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Abstract

This paper studies quantized control for discrete-time piecewise affine systems. For given stabilizing

feedback controllers, we propose an encoding strategy for local stability. If the quantized state is near

the boundaries of quantization regions, then the controller can recompute a better quantization value.

For the design of quantized feedback controllers, we also consider the stabilization of piecewise affine

systems with bounded disturbances. In order to derive a less conservative design method with low

computational cost, we investigate a region to which the state belong in the next step.

I. INTRODUCTION

In many applications, the input and output of the controller are quantized signals. This is due

to the physical properties of the actuators/sensors and the data-rate limitation of links connected

to the controller. Quantized control for linear time-invariant systems actively studied from various

point of view, as surveyed in [1], [2].

Moreover, in the context of systems with discrete jumps such as switched systems and

PieceWise Affine (PWA) systems, control problems with limited information have recently

received increasing attention. For sampled-data switched systems, a stability analysis under

finite-level static quantization has been developed in [3], and an encoding and control strategy

for stabilization has been proposed in the state feedback case [4], whose related works have

been presented for the output feedback case [5] and for the case with bounded disturbances [6].
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Also, our previous work [7] has studied the stabilization of continuous-time switched systems

with quantized output feedback, based on the results in [8], [9]. However, relatively little work

has been conducted on quantized control for PWA systems. In [10], a sufficient condition for

input-to-state stability has been obtained for time-delay PWA systems with quantization signals,

but logarithmic quantizers in [10] have an infinite number of quantization levels.

The main objective of this paper is to stabilize discrete-time PWA systems with quantized

signals. In order to achieve the local asymptotic stabilization of discrete-time PWA plants with

finite data rates, we extend the event-based encoding method in [8], [11]. It is assumed that we

are given feedback controllers that stabilize the closed-loop system in the sense that there exists

a piecewise quadratic Lyapunov function. In the input quantization case, the controller receives

the original state. On the other hand, in the state quantization case, the quantized state and the

currently active mode of the plant are available to the controller. The information on the active

mode prevents a mode mismatch between the plant and the controller, and moreover, allows the

controller side to recompute a better quantization value if the quantized state transmitted from

the quantizer is near the boundaries of quantization regions. This recomputation is motivated in

Section 7.2 in [4].

We also investigate the design of quantized feedback controllers. To this end, we consider

the stabilization problem of discrete-time PWA systems with bounded disturbances (under no

quantization). The Lypunov-based stability analysis and stabilization of discrete-time PWA sys-

tems has been studied in [12], [13] and [14]–[16] in terms of Linear Matrix Inequalities (LMIs)

and Bilinear Matrix Inequalities (BMIs). In proofs that Lyapunov functions decrease along the

trajectories of PWA systems, the one-step reachable set, that is, the set to which the state belong in

one step, plays an important role. In stability analysis, the one-step reachable set can be obtained

by linear programming. By contrast, in the stabilization case, since the next-step state depends

on the control input, it is generally difficult to obtain the one-step reachable set. Therefore many

previous works for the design of stabilizing controllers assume that the one-step reachable set

is the total state space. However, if disturbances are bounded, then this assumption leads to

conservative results and high computational loads as the number of the plant mode increases.

We aim to find the one-step reachable set for PWA systems with bounded disturbances. To

this effect, we derive a sufficient condition on feedback controllers for the state to belong to a

given polyhedron in one step. This condition can be used to add constraints on the state and



the input as well. Furthermore, we obtain a set containing the one-step reachable set by using

the information of the input matrix Bi and the input bound u ∈ U. This set is conservative

because the affine feedback structure u = Kix + gi for mode i is not considered, but it can

be used when we design the polyhedra that are assumed to be given in the above sufficient

condition. Combining the proposed condition with results in [14]–[16] for Lyapunov functions

to be positive and decrease along the trajectories, we can design stabilizing controllers for PWA

systems with bounded disturbances.

This paper is organized as follows. The next section shows a class of quantizer and a basic

assumption on stability. In Sections III and IV, we present an encoding strategy to achieve

local stability for PWA systems in the input quantization case and the state quantization case,

respectively. In Section V, we study the one-step reachable set for the stabilization problem of

PWA systems with bounded disturbances. Finally, concluding remarks are given in Section VI.

Due to space constraints, all proofs and a numerical example have been omitted and can be

found in [].

Notation: For a set E ⊂ Rn, we denote by Cl(E) the closure of E. For sets E1, E2 ⊂ Rn, let

E1 ⊕ E2 = {v + u : v ∈ E1, u ∈ E2} denote their Minkowski sum.

Let λmin(P ) and λmax(P ) denote the smallest and the largest eigenvalue of P ∈ Rn×n. Let

M> denote the transpose of M ∈ Rm×n. For v ∈ Rn, we denote the l-th entry of v by v(l). Let

1 be a vector all of whose entries are one. For vectors v, u ∈ Rn, the inequality v ≤ u means

that v(l) ≤ u(l) for every l = 1, . . . , n. On the other hand, for a square matrix P , the notation

P � 0 (P � 0) means that P is symmetric and semi-positive (positive) definite.

The Euclidean norm of v ∈ Rn is denoted by |v| = (v∗v)1/2. The Euclidean induced norm of

M ∈ Rm×n is defined by ‖M‖ = sup{|Mv| : v ∈ Rn, |v| = 1}. The∞-norm of v = [v1 · · · vn]>

is denoted by |v|∞ = max{|v1|, . . . , |vn|}, and the induced norm of M ∈ Rm×n corresponding

to the ∞-norm is defined by ‖M‖∞ = sup{|Mv|∞ : v ∈ Rn, |v|∞ = 1}. For r > 0, let

Br = {x ∈ Rn : |x| ≤ r} and B∞r = {x ∈ Rn : |x|∞ ≤ r}.

II. QUANTIZED CONTROL OF PWA SYSTEMS

We consider the following class of discrete-time PWA systems:

xk+1 = Aixk +Biuk + fi =: Gi(xk, uk) (xk ∈ Xi), (1)



where xk ∈ X ⊆ Rn is the state and uk ∈ Rm is the control input. The set X is divided into

finitely many disjoint polyhedra1 X1, . . . ,Xs: X =
∑s

i=1Xi. We denote the index set {1, 2, . . . , s}

by S.

Given a feedback gain Ki ∈ Rn×m and an affine term gi ∈ Rm for each mode i = 1, . . . , s,

the control input is in the affine state feedback form:

uk = Kixk + gi (xk ∈ Xi). (2)

We assume that fi = gi = 0 if 0 ∈ Cl(Xi). We will study the design of Ki and gi in Section V,

but for quantized control in Sections III and IV, Ki and gi are assumed to be given.

A. Quantizers

In this paper, we use the class of quantizers proposed in [9].

Let P be a set composed of finitely many points in RN. A quantizer q is a piecewise constant

function from RN to P . Geometrically, this means that RN is divided into a finite number of

quantization regions of the form {ξ ∈ RN : q(ξ) = qp} (qp ∈ P). For the quantizer q, we assume

that there exist M,∆ with M > ∆ > 0 such that

|ξ| ≤M ⇒ |q(ξ)− ξ|∞ ≤ ∆. (3)

The condition (3) gives an upper bound on the quantization error if the quantizer saturates.

In this paper, we assume that a bound on the magnitude of the initial state is known, and hence

we do not use a condition in the case when the quantizer saturates.

We use quantizers with an adjustable parameter µ > 0:

qµ(ξ) = µq

(
ξ

µ

)
. (4)

The quantized value qµk(ξk) is the data on ξk transmitted to the controller at time k. We adjust

µk to obtain detailed information on ξk near the origin.

1 A polyhedron is the intersection of finitely many halfspaces.



B. Assumption on stability

Define

Ri := {Gi(x,Kix+ gi) : x ∈ Xi}, (5)

which is the one-step reachable set from Xi for the PWA system (1) and the state feedback law

(2) without quantization. Define also

Bi :=

{Bid : |d|∞ ≤ ∆} (input quantization case)

{BiKid : |d|∞ ≤ ∆} (state quantization case)
(6)

We assume that the following stability of the closed-loop system is guaranteed by a piecewise

quadratic Lyapunov function:

Assumption 2.1: Consider the PWA system (1) with given affine feedback (2). Define a

function Vi : Xi → R by

Vi(x) :=


x>Pix 0 ∈ Cl(Xi)x

1


>

P̄i

x
1

 0 6∈ Cl(Xi),
(7)

where Pi ∈ Rn×n and P̄i ∈ R(n+1)×(n+1) are symmetric matrices. There exist α, β > 0 and

γi > 0 for i ∈ S, such that the Lypunov function V : X→ R defined by V (x) := Vi(x) (x ∈ Xi)

satisfies

α|x|2 ≤ V (x) ≤ β|x|2 (8)

Vj((Ai +BiKi)x+ fi +Bigi)− Vi(x) ≤ −γi|x|2 (9)

for every i ∈ S, j ∈ Si, and x ∈ Xi, where Si is defined by

Si :=
{
j ∈ S : Xj ∩

(
Ri ⊕ Bi

)
6= ∅
}
. (10)

In Section V, we will discuss how to obtain Si of (10) in the design process of Ki and gi.

III. INPUT QUANTIZATION CASE

In this section, we study stabilization with quantized input:

uk = q(Kixk + gi) (xk ∈ Xi).



The closed-loop system we consider is given by

xk+1 = Aixk +Biq(Kixk + gi) + fi (xk ∈ Xi)

= Gi(xk, Kixk + gi) +Bi(q(Kixk + gi)− (Kixk + gi)). (11)

We place the following assumption on the state transition:

Assumption 3.1: Define Bi := {Bid : |d|∞ ≤ ∆}. For every i ∈ S, the one-step reachable

set Ri in (5) satisfies Ri ⊕ Bi ⊂ X.

The condition Ri⊕Bi ⊂ X implies that X is invariant for the system (11), and checking this

condition is closely related to how to derive Si in (10). In Section V, we will derive sufficient

conditions on Ki and gi for Ri ⊕ Bi ⊂ X to hold; see Remark 5.9.

First we fix the zoom parameter µ = 1. Similarly to [8], [9], [17], we show that the Lyapunov

function decreases until the state gets to the corresponding level set.

Theorem 3.2: Consider the PWA system(11) with given Ki and gi. Let Assumptions 2.1 and

3.1 hold. Fix εij, δij ∈ (0, 1), and define

Qj :=


Pj 0 ∈ Cl(Xj)[
In×n 0n×1

]
P̄j

In×n
0n×1

 0 6∈ Cl(Xj)
(12)

hij :=


Pj(fi +Bigi) 0 ∈ Cl(Xj)[
In×n 0n×1

]
P̄j

fi +Bigi

1

 0 6∈ Cl(Xj)
(13)

φ1,ij :=m

(
‖B>i QjBi‖
(1−εij)δijγi

+
‖(Ai+BiKi)

>QjBi‖2

((1−εij)γi)2δij(1− δij)

)
φ2,ij :=

2
√
m‖h>ijBi‖

(1− εij)δijγi
.

Also, let M > |gi| for all i ∈ S, and set

mi :=max
j∈Si

√
φ1,ij∆2 + φ2,ij∆, m :=max

i∈S
mi

εi :=max
j∈Sei

εi,j, MK :=min
i∈S

M − |gi|
‖Ki‖

.



Define EMK
and Em by

EMK
:= {x : V (x) ≤ αM2

K}, Em := {x : V (x) ≤ βm2}.

If m and MK satisfy

βm2 < αM2
K , (14)

then all solutions of (11) that start in EMK
∩X enter Em in a finite time k0 satisfying

0 ≤ k0 ≤
αM2

K − βm2

mini∈S (εiγim2
i )

=: k̄0. (15)

Furthermore, if

max
i∈S

(
‖Ai‖m+ ‖Bi‖(‖Ki‖m+

√
m∆) + |fi|

)
≤
√
α

β
MK (16)

holds, then the solution xk belongs to EMK
∩X for all k ≥ 0.

Proof: In order to utilize (9), first we show that if xk ∈ Xi∩EMK
, then there exists j ∈ Si such

that xk+1 ∈ Xj . Suppose that xk ∈ Xi∩EMK
. Define dk by dk := q(Kixk+gi)−(Kixk+gi). Then

we have xk+1 = Gi(xk, Kixk+gi)+Bidk. Since xk ∈ Xi, it follows that Gi(xk, Kixk+gi) ∈ Ri.

Moreover, xk ∈ EMK
implies |Kixk + gi| ≤ M , and hence |dk|∞ ≤ ∆ from (3) and Bidk ∈ Bi.

We therefore obtain

xk+1 ∈ Ri ⊕ Bi. (17)

Therefore, from Assumption 3.1, there exists j ∈ S such that

xk+1 ∈ Xj. (18)

Combining (17) and (18), we have Xj ∩ (Ri ⊕ Bi) 6= ∅. Thus j ∈ Si by definition.

In what follows, for simplicity of notation, we omit the indices i and j of εij , δij , γi, φ1,ij ,

and φ2,ij . Define Āi := Ai +BiKi and ek := Bidk. Since (9) holds, we have

V (xk+1)− V (xk) ≤ −γ|xk|2 + 2|Ā>i Qjek| · |xk|+ e>kQjek + 2hijek

= −εγ|xk|2 − (1− ε)(1− δ)γ|xk|2 − (1− ε)δγ|xk|2

+ 2|Ā>i Qjek| · |xk|+ e>kQjek + 2h>ijek

= −εγ|xk|2 − (1−ε)(1−δ)γ
(
|xk|−

|Ā>i Qjek|
(1−ε)(1−δ)γ

)2

− (1−ε)δγ|xk|2 + e>kQjek +
|Ā>i Qjek|2

(1−ε)(1−δ)γ
+ 2h>ijek

≤ −εγ|xk|2 −Υ,



where

Υ := (1−ε)δγ|xk|2−e>kQjek−
|Ā>i Qjek|2

(1−ε)(1−δ)γ
−2h>ijek.

If xk ∈ EMK
, then

|dk| ≤
√
m|dk|∞ =

√
m|Kixk + gi − q(Kixk + gi)|∞ ≤

√
m∆.

Hence, noticing ek = Bidk, we have

e>kQjek +
|Ā>i Qjek|2

(1− ε)(1− δ)γ
≤
(
‖B>i QjBi‖+

‖Ā>i QjBi‖2

(1− ε)(1− δ)γ

)
·m∆2

h>ijek ≤ ‖h>ijBi‖ ·
√
m∆.

Therefore

Υ

(1− ε)δγ
≥ |xk|2 − φ1∆2 − φ2∆ ≥ |xk|2 −m2

i .

For every i ∈ S, we obtain

V (xk+1)− V (xk) ≤ −εiγi|xk|2 ≤ −min
i∈S

(
εiγim

2
i

)
(19)

whenever |xk| ≥ mi. Note that the most right side of (19) is independent of the plant mode i.

By (14), we have

Bm ⊂ Em ⊂ EMK
.

In conjunction with (19), this shows that if the initial state x0 belongs to EMK
, then xk0 ∈ Em

holds for some integer k0 satisfying (15).

Let us next prove that EMK
∩X is an invariant region for the system (11). From (19), xk ∈ EMK

until xk 6∈ Bm. Once xk ∈ Bm, we have

|xk+1| ≤ ‖Ai‖m+ ‖Bi‖(‖Ki‖m+
√
m∆) + |fi|.

Therefore if (16) holds, then xk ∈ Bm leads to xk+1 ∈ EMK
. The state trajectories again go to

Bm while belonging to EMK
Since Assumption 3.1 gives xk ∈ X for all k ≥ 0, we see that

xk ∈ EMK
∩X for all k ≥ 0.

As in [8], we can achieve the state convergence to the origin by adjusting the zoom parameter

µ:



Theorem 3.3: Consider the PWA system (11) with given Ki and gi. Let Assumptions 2.1 and

3.1 hold. Let the initial state x0 ∈ EMK
∩ X and the initial zoom parameter µ0 = 1. Assume

that (14) and (16) hold, and define

Ω :=

√
β

α
· m
MK

< 1.

Adjust µ by µk = Ωµk−1 when xk gets to Bµk−1m, and send to the plant the quantized input

qµk(Kixk+gi) at time k if xk ∈ Xi. This event-based update strategy of µ leads to xk → 0 (k →

∞).

Proof: First we prove that as long as the quantizer does not saturate, the state trajectory

belongs to X and the (9) holds for all k ≥ 0. Define B[p]
i := {Bid : |d|∞ ≤ Ωp∆}. Since

B[p]
i ⊂ Bi, if Assumption 3.1 holds, then Ri⊕B[p]

i ⊂ X (i ∈ S) for every p ≥ 0. Hence xk ∈ X

for all k ≥ 0 unless the quantizer saturates. Moreover, if we define S [p]
i by the set consisting of

all j ∈ S satisfying Xj ∩
(
Ri ⊕BΩp∆

)
6= ∅ as in (10), then S [p]

i ⊂ S
[0]
i = Si. Thus (9) holds for

every i ∈ S and j ∈ S [p]
i , and hence we have (9) for all k ≥ 0 unless the quantizer saturation

occurs.

Let an update occur at k = `0, i.e., x`0 ∈ Bµ`0−1m and µ`0 = Ωµ`0−1. Then we have

β(µ`0−1m)2 = α(µ`0MK)2.

Therefore Eµ`0MK
defined by

Eµ`0MK
:= {x : V (x) ≤ α(µ`0MK)2}

satisfies Eµ`0MK
= Eµ`0−1m := {x : V (x) ≤ β(µk−1m)2} ⊃ Bµ`0−1m. Since x`0 ∈ Bµ`0−1m, it

follows that x`0 ∈ Eµ`0MK
. Hence Theorem 3.2 shows that for all k ≥ 0, xk ∈ EµkMK

, which

means |xk| ≤ µkMK and the quantizer does not saturate for every k ≥ 0. Moreover, the update

period does not exceed k̄0 in (15). Since Ω < 1, it follows that µk → 0 as k →∞. Thus xk → 0

as k →∞.

Remark 3.4: For continuous-time systems, the level sets EMK
and Em are invariant regions

of the state trajectories [9]. However, for discrete-time systems, Em may not be invariant. We

therefore need the event-based adjustment of the zoom parameter as in [8, Section III] and [11].



IV. STATE QUANTIZATION CASE

Let us next study stabilization of PWA systems with quantized state feedback.

We assume that the controller receives the information on the quantized state and the active

mode.

Assumption 4.1: The quantizer has the information on the switching regions {Xi}i∈S . The

quantizer sends to the controller the information on the quantized state and the active mode.

Under Assumption 4.1, the control uk is given by

uk = Kiq(xk) + gi (xk ∈ Xi).

The closed-loop system we consider can be written in this way:

xk+1 = Aixk +BiKiq(xk) + fi +Bigi (xk ∈ Xi)

= Gi(xk, Kixk + gi) +BiKi(q(xk)− xk). (20)

A. Stability analysis

We place an assumption similar to Assumption 3.1.

Assumption 4.2: Define Bi := {BiKid : |d|∞ ≤ ∆}. For every i ∈ S, the one-step reachable

set Ri in (5) satisfies Ri ⊕ Bi ⊂ X.

See Remark 5.9 for the condition Ri ⊕ Bi ⊂ X.

As in the input quantization case, we first fix µ = 1 and obtain a result similar to Theorem

3.2, based on the technique in [8].

Theorem 4.3: Consider the PWA system (20) with given Ki and gi. Let Assumptions 2.1 and

4.2 hold. Fix εij, δij ∈ (0, 1). Define Qj and hij as in (12) and (13) respectively, and define φ1,ij

and φ2,ij by

φ1,ij :=n

(
‖K>i B>i QjBiKi‖

(1−εij)δijγi
+
‖(Ai+BiKi)

>QjBiKi‖2

((1−εij)γi)2(1−δij)δij

)
φ2,ij :=

2
√
n‖h>ijBiKi‖

(1− εij)δijγi
.

Set mi,j , mi, m, αmin, and βmax as in Theorem 3.2, and set

m̃ := m+
√
n∆, m̄ := m+ 2

√
n∆.



Define EM and Em̄ by

EM := {x : V (x) ≤ αM2}, Em̄ := {x : V (x) ≤ βm̄2}.

If M satisfies

βm̄2 < αM2, (21)

then all solutions of (20) that start in EM ∩X enter Em̄ in a finite time k0 satisfying

0 ≤ k0 ≤
α(M2 −m2)

mini∈S (εiγim2
i )

=: k̄0, (22)

and x ∈ Em̄ can be observed from q(x) ∈ Bm̃. Furthermore, if

max
i∈S

(‖Ai‖m̄+ ‖BiKi‖m̃+ |fi +Bigi|) ≤
√
α

β
M, (23)

then the solution belongs to EM ∩X for all k ≥ 0.

Proof: If we define ek := BiKidk, then the proof follows the same lines as that of Theorem

3.7 until (19). We see that the Lyapunov function decreases if the initial state belongs to EM ∩X

and if the state does not arrive at Bm.

We show that the quantized state q(xk) gets to Bm̃ at k ≤ k̄0 as follows. Suppose, on the

contrary, that q(xk) 6∈ Bm̃ for all k = 0, . . . , k̄0. If xk ∈ Bm, we have q(xk) ∈ Bm̃ from

|q(xk) − xk| ≤ ∆. Therefore we have xk 6∈ Bm for all k = 0, . . . , k̄0. However, if xk 6∈ Bm

for all k ≤ k̄0, then the Lyapunov function decreases as (19), and hence V (x(k̄0)) ≤ αm2. This

implies that |x(k̄0)| ≤ m, which leads to a contradiction.

From q(xk) ∈ Bm̃, we observe that xk ∈ Bm̄ and hence that xk ∈ Em̄. Fig. 1 illustrates the

regions used in this proof.

The invariance of EM ∩ X for the state trajectories can be proved as in Theorem 3.3. This

completes the proof.

In the input quantization case of Theorem 3.3, we use the original state for the adjustment of

the zoom parameter µ. By contrast, in the state quantization case, we can achieve the asymptotic

stability by adjusting µ with the quantized state.

Theorem 4.4: Consider the PWA system (20) with given Ki and gi. Let Assumptions 2.1 and

4.2 hold. Let the initial state x0 ∈ EM ∩X and the initial zoom parameter µ0 = 1. Assume that

(21) and (23) hold, and define

Ω :=

√
β

α
· m̄
M

< 1. (24)



EM

Em̄

State	  trajectory	

Bm̄
Bm̃

Bm {x : V (x)↵m2}

Fig. 1: The regions used in the proof

Adjust µ by µk = Ωµk−1 when qµk−1
(xk) gets to Bµk−1m̃, where m̃ := m +

√
n∆, and send to

the controller the quantized state qµk(xk) at time k. This event-based update strategy of µ leads

to xk → 0 (k →∞).

Proof: If we observe qk−1(xk) ∈ Bµk−1m̃ at time k, then xk ∈ Bµk−1m̄, where m̄ := m+2
√
n∆.

Hence we obtain xk ∈ EµkM after the update µk = Ωµk−1. The other part of the proof follows

in the same line as that of Theorem 3.3, so we omit it.

Remark 4.5: Another approach to stabilize the PWA system with the quantized state feedback

is to combine the plant and the quantizer. In this case, we consider the following PWA system:

xk+1 = Aixk +Biuk + fi (xk ∈ Xi)

yk = qj (xk ∈ Qj) (25)

uk = Kiyk + gi (xk ∈ Xi).

The difficulty of this approach is that we need to stabilize PWA systems with output feedback

yk = qj . Output feedback stabilization of PWA systems has been studied in [18] and the reference

therein, but the output structure in these previous works is yk = Cixk. In general, it is difficult

to design stabilizing controllers for the system (25). Moreover, if we adjust the quantizer, then

the system (25) becomes time varying. To avoid technical issues, we do not proceed along this

lines.



B. Strategy in Controller

As in [4, Section 7.2], a better quantization value can be computed in the controller side if the

state is near switching boundaries. For the recompution of a new quantization value, we make

the following assumption:

Assumption 4.6: The controller has the information on the switching regions {Xi}i∈S . All

quantization regions Qj are polyhedra.

If the quantized state q(xk) is in a quantization region that has no switching boundary, then

the controller uses q(xk). On the other hand, in order to achieve better performance, if the

corresponding quantization region contains a switching boundary, then the controller can generate

a new quantized value from the information on the quantized state and the currently active mode

as follows.

Let the switching region corresponding to the active mode be Xi and let the quantization

region of the transmitted quantized state be Qj . Then the state belongs to Xi ∩ Qj . Suppose

that Xi∩Qj is bounded. Otherwise, the controller does not recompute a new quantization value.

Since both regions are polyhedra, Xi ∩Qj is a polyhedron. Let us denote its closure by A .

Since x ∈ A, the controller computes a new quantized state

qnew := argmin
ξ∈Rn

max
x∈A
|ξ − x|∞,

which is the Chebyshev center of A.

The next theorem shows that qnew can be obtained by linear programming and that the

quantization error by using qnew as the new quantized state is always less than or equal to

the quantization level ∆ in (3).

Theorem 4.7: Let the vertices of A be v1, . . . , v`. The new quantization value qnew is computed

by the following linear program:

Minimize δ ≥ 0 such that there exists ξ ∈ Rn satisfying

ξ − vi ≤ δ1 and ξ − vi ≥ −δ1 for all i = 1, . . . , `. (26)

Moreover, if |x| < M , then qnew satisfies

max
x∈A
|qnew − x|∞ ≤ ∆.

Proof: It is well known that for every ξ ∈ Rn, maxx∈A |ξ − x|∞ = maxz∈{v1,...,v`} |ξ − x|∞;

see also Appendix. Hence the linear program (26) gives qnew.



Since A ⊂ Cl(Qj), it follows from (3) that if |x| ≤M , then

max
x∈A
|qnew − x|∞ = min

ξ∈Rn
max
x∈A
|ξ − x|∞

≤ min
ξ∈Rn

max
x∈Cl(Qj)

|ξ − x|∞

≤ max
x∈Cl(Qj)

|qj − x|∞ ≤ ∆,

where qj is the original quantization value of Qj .

Remark 4.8: (a) If the original quantization region Qj is a polyhedron, then the zoomed-in

quantization region {x ∈ Rn : qµ(x) = µqj} is also a polyhedron. We can therefore compute

the new quantization value qnew after adjusting the zoom parameter µ as well.

(b) The use of qnew does not affect the stability analysis in Theorems 4.3 and 4.4, because

its quantization error does not exceed ∆. To obtain qnew, we need to solve the linear program

(26). If the computation is not finished by the time when the control input is generated, then

the controller can use the original quantization value qj .

V. CONTROLLER SYNTHESIS FOR PWA SYSTEMS WITH BOUNDED DISTURBANCE

For quantized control, here we aim to find a feedback gain Ki and an affine term gi satisfying

(8) and (9) for every i ∈ S , j ∈ Si, and x ∈ Xi. To this effect, we show how to obtain a set

containing Si in (10) with less conservatism.

A. Difficulty of controller synthesis for PWA systems

Let us consider discrete-time PWA systems (1) with affine state feedback control (2) under no

quantization. Theorem 1 in [13] shows that in order to stabilize the PWA system (1), it is enough

to find a feedback gain Ki and an affine term gi for every i ∈ S such that (Ai +BiKi)x+ fi +

Bigi ∈ X (x ∈ Xi) and the piecewise Lyapunov function V (x) satisfies (8) and

V ((Ai+BiKi)x+fi +Bigi)−V (x) ≤ −γ|x|2 (x ∈ Xi) (27)

for some α, β, γ > 0.

Define V (x) := Vi(x) (x ∈ Xi), with a function Vi : Xi → R. The sufficient condition of (27)

used for the stability analysis in [12], [13] is that

Vj((Ai +BiKi)x+ fi +Bigi)− Vi(x) ≤ −γ|x|2 (28)



for all x ∈ Xi and j ∈ S with Xj∩Ri 6= 0, where Ri is the one-step reachable set defined in (5).

However, it is generally difficult to obtain Ki and gi satisfying this condition in a less conservative

way. This is because j, namely, the polyhedron to which (Ai +BiKi)x+ fi +Bigi may belong

is dependent of the unknown variables Ki, gi. To circumvent this difficulty, it is assumed, e.g.,

in [14]–[16] that the state can reach every polyhedron in one step, but this assumption makes

the controller synthesis conservative if disturbances are bounded. In addition to that, checking

the condition (28) for every pair (i, j) leads to computational complexity for PWA systems with

large number of modes. Therefore the objective here is to obtain a set to which the state go in

one step under bounded disturbance.

B. One-step reachable set for PWA systems with bounded disturbances

Consider a PWA system with bounded disturbances given by

xk+1 = Aixk +BiKixk + fi +Bigi +Didk (xk ∈ Xi)

= G(xk, Kixk + gi) +Didk, (29)

where the disturbance dk satisfies dk ∈ B∞∆ = {d ∈ Rd : |d|∞ ≤ ∆} for all k ≥ 0. The next

lemma gives a motivation of studying the set Si defined in (10) in terms of practical input-

state-stability in addition to quantized control in the previous sections. A proof is provided for

completeness.

Lemma 5.1: Let ∆ > 0. Define Ri := {Gi(x,Kix + gi) : x ∈ Xi} and Bi := {Did :

|d|∞ ≤ ∆}. For every i ∈ S, assume that Ri ⊕ Bi ⊂ X. If the piecewise Lyapunov function

V (x) := Vi(x) (x ∈ Xi), with a function Vi : Xi → R, satisfies (8) for some α, β > 0 and there

exist γ > 0 and ρ > 0 such that for every i ∈ S and j ∈ Si and for every x ∈ Xi and d ∈ B∞∆ ,

Vj((Ai +BiKi)x+ fi +Bigi +Did)− Vi(x) ≤ −γ|x|2 + ρ∆2, (30)

then we have

|xk|2 ≤
β

α
(1− ε)k|x0|2 +

ρ

αε
∆2, (31)

where ε := γ/β.

Proof: Since xk+1 ∈ Ri⊕Bi ⊂ X for all xk ∈ Xi, it follows that if xk ∈ Xi, then xk+1 ∈ Xj
for some j ∈ Si. Therefore (8) and (30) give

V (xk+1) ≤ (1− ε)V (xk) + ρ∆2,



and hence

V (xk) ≤ (1− ε)kV (x0) +
ρ

ε
∆2. (32)

Using (8) again, we obtain (31) from (32).

1) One-step reachable set with known Ki and gi: First we study the case when Ki and gi are

known. The lemma below gives a condition equivalent to Xj ∩
(
Ri ⊕ Bi

)
6= ∅ in the definition

(10) of Si.

Lemma 5.2: Define B := {Dd : |d|∞ ≤ ∆}. For arbitrary sets M1,M2 ⊂ Rn, we have

(M1 ⊕ B) ∩M2 6= ∅ ⇔ M1 ∩ (M2 ⊕ B) 6= ∅.

Proof: It suffices to show that if there exists ξ1 ∈ Rn satisfying ξ1 ∈ (M1 ⊕ B) ∩M2, then

we have ξ2 ∈ Rn such that

ξ2 ∈M1 ∩ (M2 ⊕ B) . (33)

Since ξ1 ∈ (M1 ⊕ B)∩M2, it follows that ξ1 = m1 +Dd for some m1 ∈M1 and for some

d ∈ B∞∆ , and also that ξ1 ∈M2. Moreover, since −Dd ∈ B, we have

m1 = ξ1 −Dd ∈M2 ⊕ B.

The desired conclusion (33) holds with ξ2 = m1.

We see from Lemma 5.2 that Xj ∩
(
Ri ⊕ Bi

)
6= 0 is equivalent to Ri ∩

(
Xj ⊕ Bi

)
6= ∅.

Therefore Si in (10) satisfies

Si =
{
j ∈ S : Ri ∩

(
Xj ⊕ Bi

)
6= ∅
}
.

The following theorem gives a set containing Si, which can be obtained by linear programing:

Theorem 5.3: Using suitable Ui and vi, we can write the closure of Xi as

Cl(Xi) = {x : Uix ≤ vi} (i ∈ S). (34)

Define Si as in (10). If we define S̄i by

S̄i :=
{
j ∈ S : Uix ≤ vi, d ≤ ∆1, d ≥ −∆1,

and Uj((Ai +BiKi)x+ fi +Bigi −Did) ≤ vj

for some x ∈ Rn and d ∈ Rd
}

(35)



then Si ⊂ S̄i.

Proof: First of all, we see that there exists x ∈ Rn satisfying both x ∈ Ri and x ∈ Xj ⊕ Bi
if and only if there exists x ∈ Xi such that Āix + f̄i ∈ Xj ⊕ Bi, where Āi := Ai + BiKi and

f̄i := fi +Bigi.

By definition, Āix+ f̄i ∈ Cl(Xj)⊕ Bi is equivalent to

Āix+ f̄i = z +Did

for some z ∈ Rn and d ∈ Rd satisfying Ujz ≤ vj and |d|∞ ≤ ∆. Therefore Āix+f̄i ∈ Cl(Xj)⊕Bi
is equivalent to

d ≤ ∆1, d ≥ −∆1, and Uj(Āix+ f̄i −Did) ≤ vj

for some d ∈ Rd.

Thus we obtain the following fact: If Ri ∩
(
Xj ⊕ Bi

)
6= ∅, then

Xi∩
{
x ∈ Rn : d ≤ ∆1, d ≥ −∆1, and Uj(Āix+ f̄i −Did) ≤ vj for some d ∈ Rd

}
6= ∅.

(36)

Noticing that j ∈ S satisfies (36) if and only if j ∈ S̄i, we have that Si ⊂ S̄i.

The conservatism of Theorem 5.3 is due to only Xj ⊂ Cl(Xj). If we allow more conservative

results, then we can use the set S̃i ⊃ Si below, which can be obtained with less computational

cost by removing the disturbance term d. A similar idea is used for the analysis of reachability

with bounded disturbance in [19].

Corollary 5.4: Let ū(l)
ji be the sum of the absolute value of the elements in l-th row of UjDi

and define v̄ji := [v̄
(1)
j,i . . . v̄

(nU )
j,i ]>, where nU is the number of rows of UjDi. If we define S̃i by

S̃i :=
{
j ∈ S : Uix ≤ vi and Uj((Ai +BiKi)x+ fi) ≤ vj + ∆v̄ji for some x ∈ Rn

}
,

(37)

then Si in (10) satisfies Si ⊂ S̃i.

Proof: It suffices to prove that

Xj ⊕ B∆ ⊂ {x ∈ Rn : Ujx ≤ vj + ∆v̄ji}. (38)

Indeed, if (38) holds, then Ri ∩
(
Xj ⊕ Bi

)
6= ∅ implies

Xi ∩ {x ∈ Rn : Uj(Āix+ f̄i) ≤ vj + ∆v̄ji} 6= ∅,



where Āi := Ai +BiKi and f̄i = fi +Bigi. This leads to Si ⊂ S̃i.

Let us study the first element of Uj(x+Did). Let U (1,l)
j , (UjDi)

(1,l), and v(1)
j be the (1, l)-th

entry of Uj , UjDi and the first entry of vj , respectively. Also let x(l) and d(l) be the l-th element

of x and d, respectively. If x ∈ Cl(Xj) and d ∈ B∞∆ , then the first element ξ(1)
ji of Uj(x+Did)

satisfies

ξ
(1)
ji =

n∑
l=1

(
U

(1,l)
j x(l) + (UjDi)

(1,l)d(l)
)
≤ v

(1)
j +

n∑
l=1

(UjDi)
(1,l)d(l) ≤ v

(1)
j + ∆v̄

(1)
ji . (39)

Since we have the same result for the other elements of Uj(x+Did), it follows that (38) holds.

2) One-step reachable set with unknown Ki and gi: Let us next investigate the case when

Ki and gi are unknown.

The set S̄i given in Theorem 5.3 works for stability analysis in the presence of bounded

disturbances, but S̄i is dependent on the feedback gain Ki and the affine term gi. Hence we

cannot use it for their design. Here we obtain a set Ti ⊃ Si, which does not depend on Ki, gi.

Moreover, we derive a sufficient condition on Ki, gi for the state to belong to a given polyhedron

in one step.

Let U be the polyhedron defined by

U := {u ∈ Rm : Ru ≤ r},

and we make an additional constraint that uk ∈ U for all k ≥ 0. Similarly to [20], using the

information on the input matrices Bi and the input bound U, we obtain a set independent of

Ki, gi to which the state belong in one step.

Theorem 5.5: Assume that for each i ∈ S, Ki ∈ Rn×m and gi ∈ Rm satisfy (Ai +BiKi)x+

fi + Bigi +Did ∈ X and Kix+ gi ∈ U if x ∈ Xi and d ∈ B∞∆ . Let the closure of Xi be given

by (34). Define

Ti :=
{
j ∈ S : Uix ≤ vi, Ru ≤ r, d ≤ ∆1, d ≥ −∆1,

and Uj(Aix+Biu+ fi +Did) ≤ vj

for some x ∈ Rn, u ∈ Rm, and d ∈ Rd
}
. (40)

Then we have

(Ai +BiKi)x+ fi +Bigi +Did ∈
∑
j∈Ti

Xj (41)



for all x ∈ Xi and d ∈ B∞∆ , and hence Si in (10) satisfies Si ⊂ Ti.

Proof: Define Gi(x) := (Ai +BiKi)x+ fi +Bigi. To show (41), it suffices to prove that for

all x ∈ Xi and d ∈ B∞∆ , there exists j ∈ Ti such that Gi(x) +Did ∈ Xj .

Suppose, on the contrary, that there exist x ∈ Xi and d ∈ B∞∆ such that Gi(x) + Did 6∈ Xj
for every j ∈ Ti. Since Gi(x) + Did ∈ X, it follows that Gi(x) + Did ∈ Xj for some j ∈ S.

Also, by definition

Ti =
{
j ∈ S : Aix+Biu+ fi +Did ∈ Cl(Xj) for some x∈Cl(Xi), u∈U, and d∈B∞∆

}
.

Since x ∈ Xi, u = Kix+ gi ∈ U, d ∈ B∞∆ , and Gi(x) +Did ∈ Xj , it follows that j ∈ Ti. Hence

we have Gi(x) + Did ∈ Xj for some j ∈ Ti. Thus we have a contradiction and (41) holds for

every x ∈ Xi and d ∈ B∞∆ .

Let us next prove Si ⊂ Ti. Let j ∈ Si. By definition, there exists x ∈ Xi and d ∈ B∞∆ such that

Gi(x) +Did ∈ Xj . Also, we see from (41) that there exists j̄ ∈ Ti such that Gi(x) +Did ∈ Xj̄ .

Hence we have Xj ∩ Xj̄ 6= ∅, which implies j = j̄. Thus we have Si ⊂ Ti.

See Remark 5.9 for the assumption that (Ai +BiKi)x+ fi +Did ∈ X and Kix+ gi ∈ U for

all x ∈ Xj .

Remark 5.6: (a) In Theorem 5.5, we have used the counterpart of S̄i given in Theorem 5.3,

but one can easily modify the theorem based on S̃i in Corollary 5.4.

(b) If Bi is full row rank, then for all x ∈ Cl(Xi), η ∈ Cl(Xj), and d ∈ B∞∆ , there exists

u ∈ Rm such that Biu = η − Aix− fi −Did. In this case, we have the trivial fact: Ti = S.

Theorem 5.5 ignores the affine feedback structure u = Kix + gi (x ∈ Xi), which makes this

theorem conservative. Since the one-step reachable set depends on the unknown parameters Ki

and gi, we cannot utilize the feedback structure unless we add some conditions on Ki and gi.

In the next theorem, we derive linear programming on Ki and gi for a bounded Xi, which is a

sufficient condition for the one-step reachable set under bounded disturbances to be contained

in a given polyhedron.

Theorem 5.7: Let a polyhedron Z = {x ∈ Rn : Φx ≤ φ}, and let Xi be a bounded

polyhedron. Let {ξi,1, . . . , ξi,Li
} and {d1, . . . , dη} be the vertices of Cl(Xi) and B∞∆ , respectively.

A matrix Ki ∈ Rn×m and a vector gi ∈ Rm satisfy (Ai +BiKi)x+ fi +Bigi +Did ∈ Z for all

x ∈ Xi and d ∈ B∆ if linear programming

Φ ((Ai +BiKi)ξi,h + fi +Bigi +Didν) ≤ φ (42)



is feasible for every h = 1, . . . , Li and for every ν = 1, . . . , η.

Proof: Define Gi(x) := (Ai +BiKi)x+ fi +Bigi. Relying on the results [21, Chap. 6] (see

also [22], [23]), we have

{Gi(x) +Did : x ∈ Cl(Xi), d ∈ B∆} = conv{Gi(ξi,h) +Didν , h = 1, . . . , Li, ν = 1, . . . , η},

where conv(S) means the convex hull of a set S. We therefore obtain Gi(x) +Did ∈ Z for all

x ∈ Cl(Xi) and d ∈ B∆ if and only if Gi(ξi,h)+Didν ∈ Z , or (42), holds for every h = 1, . . . , Li

and ν = 1, . . . , η. Thus the desired conclusion is derived.

Remark 5.8: (a) To use Theorem 5.7, we must design a polyhedron Z in advance. One

design guideline is to take Z such that Z ⊂
∑

j∈T̄i Xj for some T̄i ⊂ Ti, where Ti is defined in

Theorem 5.5.

(b) As in Theorem 5.3, the conservatism in Theorem 5.7 arises only from Xi ⊂ Cl(Xi).

(c) Theorem 5.7 gives a trade-off on computational complexity: In order to reduce the number

of pairs such that (9) holds, we need to solve the linear programming problem (42).

(d) When the state is quantized, then Di = BiKi in (29), and hence Di depends on Ki linearly.

In this case, however, Theorem 5.7 can be used for the controller design.

Remark 5.9: Assumptions 3.1, 4.2 and Theorem 5.5 require conditions on Ki and gi that

Gi(x,Kix) + Did ∈ X and Kix + gi ∈ U for all x ∈ Xi and all d ∈ B∞∆ . If X = Rn and

U = Rm, then these conditions always hold. If X 6= Rn but if Xi is a bounded polyhedron,

then Theorem 5.7 gives linear programming that is sufficient for Gi(x,Kix) +Did ∈ X to hold.

Also, Theorem 5.7 with Ai = Di = 0, Bi = I , and fi = 0 can be applied to Kix + gi ∈ U. If

Gi(x,Kix)+Did ∈ X and Kix+gi ∈ U hold for bounded X and U, then we can easily set the

quantization parameter M in (3) to avoid quantizer saturation. Similarly, we can use Theorem

5.7 for constraints on the state and the input.

By Theorems 5.5 and 5.7, we obtain linear programing on Ki and gi for a set containing the

one-step reachable set under bounded disturbances. However, in LMI conditions of [14], [15]

for (8) and (9), Ki is obtained via the variable transformation Ki = YiQ
−1
i , where Yi and Qi are

auxiliary variables. Without variable transformation/elimination, we obtain only BMI conditions

for (9) to hold as in Theorem 7.2.2 of [16]. The following theorem also gives BMI conditions

on Ki for (8) and (9) to hold, but we can apply the cone complementary linearization (CCL)

algorithm [24] to these BMI conditions:



Theorem 5.10: Consider the PWA system (29) with control affine term gi = 0. Let a matrix

Ei satisfy Xi ⊂ {x ∈ Rn : Eix ≥ 0}. If fi = 0 and Di = 0 and if there exist Pi, Qi > 0, Ki,

and Mij with all elements non-negative such thatPi − E>i MijEi (Ai +BiKi)
>

∗ Qj

 � 0,

Pi I

I Qi

 � 0, (43)

and trace(PiQi) = 2n hold for all i ∈ S and j ∈ Si, then there exist α, β, γi > 0 such that

V (x) := x>Pix (x ∈ Xi) satisfies (8) and (9) for every i ∈ S, j ∈ Si, and x ∈ Xi.

Furthermore, consider the case fi 6= 0 and Di 6= 0. For given ν1, ν2 > 0 with ν1ν2 > 1, if

there exist Pi, Qi > 0, Ki, and Mij with all elements non-negative such that
Pi − E>i MijEi −(Ai +BiKi)

> −(Ai +BiKi)
> (Ai +BiKi)

>

∗ ν1Qj −Qj 0

∗ ∗ ν2Qj 0

∗ ∗ ∗ Qj

 � 0,

Pi I

I Qi

 � 0,

(44)

and trace(PiQi) = 2n hold for all i ∈ S and j ∈ Si, then there exist α, β, γ, ρ > 0 such that

V (x) := x>Pix (x ∈ Xi) satisfies (8) and (30) for every i ∈ S, j ∈ Si, and x ∈ Xi.

Proof: Since the positive definiteness of Pi implies (8), it is enough to show that (43) and

(44) lead to (9) and (30), respectively.

For Pi, Qi > 0 satisfying the second LMI in (43) and (44), we have trace(PiQi) ≥ 2n.

Furthermore, trace(PiQi) = 2n if and only if PiQi = I . Define Āi = Ai +BiKi.

Applying the Schur complement formula to the LMI condition in (43), we have

Pi − Ā>i PjĀi − E>i MijEi � 0.

Since Eix ≥ 0, there exists γi > 0 such that Vi(x)− Vj(Āix) > γi|x|2 for every x ∈ Xi. Hence

we obtain (9).

As regards (44), it follows from Theorem 3.1 in [15] that (30) holds for some γ, ρ > 0 if
Pi − Ā>i PjĀi − E>i MijEi −Ā>i Pj −Ā>i Pj

∗ ν1Pj −Pj
∗ ∗ ν2Pj

 � 0.

Pre- and post-multiplying diag(I, P−1
i , P−1

i ) and using the Schur complement formula, we obtain

the first LMI in (44).



Since min(trace(PiQi)) = 2n, the conditions in Theorem 5.10 are feasible if the problem of

minimizing trace (
∑s

i=1 PiQi) under (43)/(44) has a solution 2ns. In addition to LMIs (43) and

(44), we can consider linear programming (42) for the constraint on the one-step reachable set.

The CCL algorithm solves this constrained minimization problem. The CCL algorithm may not

find the global optimal solution, but, in general, we can solve the minimization problem in a

more computationally efficient way than the original non-convex feasibility problem [25].

VI. NUMERICAL EXAMPLE

Consider a PWA system in (20) with quantized state feedback, where

A1 = A3 =

0.5 −0.4

0 2

 , A2 = A4 =

 2 0

−1 1

 , A5 = A6 =

0.5 −0.1

1 2


B1 = B3 = B5 = B6 =

0

1

 , B2 = B4 =

−1

0.5

 , f1 = f2 = f3 = f4 = f5 = f6 = 0.

The matrix Ui and the vector vi in (34) characterizing the region Xi are given by

U1 = −U3 =


1 −1

1 1

−1 0

1 0

 , U2 = −U4 =


1 −1

−1 −1

0 1

 , U5 = −U6 =


1 −1

1 1

−1 0



v1 = v3 =


0

0

1

−0.3

 , v2 = v4 =


0

0

1

 , v5 = v6 =


0

0

0.3

 .

Let X =
∑6

i=1Xi = {x ∈ R2 : |x|∞ ≤ 1}, and let us use a uniform-type quantizer whose

parameters in (3) are M = 1.5 and ∆ = 0.01 . By using Theorems 5.7 and 5.10, we designed

feedback gains Ki such that the Lyapunov function V (x) := x>Pix (x ∈ Xi) satisfies (8) and

(9) for every i ∈ S, j ∈ Si, and x ∈ Xi, and the following constraint conditions hold

xk+1 ∈ X2 for all xk ∈ X1, (45)

xk+1 ∈ X4 for all xk ∈ X3, and (46)

xk+1 ∈ X for all xk ∈ X. (47)
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Fig. 2: Simulation result

The resulting Ki were given by

K1 = K3 =
[
−0.6140 −1.6368

]
, K2 = K4 =

[
1.9995 −0.5244

]
K5 = K6 =

[
−0.9980 −1.9967

]
,

and we obtained the decease rate Ω = 0.7725 in (24) of the “zoom” parameter µ with εij = 0.01

and δij = 0.49.

Fig. 2 shows the state trajectories with initial states on the boundaries x1 = 1 and x2 = 1.

We observe that all trajectories converges to the origin and that the constraint conditions (46)

and (47) are satisfied in the presence of quantization errors.

VII. CONCLUSION

We have provided an encoding strategy for the stabilization of PWA systems with quan-

tized signals. For the stability of the closed-loop system, we have shown that the piecewise

quadratic Lyapunov function decreases in the presence of quantization errors. For the design of

quantized feedback controllers, we have also studied the stabilization problem of PWA systems

with bounded disturbances. In order to reduce the conservatism and the computational cost of

controller designs, we have investigated the one-step reachable set.



APPENDIX

Here we give the proof of the following proposition for completeness:

Proposition A: Let A ⊂ Rn be a bounded and closed polyhedron, and let v1, . . . , v` be the

vertices of A. For every ξ ∈ Rn, we have

max
x∈A
|ξ − x|∞ = max

x∈{v1,...,v`}
|ξ − x|∞.

Proof: Choose x ∈ A arbitrarily, and let

x =
∑̀
p=1

apvp, ap ≥ 0,
∑̀
p=1

ap = 1.

Let n-th entry of ξ, x, and vp be ξ(n), x(n), and v(n)
p , respectively. For every n, we have

|ξ(n)−x(n)| ≤
∑̀
p=1

ap
∣∣ξ(n)−v(n)

p

∣∣≤max
n

max
p

∣∣ξ(n)−v(n)
p

∣∣ .
Hence |ξ − x|∞ ≤ maxn maxp |ξ(n) − v(n)

p | = maxp |ξ − vp|∞ . This completes the proof.

ACKNOWLEDGMENT

The first author would like to thank Dr. K. Okano of University California, Santa Barbara

for helpful discussions on quantized control for PWA systems. The authors are also grateful to

anonymous reviewers whose comments greatly improved this paper.

REFERENCES

[1] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback control under data rate constraints: An overview,” Proc.

IEEE, vol. 95, pp. 108–137, 2007.

[2] H. Ishii and K. Tsumura, “Data rate limitations in feedback control over network,” IEICE Trans. Fundamentals, vol. E95-A,

pp. 680–690, 2012.

[3] M. Wakaiki and Y. Yamamoto, “Quantized feedback stabilization of sampled-data switched linear systems,” in Proc. 19th

IFAC WC, 2014.

[4] D. Liberzon, “Finite data-rate feedback stabilization of switched and hybrid linear systems,” Automatica, vol. 50, pp.

409–420, 2014.

[5] M. Wakaiki and Y. Yamamoto, “Output feedback stabilization of switched linear systems with limited information,” in

Proc. 53rd IEEE CDC, 2014.

[6] G. Yang and D. Liberzon, “Stabilizing a switched linear system with disturbance by sampled-data quantized feedback,” in

Proc. ACC’15, 2015.

[7] M. Wakaiki and Y. Yamamoto, “Quantized output feedback stabilization of switched linear systems,” in Proc. MTNS’14,

2014.



[8] R. W. Brockett and D. Liberzon, “Quantized feedback stabilization of linear systems,” IEEE Trans. Automat. Control,

vol. 45, pp. 1279–1289, 2000.

[9] D. Liberzon, “Hybrid feedback stabilization of systems with quantized signals,” Automatica, vol. 39, pp. 1543–1554, 2003.

[10] M. Xiaowu and G. Yang, “Global input-to-state stabilization with quantized feedback for discrete-time piecewise affine

systems with time delays,” J. Syst. Sci. Complexity, vol. 26, pp. 925–939, 2013.

[11] D. Liberzon, “Nonlinear stabilization by hybrid quantized feedback,” in Proc. HSCC’00, 2000.

[12] G. Feng, “Stability analysis of piecewise discrete-time linear systems,” IEEE Trans. Automat. Control, vol. 47, pp. 1108–

1112, 2002.

[13] G. Ferrari-Trecate, F. A. Cuzzola, D. Mignone, and M. Morari, “Analysis of discrete-time piecewise affine and hybrid

systems,” Automatica, vol. 38, pp. 2139–2146, 2002.

[14] F. A. Cuzzola and M. Morari, “An LMI approach for H∞ analysis and control of discrete-time piecewise affine systems,”

Int. J. Control, vol. 75, pp. 1293–1301, 2002.

[15] M. Lazar and W. P. M. H. Heemels, “Global input-to-state stability and stabilization of discrete-time piecewise affine

systems,” Non, vol. 2, pp. 721–734, 2008.

[16] J. Xu and L. Xie, Control and Estimation of Piecewise Affine Systems. Woodhead Publishing, 2014.

[17] F. Bullo and D. Liberzon, “Quantized control via locational optimization,” IEEE Trans. Automat. Control, vol. 51, pp.

2–13, 2006.

[18] J. Qiu, G. Feng, and H. Gao, “Approaches to robust H∞ static output feedback control of discrete-time piecewise-affine

systems with norm-bounded uncertainties,” Int. J. Robust and Nonlinear Control, vol. 21, pp. 790–814, 2011.

[19] Z. Lin, M. Wu, and G. Yan, “Reachability and stabilization of discrete-time affine systems with disturbances,” Automatica,

vol. 47, pp. 2720–2727, 2011.

[20] A. Bemporad, F. D. Torrisi, and M. Morari, “Optimization-based verification and stability characterization of piecewise

affine and hybrid systems,” in Proc. HSCC’00, 2000.

[21] F. Blanchini and S. Miani, Set-Theory Methods in Control. Berlin, Germany: Springer, 2008.

[22] B. R. Barmish and J. Sankaran, “The propagation of parametric uncertainty via polytopes,” IEEE Trans. Automat. Control,

vol. 24, pp. 346–349, 1979.

[23] M. Rubagotti, S. Trimboli, and A. Bemporad, “Stability and invariance analysis of uncertain discrete-time piecewise affine

systems,” IEEE Trans. Automat. Control, vol. 58, pp. 2359–2365, 2013.

[24] L. E. Ghaoui, F. Oustry, and M. AitRami, “A cone complementarity linearization algorithm for static output-feedback and

related problems,” IEEE Trans. Automat. Control, vol. 42, pp. 1171–1176, 1997.

[25] M. C. de Oliveria and J. C. Geromel, “Numerical comparison of output feedback design methods,” in Proc. ACC’97, 1997.


	I Introduction
	II Quantized Control of PWA systems
	II-A Quantizers
	II-B Assumption on stability

	III Input Quantization Case
	IV State Quantization Case
	IV-A Stability analysis
	IV-B Strategy in Controller

	V Controller Synthesis for PWA systems with Bounded Disturbance
	V-A Difficulty of controller synthesis for PWA systems
	V-B One-step reachable set for PWA systems with bounded disturbances
	V-B.1 One-step reachable set with known Ki and gi
	V-B.2 One-step reachable set with unknown Ki and gi


	VI Numerical Example
	VII Conclusion
	Appendix
	References

