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Computation of Linear Comparison Equations for Stability A nalysis of
Interconnected Systems

Soumya Kundu and Marian Anghel

Abstract— Sum-of-squares (SOS) methods have been shown
to be very useful in computing polynomial Lyapunov functions
for systems of reasonably small size. However for large scale
systems it is necessary to use a scalable alternative using vector
Lyapunov functions. Earlier works have shown that under
certain conditions the stability of an interconnected system can
be studied through suitable comparison equations. However
finding such comparison equations can be non-trivial. In this
work we propose an SOS based systematic procedure to directly
compute the comparison equations for interconnected system
with polynomial dynamics. With an example of interacting Van
der Pol systems, we illustrate how this facilitates a scalable and
parallel approach to stability analysis.

I. INTRODUCTION

Lyapunov functions methods have long been used in
studying stability properties of dynamical systems [1], [2].
Finding a Lyapunov function for a given dynamical system,
however, is often not an easy task. Recent advances in sum-
of-squares (SOS) methods and semi-definite programming,
[3]–[5], have enabled algorithmic construction of polynomial
Lyapunov functions [6], [7]. However such sum-of-squares
based computational methods become intractable as the
system size grows to larger than 6-8 states [8], [9].

It is useful to model large-scale systems in the form
of many interacting subsystems and study the stability of
the full interconnected system using only the subsystem
Lyapunov functions. There are different functional forms for
the Lyapunov function of the interconnected system, such as
a scalar Lyapunov function expressed as a weighted sum
of the subsystem Lyapunov functions, or applications of
vector Lyapunov functions and comparison principles [10]–
[13]. Particularly the formulations using vector Lyapunov
functions are computationally very attractive because of their
parallel structure and scalability. Based upon the resultson
comparison equations [14]–[16], the authors in [17], [18]
introduced the concept of vector Lyapunov functions. It was
shown that if the subsystem Lyapunov functions and the
interactions satisfy certain conditions, then the stability of
the interconnected system can be studied by analyzing the
stability of a set of linear ordinary differential equations.
However computing these comparison equations, for a given
interconnected system, still remained a challenge. In absence
of suitable computational tools, analytical insights wereused
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to build those comparison equations, such as the trigonomet-
ric inequalities in power systems network [19].

In this work we use the sum-of-squares and semi-definite
programming methods to study the stability of an inter-
connected system by computing the comparison equations.
While this approach is applicable to any generic dynam-
ical system, we choose a randomly generated network of
modified1 Van der Pol oscillators for illustration. Each Van
der Pol oscillator can be represented as a two-state system
with state dynamic equations as polynomials of degree three
[20]. The network is then decomposed into many interacting
subsystems. Each subsystem parameters are so chosen that
individually each subsystem is stable, when the disturbances
from neighbors are zero. SOS based expanding interior
algorithm [6], [7] is used to obtain estimate of region of
attraction as sub-level sets of polynomial Lyapunov functions
for each such subsystem. Finally SOS optimization is used to
compute the linear comparison equation to certify stability of
the network under disturbances. Following some brief back-
ground in Sec. II we outline the problem statement in Sec. III.
We present the SOS-based direct approach to computing the
comparison equations in Sec. IV. Sec. V shows an application
of comparison equations to stability analysis of a network of
Van der Pol systems. We conclude the article in Sec. VI.

II. BASIC CONCEPTS AND BACKGROUND

A. Lyapunov Stability Methods

Let us consider the dynamical system

ẋ(t) = f (x(t)) , t ≥ 0, x∈ R
n, f (0) = 0, (1)

with an equilibrium at the origin2, and f :Rn →R
n is locally

Lipschitz. The important notions of stability are:

Definition 1 The equilibrium point at origin is called

1) stable in the sense of Lyapunov (i.s.L) if

∀ε>0,∃δ >0 s.t. ‖x(0)‖2<δ =⇒‖x(t)‖2<ε ∀t,

2) asymptotically stable if it is stable i.s.L, and

∃δ̃ >0 s.t. ‖x(0)‖2< δ̃ =⇒ lim
t→+∞

‖x(t)‖2 = 0,

3) exponentially stable if it is asymptotically stable, and

∃b,c, δ̂>0 s.t. ‖x(0)‖2<δ̂ =⇒‖x(t)‖2<ce−bt‖x(0)‖2 ∀t

1We choose the Van der Pol ‘oscillator’ parameters in such a way that
these have a stable equilibrium at origin.

2Note that this is not a restrictive assumption, since by shifting of state
variables, the origin can always be made an equilibrium point.
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The Lyapunov stability theorem [1], [21], also called Lya-
punov’s first or direct method, presents a sufficient condition
of stability through the construction of a certain positive
definite function.

Theorem 1 The equilbrium point x= 0 of the dynamical
system in (1) is stable i.s.L inD ⊆ R

n, if there exists a
continuously differentiable positive definite functionṼ : D →
R (henceforth referred to as Lyapunov function) such that,

Ṽ (0) = 0, (2a)

Ṽ (x)> 0,∀x∈ D\{0} , (2b)

and, − ˙̃V (x)≥ 0,∀x∈ D . (2c)

If Ṽ satisfies− ˙̃V(x) > 0,∀x∈ D\{0}, then the equilibrium
point at origin is asymptotically stable inD . Further, the
origin is exponentially stable3 in D ∈R

n if

∃α > 0, s.t. − ˙̃V (x)≥ αṼ (x) ,∀x∈ D . (3)

Here ˙̃V(x) = ∇ṼT f (x). When there exists such a function
Ṽ (x), the region of attraction (ROA) of the stable equilibrium
point at origin can be (conservatively) estimated as

R :=
{

x∈ D
∣

∣Ṽ(x)≤ γmax} , (4a)

where,γmax := argmax
γ

{

x∈R
n
∣

∣Ṽ(x)≤ γ
}

⊆ D . (4b)

The Lyapunov function can be scaled byγmax, so that,

R :={x∈ R
n |V(x)≤ 1} , (5a)

where,V(x) = Ṽ(x)/γmax. (5b)

Henceforth, for simplicity, we would assume, without any
serious loss of generality, that the ROA is estimated to be
sub-level set ofV(x) = 1.

B. Sum-of-Squares and Positivstellensatz Theorem

Relatively recent studies have shown that sum-of-squares
based optimization techniques can be utilized in finding
Lyapunov functions by restricting the search space to sum-
of-square polynomials [6], [7], [22], [23]. Let us denote by
R [x] the set of all polynomials inx∈ R

n. Then,

Definition 2 A multivariate polynomial p∈ R[x], x∈ R
n, is

called a sum-of-squares (SOS) if there exists hi ∈ R[x], i ∈
{1,2, . . . , r}, such that p(x) =∑r

i=1h2
i (x). Further, we denote

the set of all SOS polynomials in x∈ R
n by Σ[x].

Checking if p∈ R[x] is an SOS is a semi-definite problem
which can be solved with a MATLABR© toolbox SOS-
TOOLS [3], [4] along with a semidefinite programming
solver such as SeDuMi [5]. SOS technique can be used to
search for polynomial Lyapunov functions, by translating (2)
to equivalent SOS conditions [3], [4], [6], [24]–[27]. An
important result from algebraic geometry called Putinar’s
Positivstellensatz theorem [28], [29] helps in translating the

3We will be referring toα > 0 in (3) as the ‘self-decay rate’.

SOS conditions into SOS feasibility problems. Then the
Putinar’s Positivestellensatz theorem4 states,

Theorem 2 Let K = {x∈ R
n |u1(x)≥ 0, . . . ,um(x)≥ 0} be

a compact set, where uj ∈ R[x], ∀ j ∈ {1, . . . ,m}. Suppose

∃u∈R[x], so that,

{

u∈
{

σ0+∑ j σ ju j
∣

∣σ0,σ j∈Σ[x],∀ j
}

& {x∈ R
n |u(x)≥ 0} is compact.

(6)

If p(x)>0, ∀x∈K , then p∈
{

σ0+∑ j σ ju j
∣

∣σ0,σ j∈Σ[x],∀ j
}

.

Often for theui , ∀i, used in this work, the existence ofu(x)
in (6) would be guaranteed [29].

C. Linear Comparison Principle

Before finishing this section, let us take a look at a nice
result on the ordinary differential equations which helps
form the framework of stability analysis of inter-connected
systems via vector Lyapunov functions. Noting that all the
elements of the vectoreAt, t ≥ 0, whereA = [ai j ] ∈ R

m×m,
are non-negative if and only ifai j ≥ 0, i 6= j, the authors in
[16], [17] proposed the following result:

Lemma 1 Let A= [ai j ] ∈R
m×m have only non-negative off-

diagonal elements, i.e. ai j ≥ 0, i 6= j. Then

v̇(t)≤ Av(t), t ≥ 0, v∈ R
n, v(0) = v0, (7)

implies v(t)≤ w(t), ∀t ≥ 0, where

ẇ(t) = Aw(t), t ≥ 0, w∈ R
n, w(0) = v(0) = v0. (8)

This result will henceforth be referred to as the ‘linear
comparison principle’ and the differential equation in (8)as
the ‘comparison equation’.

III. PROBLEM DESCRIPTION

For the rest of this work, let us make the simplifying
assumption that the dynamical system in (1) is in polynomial
form5, denoted byf ∈ R[x]n, and that the system in (1) is
(locally) asymptotically stable.

A. Decomposed System Model

The dynamical system in (1) can be expressed in the form
of m (≥ 2) interacting, and asymptotically stable subsystems

∀i = 1,2, . . . ,m,

Si : ẋi = fi(xi)+gi(x), xi ∈R
ni , x∈ R

n (9a)

fi(0) = 0, (9b)

gi(x̂i) = 0, ∀x̂i ∈
{

x∈ R
n
∣

∣ x j =0,∀ j 6= i
}

(9c)

where,x=
(

xT
1 ,x

T
2 , . . . ,x

T
m

)T ∈ R
n (9d)

andn=
m

∑
i=1

ni , xi ∩x j = /0. (9e)

4For other versions of the Positivstellensatz theorem please refer to [29].
5Non-polynomial dynamics can be recasted into an equivalentpolynomial

form, with introduction of additional state variables and suitable equality
constraints [7], [24], [26], [30].



Herexi represents the states that belong to thei-th subsystem
Si , fi ∈R[xi ]

ni denotes the isolated subsystem dynamics, and
gi ∈ R[x]ni represents the neighbor interactions.

Let us assume that the interactions can be expressed as

∀i ∈ {1,2, . . . ,m} , gi(x) = ∑
j 6=i

gi j (xi ,x j) , (10)

wheregi j ∈ R[xi ,x j ]
ni quantifies how subsystemS j affects

the dynamics of subsystemSi . Note that (10) is not a very
restrictive assumption, since given the choice of statesxi of
the subsystemSi , the rest of the subsystems can always be
chosen in a way such that (10) holds. We denote by

Ni := {i}∪
{

j
∣

∣ ∃
{

xi ,x j
}

, s.t. gi j (xi ,x j) 6= 0
}

(11a)

and x̄i :=
⋃

j∈Ni

x j , (11b)

the set of indices of the subsystems in the neighborhood of
Si (including the subsystem itself) and the states that belong
to this neighborhood, respectively.

The next step is to characterize the stability properties of
the isolated subsystems

∀i ∈ {1,2, . . . ,m} , ẋi = fi(xi), xi ∈ R
ni .

by computing a polynomial Lyapunov functionVi ∈R [xi ] for
eachi, and the corresponding estimate of the ROA as in (5).
An SOS basedexpanding interior algorithm, [6], [7], is used
to iteratively enlarge the estimate of the ROA by finding a
‘better’ Lyapunov function at each step of the algorithm. At
the completion of this iterative algorithm, the stability of each
isolated subsystem (assuming no interaction) is quantifiedby
its Lyapunov functionVi ∈R[xi ], with a final estimate of the
domain of attraction given by

R
0
i := {xi ∈ R

ni |Vi(xi)≤ 1} , ∀i = 1,2, . . . ,m. (12)

B. Stability under Interactions

Let us define the domain

R
0 :=

{

x∈ R
n
∣

∣ xi ∈ R
0
i , ∀i = 1,2, . . . ,m

}

, (13)

which could be interpreted as the ROA of the ‘free’ intercon-
nected system (9), in absence of the all the interactions. The
disturbances coming from the neighbors can be expressed
by the subsystem Lyapunov function level-sets. While the
equilibrium at origin corresponds to the level setsVi(0) =
0,∀i, any disturbance (or initial condition) away from this
equilibrium would result in positive level-setsVi(xi(0)) =
γ0
i ∈ (0,1] for some or all of the subsystems.

A necessary and sufficient condition of asymptotic stabil-
ity (Definition 1) can then be translated into the condition

∀i, Vi(xi(0)) = γ0
i =⇒ ∀i, lim

t→+∞
Vi(xi(t)) = 0, (14)

where xi(t), t > 0, are solutions of the coupled dynamics
in (9). Even though (14) reduces the dimensionality of the
problem, it still remains a generally non-trivial problem.An
attractive, and scalable, alternative approach is to construct
a vector Lyapunov functionV : Rn → R

m

V(x) := [V1(x1) V2(x2) . . . Vm(xm)]
T , (15)

and use a comparison equation to certify if the condition
(14) holds. Restricting our focus to the linear comparison
principle (Lemma 1), the aim is to seek anA= [ai j ]∈R

m×m

and a domainD ⊂ R0, such that

V̇(x)≤ AV(x), ∀x∈ D ⊂ R
0, (16a)

where, ai j ≥ 0 ∀i 6= j , (16b)

A= [ai j ] is Hurwitz, and (16c)

D is invariant under the dynamics (1). (16d)

If there exist a ‘comparison matrix’A= [ai j ] and D ⊂ R0

satisfying (16), then anyx(0)∈D would guarantee exponen-
tially convergence ofV(x(t)) to the origin (Lemma 1),

∃b,c>0 s.t. ‖V(x(t))‖2< ce−bt ‖V(x(0))‖2 , ∀t>0, (17)

which also translates into exponential convergence of the
states themselves [10]. Note that,D ⊂R0, if exists, presents
an estimate of the ROA of the full interconnected system.

IV. COMPUTING THE COMPARISON EQUATION

A. Traditional Approach

In [10], [11], [13], [19], and related works, authors laid out
a formulation of the linear comparison equation using certain
conditions on the Lyapunov functions and the neighbor
interactions. It was observed that if there exists a set of
Lyapunov functions,vi :Rni →R , ∀ i = 1,2, . . . ,m, satisfying
the following conditions

∀i ∈ {1,2, . . . ,m} , ∃ η̃i1, η̃i2, η̃i3 > 0 such that,

∀xi ∈ Di⊂R
0
i , η̃i1‖xi‖2 ≤ vi(xi)≤ η̃i2‖xi‖2 (18a)

and (∇vi)
T fi ≤−η̃i3‖xi‖2 (18b)

and if the interaction terms in (10) satisfy

∀i ∈{1, . . . ,m} , ∀ j∈Ni\{i} , ∃ζ̃i j > 0 such that,

∀xi ∈Di , ∀x j ∈D j ,
∥

∥

∥
(∇vi)

Tgi j

∥

∥

∥

2
≤ ζ̃i j

∥

∥x j
∥

∥

2 , (19)

then the following comparison equation can be formed,

∀x(t)∈D , v̇(x(t))≤ Ãv(x(t)) , Ã= [ãi j ] ∈ R
m×m (20a)

where,v(x) = [v1(x1) v2(x2) . . . vm(xm)]
T, (20b)

D = {x∈ R
n|xi ∈ Di , ∀i∈{1, . . . ,m}}⊂ R

0, (20c)

and ãi j =







−η̃i3/η̃i2, j= i
ζ̃i j /η̃ j1, j∈Ni\{i}

0, j /∈ Ni

, ∀ i,∀ j (20d)

If the ‘comparison matrix’Ã = [ãi j ] is Hurwitz, then any
invariant domainR ⊆ D provides an estimate of a region of
exponential stability of the full system [11], [19].

B. Motivation for Direct Approach

While this approach provides very useful analytical in-
sights into the construction of the comparison matrixÃ =
[ãi j ], it has certain computational issues. This requires finding
the bounds in (18) and (19), and also the Lyapunov functions
vi , ∀ i, that satisfy those. Clearly the polynomial Lyapunov
functions,Vi ∀ i, cannot satisfy the linear bounds in (18).



Assuming that the polynomial Lyapunov functions,Vi ∀ i,
we found using theexpanding interior algorithm(Sec. III-A)
are quadratic, we can definevi :=

√
Vi , ∀ i, which would

satisfy the conditions in (18) [11], [19]. In such a case, one
needs to find the following bounds,

∀i,∀ j ∈ Ni\{i} ,∀xi ∈ Di ,∀x j ∈ D j ,

ηi1‖xi‖2
2 ≤Vi(xi)≤ ηi2‖xi‖2

2 , (21a)

∇VT
i fi ≤−ηi3‖xi‖2

2 , (21b)

and
∥

∥∇VT
i gi j

∥

∥

2 ≤ ζi j ‖xi‖2

∥

∥x j
∥

∥

2 , (21c)

for some positive scalarsηi1,ηi2,ηi3,ζi j . Then using simple
algebra the bounds in (18) and (19) can be obtained as

∀i, ∀ j ∈ Ni\{i} , η̃i1 =
√

ηi1 , η̃i2 =
√

ηi2 , (22a)

η̃i3 =
ηi3

2
√ηi2

and ζ̃i j =
ζi j

2
√ηi1

. (22b)

Thus the computation of each element of the comparison
matrix Ã in (20) requires multiple optimization steps.

We may also note that some of the bounds in (18) and (19),
while convenient for analytical insights, need not be optimal
for computing a Hurwitz comparison matrix. For example, in
(19),

∥

∥∇vT
i gi j

∥

∥

2 is function of bothxi andx j but is bounded
by using only the norm onx j .

C. SOS Based Direct Approach

We propose to use SOS methods to directly compute
the comparison equation in (16), in a decentralized way by
calculating each row ofA= [ai j ] directly at each subsystem
level. Note that, in (16), we will be using quadratic (or,
in general, polynomial) Lyapunov functions which do not
satisfy the bounds (18)-(19). But we may observe that,

Lemma 2 If there exist Lyapunov functions vi , for each i∈
{1,2, . . . ,m} , satisfying the comparison equation in(20a)-
(20b), for some matrixÃ= [ãi j ] with

ãi j ≥ 0 ∀ i 6= j , and
m

∑
j=1

ãi j < 0 ∀i ,

then there exists another matrix A= [ai j ] satisfying the
comparison equation(16a)with Vi := v2

i , ∀ i , with

ai j ≥ 0 ∀ i 6= j , and
m

∑
j=1

ai j <
m

∑
j=1

ãi j < 0 ∀i .

Proof: Please refer to Appendix A.
It will be useful to note here that, an application of Gersh-
gorin’s Circle theorem [31] says that if a matrix with negative
diagonal elements is strictly diagonally dominant6 then the
matrix is Hurwitz. We are now in a position to outline the
SOS based procedure to directly compute the matrixA= [ai j ]
in the comparison equation (16).

6A= [ai j ] is strictly diagonally dominant if∑ j 6=i

∣

∣ai j
∣

∣< |aii | ,∀i.

In this work, we are interested inDi ,∀ i, of the form,

∀i, Di :=
{

xi ∈ R
ni
∣

∣Vi(xi)≤ γ0
i

}

, γ0
i ∈ (0,1) , (23a)

and,D :=

{

x∈R
n

∣

∣

∣

∣

∣

⋂

i

Vi(xi)≤ γ0
i

}

. (23b)

Note that we exclude the boundary of the isolated subsystem
ROA, γ0

i = 1∀ i, for reasons explained later. The comparison
equation in (16a) can then be translated into

∀ i , V̇i(xi)≤
m

∑
j=1

ai jVj(x j), ∀x∈ D , (24a)

i.e., V̇i ≤ ∑
j∈Ni

ai jVj , whenVj ≤ γ0
j ∀ j ∈ Ni , (24b)

since we know thatai j = 0 ∀ j /∈ Ni . Using the Positivstel-
lensatz theorem (Theorem 2), withui :=

(

γ0
i −Vi(xi)

)

and
K = D , we can cast (24) into an SOS feasibility problem,

−∇VT
i ( fi +gi)+ ∑

j∈Ni

(

ai jVj −σi j
(

γ0
j −Vj

))

∈ Σ[x̄i ] (25a)

with σi j ∈ Σ[x̄i ], ∀i ∈ {1,2, . . . , .m} ,∀ j ∈ Ni . (25b)

wherex̄i was defined in (11). The goal is to find the ‘optimal’
scalarsai j ∀i, j ∈Ni satisfying (25) so as to obtain the tightest
possible bound in (16a). We can thus formulate the following
SOS optimization problem,

∀i ∈ {1,2, . . . ,m} , min
σi j

∑
j∈Ni

ai j , subject to (25). (26)

This simple SOS formulation helps us find the comparison
equation (16) in a decentralized way, by computing each row
of the comparison matrixA= [ai j ] in a single optimization
problem at each subsystem level. The optimization problem
can be easily implemented on a parallel platform, with the
complexity of the problem essentially dependent on the size
of the largest neighborhoodNi .

Further note that, if the minimal values of all the row-sums
in (26) are negative, then the matrixA= [ai j ] thus found is a
strictly diagonally dominant with negative diagonal entries,
and hence, Hurwitz [31]. However, if∑m

j=1ai j ≥ 0 for any i,
then the eigenvalues ofA= [ai j ] need to be computed.

Finally a note on invariance of the domainD , which along
with the presence of HurwitzA= [ai j ] guarantees thatD is a
domain of exponential stability, as noted in (16). According
to [11], an estimate of the ROA can be given by

R :=

{

x∈ D

∣

∣

∣

∣

∣

max
i

(

Vi(xi)

pi

)

≤ min
j

(

γ0
j

p j

)}

, (27a)

where,pi > 0, ∀i ∈ {1,2, . . . ,m} , (27b)

andAp< 0, p := (p1, p2, . . . , pm)
T . (27c)

Then it is easy to see that,

R ≡ D , if Aγ0 < 0, γ0 :=
(

γ0
1 ,γ

0
2 , . . . ,γ

0
m

)T
. (28)



V. NUMERICAL EXAMPLE

A. Model Description

We consider a network of nine Van der Pol ‘oscillators’
[20], with parameters of each oscillator chosen to make them
individually stable. Each Van der Pol oscillator constitutes a
subsystem, with the interconnections shown below

N1 : {1,2,5,9} N2 : {2,1,3} N3 : {3,2,8}
N4 : {4,6,7} N5 : {5,1,6} N6 : {6,4,5}
N7 : {7,4,8,9} N8 : {8,3,7} N9 : {9,1,7} .

(29)

The dynamics of each oscillator, in presence of the neighbor
interactions, is given by

∀ j ∈{1,2, . . . ,9} ,
ẋ j ,1 = x j ,2 (30a)

ẋ j ,2 = µ jx j ,2
(

1− x2
j ,1

)

− x j ,1+ x j ,1 ∑
k∈N j \{ j}

β jkxk,2 , (30b)

where µ j , ∀ j, are chosen randomly from(−3,−1) and
the interaction coefficientsβ jk , ∀ j,∀k∈N j\{ j}, are chosen
randomly from(−0.4, 0.4).

Using the expanding interior algorithm, we find estimates
of the ROAs of the isolated, or ‘free’, subsystems via
quadratic Lyapunov functions. As an example, Fig. 1 shows
a comparison of the true ROA of the isolated subsystem 9
and an estimate using a quadratic Lyapunov function,

R
0
9 = {(x9,1,x9,2) | V9 ≤ 1} , (31a)

where,V9 = 0.595x2
9,1+0.227x9,1x9,2+0.520x2

9,2. (31b)

Fig. 1. Comparison of estimated and true ROA for isolated subsystem 9.

B. Exponential Stability of Isolated Subsystems

Existence of a comparison matrixA = [ai j ] requires that
the diagonal entriesaii are negative, which necessitates that

∀i , ∃αi > 0, so that∇VT
i fi ≤−αi Vi , ∀xi ∈ Di (32)

whereDi , ∀i, were defined in (23). Note that the condition
(32) is a sufficient condition of exponential stability for the
isolated subsystems, as in (3). We can use SOS optimization,

similar to (25)-(26), to find the maximalαi , ∀i, the ‘self-
decay rates’, for a set of givenγ0

i , ∀i. Higher values of
αi indicates better chance of finding a Hurwitz comparison
matrix. In Fig. 2 we show the variations ofαi for each i,
when the initial level setγ0

i is varied from 0 to 1. For each
subsystem, asγ0

i approaches 1,αi approaches 0. This shows
that it is not possible to obtain a Hurwitz comparison matrix
when the initial conditions lie close to the boundary of the
estimated ROAs, and hence the exclusion ofγ0

i = 1 in (23).

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

γ
i
0

α i

 

 

1

2

3

4

5

6

7

8

9

Fig. 2. Evolution of self-decay rates against varying initial level-sets.

C. Comparison Equation

We recall that two sufficient criteria for a domainD to
be an estimate of the ROA, are that the comparison matrix
in (16) is Hurwitz andD is an invariant domain under the
dynamics (9). To compare the performance of the traditional
approach and the direct approach, we need to monitor how
well the above mentioned criteria are satisfied for a set of
arbitrarily chosenD .

While this would require an exhaustive simulation over all
possible domainsD defined in (23), we choose to examine
only thoseD whereγ0

1 = γ0
2 = · · ·= γ0

9 = γ∗, i.e.

D :=

{

x∈R
9

∣

∣

∣

∣

∣

9
⋂

i=1

V1 ≤ γ∗
}

(33)

for someγ∗∈(0,1). For eachγ∗, and domainD , we compute
the comparison matrices using the traditional and the direct
approach. Denoting by Re(λ ) the real parts of the eigenval-
ues of a matrix, we note that if the maximum of Re(λ ) is
negative, then the matrix is Hurwitz. Further, by applying
(28), the domain (33) is guaranteed to be invariant if the
maximum row-sum of the comparison matrix is negative.
Fig. 3 shows an evolution of these two properties (maximum
Re(λ ) and maximum row-sum) for the comparison matrices,
computed using the two approaches, for a range ofγ∗.

We note that both the maximum row-sum and the max-
imum Re(λ ) generally increases asγ∗ increases from 0 to
1, indicating that as the domainD ‘expands’, it becomes
more difficult to certify stability. We also note that, for both
approaches, the maximum row-sum becomes positive before
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Fig. 3. Evolution of the properties of comparison matrices,computed using
traditional and direct approach, against varying initial level-sets.

maximum Re(λ ), indicating that the ‘invariance’ criterion is
lost before the ‘Hurwitz’ criterion. Significantly, we alsonote
that both the Hurwitz and invariance criteria are satisfied for
a wider range ofγ∗ in case of the direct approach than in
the case of the traditional one. Thus, with regards to both the
criteria, the direct approach is seen to perform better thanthe
traditional approach.

D. Test Case

Let us illustrate how this method can be used to certify
exponential convergence of a given initial condition to the
origin. The system dynamics is evolved against a randomly
generated initial condition, and is found to be converging to
the origin. Fig. 4 shows the evolution of the states belonging
to subsystems - 2, 6, 7 and 8. The initial condition yields the
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Fig. 4. Evolution of subsystem states under an arbitrary disturbance.

following level sets,

γ0 = [0.08, 0.56, 0.58, 0.31, 0.08, 0.61, 0.18, 0.45, 0.14]T

which is then used to define the domainD , in (23). Then
the SOS-based direct approach is used to compute the com-
parison matrix,A∈ R

9×9, with maximum Re(λ ) as -0.078,

andAγ0 < 0. The solution,w(t) ∈ R
9, of the corresponding

comparison equation ˙w= Aw, w(0) = γ0, is plotted against
the actual Lyapunov level sets in Fig. 5, for subsystems 2,
6, 7 and 8. The trajectoriesw(t) exponentially converge to
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Fig. 5. Comparison of the actual Lyapunov level sets and their upper
bounds from the linear comparison equation.

zero and, from Lemma 1, provide an upper bound on the
corresponding subsystem Lyapunov function level sets.

When the same procedure is done with the traditional
approach, we obtain a Hurwitz comparison matrix,Ã, with
maximum Re(λ ) as -0.001, but withÃ

(

γ0
)1/2

> 0, thus
violating the invariance condition.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have presented an SOS based direct approach to
compute the linear comparison principle for stability anal-
ysis of interconnected systems. We have also discussed the
traditional approach to obtaining the comparison equations,
and shown how the direct approach can yield ‘better’, or
less conservative, certificates of exponential stability.Using
a network of Van der Pol systems we have presented a
comparison of the two approaches. The proposed approach
can be implemented on a suitable parallel platform where
each row of the comparison matrix, corresponding to each
subsystem, is computed in parallel.

B. Future Works

A decentralized control framework can be visualized
where each subsystem computes a local control law that
will guarantee satisfaction of the Hurwitz and invariance
conditions. SOS methods can be used to extend the stability
analysis to higher order, and more general, comparison
equations. Also, it would be interesting to see how the use
of higher order (for example, quartic) Lyapunov functions in
the comparison equation affects the conservativeness of the
stability certificates.
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APPENDIX

A. Proof of Lemma 2

SinceVi = v2
i ∀ i and ãi j > 0 ∀ i 6= j, we have

∀i ∈ {1,2, . . . ,m} , V̇i ≤ 2vi

m

∑
j=1

ai j v j

≤ 2ãiiVi +2∑
j 6=i

ãi j viv j

≤ 2ãiiVi +∑
j 6=i

ãi j (Vi +Vj)

=

(

ãii +
m

∑
j=1

ãi j

)

Vi +∑
j 6=i

ãi jVj (34)

Choosingaii =
(

ãii +∑m
j=1 ãi j

)

∀ i, andai j = ãi j ∀i 6= j, and
recalling that∑m

j=1 ãi j < 0 we may conclude the proof.
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