn(gDCl; O e Bae oga e on becision an
Newton method for network flow optimization problems. Ouni1] R. Peng, and D. A. SpielmarAn efficient parallel solver for SDD

approach utilizes the sparsity pattern of the dual Hessian linear systemsThe 46th Annual ACM Symposium on Theory of

. : . . . Computing2014.
to approximate the Newton direction using Only local Imcor'[12] A. Nedic and A. OzdaglarApproximate primal solutions and rate

mation. We achieve-close approximations by proposing a analysis for dual subgradient metho@® AM Journal on Optimization,
novel distributed solver for symmetric diagonally domihan 13 fgfﬁcom”:ng(zgof)- \eppimization ol I Basic aldorith

. Low an .. Lapsieyyptimization triow control, I: Basic algorithm
systc_ams of “n_ear equat'_ons '”VO'V'”Q M-matrices. Ou_r solv and convergence EEE/ACM Transactions on Networking (1999),
provides a distributed implementation of the algorithm of no. 6, 861-874.
Spielam and Peng by considering an approximate inverEl A. Ribeiro and G. B. GiannakisSeparation theorems of wireless

chain that can be computed in a distributed fashion. | A Ribeiro, Ergodic Stoshastc optmization algorhres for wireless
The proposed approximate Newton method utilizes the = communication and networkingEEE Transactions on Signal Pro-
distributed solver to obtair-close approximations to the cessing (2009).

exact Newton direction up-to any arbitrary > 0. We

REFERENCES

APPENDIX
further analyzed the properties of the resulting approxéma h | ¢ b found]
algorithm showing that, similar to conventional Newton T 3/db C;)I\r/lnpr(\e/t\/e152 prools — can € oun at
methods, superlinear convergence within a neighborhood B}tps. 8 X

	I INTRODUCTION
	II BACKGROUND
	II-A SDDM Linear Systems
	II-B Standard Splittings & Approximations
	II-C The Parallel SDDM Solver

	III NETWORK FLOW OPTIMIZATION
	III-A Dual Subgradient Method
	III-B Newton's Method for Dual Descent
	III-B.1 Properties of the Dual and Assumptions

	IV SDD DISTRIBUTED SOLVERS
	IV-A ``Crude'' R-Hop SDDM Solver
	IV-B ``Exact'' Distributed R-Hop SDDM Solver

	V FAST & ACCURATE DISTRIBUTED NEWTON METHOD
	VI EXPERIMENTS AND RESULTS
	VII CONCLUSIONS
	References

