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Computation of Linear Comparison Equations for Stability A nalysis of
Interconnected Systems

Soumya Kundu and Marian Anghel

Abstract— Sum-of-squares (SOS) methods have been shown to build those comparison equations, such as the trigopnomet
to be very useful in computing polynomial Lyapunov functiors  ric inequalities in power systems network [19].
for systems of reasonably small size. However for large scal In this work we use the sum-of-squares and semi-definite

systems it is necessary to use a scalable alternative usingctor - . .
Lyapunov functions. Earlier works have shown that under programming methods to study the stability of an inter-

certain conditions the stability of an interconnected systm can  connected system by computing the comparison equations.
be studied through suitable comparison equations. However While this approach is applicable to any generic dynam-

finding such comparison equations can l_oe non-trivial. In_tha'; ical system, we choose a randomly generated network of
work we propose an SOS based systematic procedure to diregtl g gifiedf van der Pol oscillators for illustration. Each Van

compute the comparison equations for interconnected syste der Pol illat b ted Wo-stat i
with polynomial dynamics. With an example of interacting Van er Fol oscillator can be represented as a two-state system

der Pol systems, we illustrate how this facilitates a scaldband ~ With state dynamic equations as polynomials of degree three
parallel approach to stability analysis. [20]. The network is then decomposed into many interacting

subsystems. Each subsystem parameters are so chosen that

. INTRODUCTION individually each subsystem is stable, when the disturbanc

Lyapunov functions methods have long been used iffom neighbors are zero. SOS based expanding interior
studying stability properties of dynamical systems [1].. [2 algorithm [6], [7] is used to obtain estimate of region of
Finding a Lyapunov function for a given dynamical systemattraction as sub-level sets of polynomial Lyapunov fusrsi
however, is often not an easy task. Recent advances in sUf§r each such subsystem. Finally SOS optimization is used to
of-squares (SOS) methods and semi-definite programmingsmpute the linear comparison equation to certify stabilft
[3]-[5], have enabled algorithmic construction of polyriem  the network under disturbances. Following some brief back-
Lyapunov functions [6], [7]. However such sum-of-squareground in Sed.]l we outline the problem statement in Sgc. 11|
based computational methods become intractable as thg present the SOS-based direct approach to computing the
system size grows to larger than 6-8 states [8], [9]. comparison equations in SEC]IV. Set. V shows an application

It is useful to model large-scale systems in the fornyf comparison equations to stability analysis of a netwdrk o

of many interacting subsystems and study the stability ofan der Pol systems. We conclude the article in Béc. VI.
the full interconnected system using only the subsystem

Lyapunov functions. There are different functional forros f II. BASIC CONCEPTS AND BACKGROUND
the Lyapunov function of the interconnected system, such @ Lyapunov Stability Methods

a scalar Lyapunov function expressed as a weighted sum
of the subsystem Lyapunov functions, or applications of
vector Lyapunov functions and comparison principles [10]- x(t) = f(x(t)), t>0, xeR" f(0)=0, Q)
[13]. Particularly the formulations using vector Lyapunov . I : . Ton n;
functions are computationally very attractive becauseirt With an equilibrium at the 0”9& andf :R" — R is locally
parallel structure and scalability. Based upon the resurits Lipschitz. The important notions of stability are:
comparison equations [14]-[16], the authors in [17], [18] . .. o ) o
introduced the concept of vector Lyapunov functions. It waBefinition 1 The equilibrium point at origin is called
shown that if the subsystem Lyapunov functions and the 1) stable in the sense of Lyapunov (i.s.L) if
interactions satisfy certain conditions, then the stgbidif

the interconnected system can be studied by analyzing the ve>0,38>0 st [X(O)f, <6 =[xV, <& ¥,
stability of a set of linear ordinary differential equat®on  2) asymptotically stable if it is stable i.s.L, and
However computing these comparison equations, for a given
interconnected system, still remained a challenge. Inradzse

of suitable computational tools, analytical insights wesed

Let us consider the dynamical system

36>0s.t. |[x(0)|, <6 = IETM [x(t)||, =0,
3) exponentially stable if it is asymptotically stable, and
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The Lyapunov stability theorem [1], [21], also called Lya-SOS conditions into SOS feasibility problems. Then the
punov’s first or direct method, presents a sufficient coaditi Putinar’s Positivestellensatz theotkstates,
of stability through the construction of a certain positive
definite function. Theorem 2 Let . #" = {x€ R"|uy(x) > 0,...,um(X) >0} be

a compact set, wherej& R[x], Vj € {1,...,m}. Suppose

Theorem 1 The equilbrium point x= 0 of the dynamical
system in[{ll) is stable i.s.L iw C R", if there exists a JueR[x], so that;{
continuously differentiable positive definite functin2 —
R (henceforth referred to as Lyapunov function) such that,|f p(x) >0, ¥xe 7, then pe {go+zj O'J-uj‘ O'O’O'J-GZ[XLVJ'}_

ue{ gty ojuj| oo, oj€ Z[X,Vj}

& {xe R"|u(x) > O} is compact. 6)

V(0)=0, (2a)  Often for theu;, Vi, used in this work, the existence ofx)
V (x) > 0,¥x € 2\{0}, (2b) in (6) would be guaranteed [29].
and, —V (x) > 0,vx€ 2. (2¢)  c. Linear Comparison Principle

If V satisfies—\7(x) > 0,¥x € 2\{0}, then the equilibrium Before finishing this section, let us take a look at a nice
point at origin is asymptotically stable i®. Further, the result on the ordinary differential equations which helps

origin is exponentially stabfein 2 € R if form the framework of stability analysis of inter-connette
. . systems via vector Lyapunov functions. Noting that all the
Jda >0, st. =V(x) > aV(x),Vxe 2. (3) elements of the vectag™, t >0, whereA = [g;] € R™™,

N . are non-negative if and only #&j > 0,i # j, the authors in
HereV(x) = VT f(x). When there exists such a function[16], [17] proposed the following result:
V (x), the region of attraction (ROA) of the stable equilibrium

point at origin can be (conservatively) estimated as Lemma 1 Let A= [ajj] € R™™ have only non-negative off-
%= {xe .@\V(x) < ymay (4a) diagonal elements, i.ejja> 0, i # j. Then
where,y" = argrrl/ax{xe R'W(x) <y} C2. (4b) v(t) <AV(t), t >0, ve R", v(0) = vp, 7)

The Lyapunov function can be scaled BY2% so that, implies \t) < w(t), ¥t > 0, where

B =X RV(X) <1}, (5a) W(t) = Aw(t), t >0, we R", w(0) =Vv(0) =vp. (8)
where,V (x) = V(x)/y™ (5b)  This result will henceforth be referred to as the ‘linear

o ) comparison principle’ and the differential equation[ih &)
Henceforth, for simplicity, we would assume, without anyy,, ‘comparison equation’.

serious loss of generality, that the ROA is estimated to be
sub-level set o¥/(x) = 1. I1l. PROBLEM DESCRIPTION

For the rest of this work, let us make the simplifying
assumption that the dynamical system(ih (1) is in polynomial

Relatively recent studies have shown that sum-of-squargsinfi denoted byf € R[X]", and that the system ifil(1) is
based optimization techniques can be utilized in findingoca”y) asymptotically stable.

Lyapunov functions by restricting the search space to sum-

of-square polynomials [6], [7], [22], [23]. Let us denote byA. Decomposed System Model

R[x] the set of all polynomials ix € R". Then, The dynamical system ifi](1) can be expressed in the form
of m (> 2) interacting, and asymptotically stable subsystems

B. Sum-of-Squares and Positivstellensatz Theorem

Definition 2 A multivariate polynomial g R[x], x€ R", is
called a sum-of-squares (SOS) if there exists R[X], i €

{1,2,....r}, such that px) = SI_, h2(x). Further, we denote ~ VI=12....m,
the set of all SOS polynomials inexR" by Z[x]. S %= fi(x)+di(x), x eR" xeR" (9a)
Checking if p € R[x] is an SOS is a semi-definite problem fi (9) =0, R , o (9b)
which can be solved with a MATLA® toolbox SOS- gi(%) =0, VX € {xeR"| x;=0,Yj#£i} (9¢)
TOOLS [3], [4] along with a semidefinite programming  where,x = (XI,X;”.,XL)T cR" (9d)
solver such as SeDuMi [5]. SOS technique can be used to m
search for polynomial Lyapunov functions, by translatily ( andn= Zni, X Nx;=0. (9e)
1=

to equivalent SOS conditions [3], [4], [6], [24]-[27]. An
important result from algebraic geometry called Putinar's

. . 4For other versions of the Positivstellensatz theorem pleefer to [29].
Positivstellensatz theorem [28], [29] helps in transigtihe P [29]

5Non-polynomial dynamics can be recasted into an equivalelynomial
form, with introduction of additional state variables andtable equality
SWe will be referring toa > 0 in (@) as the ‘self-decay rate’. constraints [7], [24], [26], [30].



Herex; represents the states that belong toittlesubsystem and use a comparison equation to certify if the condition
A, fi e R[x]™ denotes the isolated subsystem dynamics, ard@4) holds. Restricting our focus to the linear comparison

gi € R[X" represents the neighbor interactions. principle (LemmdlL), the aim is to seek An= [g;] € R™™
Let us assume that the interactions can be expressed asnd a domairZ c #°, such that

Vie{l,2,...,m}, gi(X)=§gu(>q,xj), (10) V(x) < AV(x), Vxe 2 c %°, (16a)

17 where, aj >0Vi#]j, (16b)

whereg;; € R[x,X;]™ quantifies how subsyster; affects A— a1 is Hurwitz. and 16¢
the dynamics of subsysterf;. Note that[(ID) is not a very _ [?”] i ’ ) (16¢)
restrictive assumption, since given the choice of statesf 2 is invariant under the dynamics|(1). ~ (16d)

the subsysteny”, the rest of the subsystems can always b there exist a ‘comparison matrixA = [a;j] and 7 C %°
chosen in a way such thdf {10) holds. We denote by satisfying [I6), then any(0) € 2 would guarantee exponen-
M= {i}U{] ‘ 3{x, %}, st.gij (6,%)#£0}  (11a) tially convergence o¥ (x(t)) to the origin (Lemmall),

andx = | J xj, (11b) 3b,c>0 s.t. |[V(X(1))]|l,< ce PV (x(0))||,, ¥t>0, (17)

jeMN . . .
' which also translates into exponential convergence of the

the set of indices of the subsystems in the neighborhood 9f;:as themselves [10]. Note that,c %0, if exists, presents
#{ (including the subsystem itself) and the states that belong, estimate of the ROA of the full interconnected system.
to this neighborhood, respectively.

The next step is to characterize the stability properties oflV. COMPUTING THE COMPARISON EQUATION
the isolated subsystems A. Traditional Approach
Vie{1,2,....m}, %= fi(x), x € R". In [10], [11], [13], [19], and related works, authors laidtou
a formulation of the linear comparison equation using derta

onditions on the Lyapunov functions and the neighbor
nteractions. It was observed that if there exists a set of

by computing a polynomial Lyapunov functiéhe R [x] for
eachi, and the corresponding estimate of the ROA agln (5
An SOS baseéxpanding interior algorithm[6], [7], is used . o mon O e
to iteratively enlarge the estimate of the ROA by finding %‘KS?&TSY?”E&Z?&E —R,Vi=12,..,m, satisfying
‘better’ Lyapunov function at each step of the algorithm. At wing "
the completion of this iterative algorithm, the stabilitig@ach Vie{1,2,...,m}, I, fiz2, fiiz > O such that,

isolated subsystem (assuming no interaction) is quantifjed _ _ 0 A il < v (x) < Foo llx

its Lyapunov functionV; € R[x], with a final estimate of the W € ACH Min il <vide) < Miz[Pall, - (182)

domain of attraction given by and (Ov)" fi < —Fia [xil|, (18b)
Z° = {x e R"|Vi(x) <1}, Vi=1,2,...,m. (12) and if the interaction terms ih_(1L0) satisfy
B. Stability under Interactions vie{1,...,m},vje A\ {i}, 3¢; > 0 such that,
Let us define the domain VX € %, VX[ € T, ‘(DVi)Tgij H2 < X[, (19)

0._ n| . 0 P
%= {XE R ’ X €%y, i=1, 2,...,m} ’ (13) then the following comparison equation can be formed,
which could be interpreted as the ROA of the ‘free’ intercon- : ~ ~ mxm
nected systeni [9), in absence of the all the interactions. Th VX(DEZ, V(x(1)) SAVX(D)), A=[aj] €R (203)

disturbances coming from the neighbors can be expressedvhere,v(x) = [vi(x1) V2(X2) ... Vm(Xm)]", (20b)

by the subsystem Lyapunov function level-sets. While the P ={xeR"% € %, Vie{l,...,m}c %° (20c)

equilibrium at origin corresponds to the level s&t§0) = fiia/ T, =i

0,Vi, any disturbance (or initial condition) away from this . ~__' N.' R C

equilibrium would result in positive level-setg(x;(0)) = and & = Z'J{)ml’ }z‘/j/_\{'}’ vi,V] (20d)
’ 1

¥ € (0,1] for some or all of the subsystems.

. A necessary and sufficient condition o_f asymptotic ;gabilﬁ the ‘comparison matrix’A = [&j] is Hurwitz, then any
ity (Definition[dl) can then be translated into the condition jnvariant domainz C 2 provides an estimate of a region of
Vi, Vi(x(0)) =y = Vi, lim Vi(x(t)) =0, (14) exponential stability of the full system [11], [19].
t—+4o00 i . i

wherexi(t), t > 0, are solutions of the coupled dynamicsB' M(I)tlvatl_on for Direct Appfoach S

in @). Even though[{14) reduces the dimensionality of the While this approach provides very useful analytical in-
problem, it still remains a generally non-trivial probleAn ~ Sights into the construction of the comparison matix-
attractive, and scalable, alternative approach is to ceeist [&j], it has certain computational issues. This requires finding

a vector Lyapunov functiol : R" — R™ the bounds in[(18) an@{1L9), and also the Lyapunov functions
Vi, Vi, that satisfy those. Clearly the polynomial Lyapunov

_ T
V(X) i=[Vi(x1) Va(x2) ... Vin(xm)] (15)  functions,V; Vi, cannot satisfy the linear bounds [ {18).



Assuming that the polynomial Lyapunov functionsyi, In this work, we are interested i ,Vi, of the form,
we found using thexpanding interior algorithn{Sec[II-A)

are quadratic, we can defing := \/V;, Vi, which would Vi, Zii={x eRV|Mi(x) <y}, ¥We(01), (23a)

satisfy the conditions if_(18) [11], [19]. In such a case, one

needs to find the following bounds, and, 7 = {x eR" ﬂ\ﬁ(x;) < y,o} . (23b)
i

Vi,Vj e M\{i},V% € Z,VX; € D5, .
J €A} V% € 74,7 € 7) Note that we exclude the boundary of the isolated subsystem

2 2
Niz|xil15 < V(i) < ni2 %15 (21a) ROA, y° = 1Vi, for reasons explained later. The comparison
VT < —nis|xi]|3, (21b) equation in[(16a) can then be translated into
and [|0Vgi [, < &ij 11z [l (21c) o m
Vi, Vi(x) < 3 aigVi(x), Vx€ 2, (24a)
for some positive scalangi1, iz, N3, ¢ij. Then using simple =1
algebra the bounds il ([L8) arfld{19) can be obtained as e, Vi < z aijV;, whenV; < VJO Yje N, (24b)
. o~ - jes
Vi, Vje M\A{i}, fia =M1, iz =Nz, (22a)
. Nia - & since we know thatjj =0 V] ¢ 4. Using the Positivstel-
Niz = 2Nz and gjj = 2hiL (22b)  |ensatz theorem (Theoremm 2), with := (y° —Vi(x)) and

A =2, we can casf(24) into an SOS feasibility problem,
Thus the computation of each element of the comparison

matrix A in (20) requires multiple optimization steps. ~OVT (fita)+ Y (aiVi—aij (W -Vy)) € Zx] (25a)
We may also note that some of the bound$ind (18) &nd (19), jes
while convenient for analytical insights, need not be optim  with i € £[x], Vi€ {1,2,...,.m},Vj € 4. (25b)

for computing a Hurwitz comparison matrix. For example, in

@), || oV gij Hz is function of bothx andx; but is bounded wherex; was defined in[(11). The goal is to find the ‘optimal’
by using only the norm om;. scalarsy; Vi, j € 4 satisfying [25) so as to obtain the tightest
possible bound if_(I6a). We can thus formulate the following
C. SOS Based Direct Approach SOS optimization problem,
We propose to use SOS methods to directly compute v c {12 .. m}, min Y aj, subject to(Zb) (26)
the comparison equation ifi_(16), in a decentralized way by % Ex

calculating each row oA = [a;j] directly at each subsystem _ _ _
level. Note that, in[{Z6), we will be using quadratic (or,This simple SOS formulation helps us find the comparison
in general, polynomial) Lyapunov functions which do noteduation[(Ib) in a decentralized way, by computing each row

satisfy the bound$ (18)-(1L9). But we may observe that, Of the comparison matri¥\ = [g;;] in a single optimization
problem at each subsystem level. The optimization problem

can be easily implemented on a parallel platform, with the
complexity of the problem essentially dependent on the size
of the largest neighborhoad/.
Further note that, if the minimal values of all the row-sums
o m _ in (26) are negative, then the matdx= [a;;] thus found is a
dj=>0Vvi#], and Z dj <owi, strictly diagonally dominant with negative diagonal eed;i
=1 and hence, Hurwitz [31]. However, Eljn:]_aij > 0 for anyi,
then there exists another matrix -A [a;j] satisfying the then the eigenvalues &= [a;j] need to be computed.

comparison equatiofl6a) with Vi := V2, Vi, with Finally a note on invariance of the domai which along
with the presence of Hurwita = [a;;] guarantees tha? is a

domain of exponential stability, as noted in(16). Accogdin
to [11], an estimate of the ROA can be given by

Lemma 2 If there exist Lyapunov functions,Wfor each ie
{1,2,...,m}, satisfying the comparison equation @0dy
(20B), for some matrixA = [&;] with

m m
aj>0vi#j,and Y a; < ) & <0Vi.
252

Proof: Please refer to Appendix]A. [ | Vi(%) . V,O

= ) < a
It will be useful to note here that, an application of Gersh- & {XE 7 miax( pi - mjm Pj » (273)
gorin’s Circle theorem [31] says that if a matrix with negati where,p >0, Vie {12, .. m}, (27b)

diagonal elements is strictly diagonally domirfattien the

. T
matrix is Hurwitz. We are now in a position to outline the andAp<0, p:=(ps,P2,-.-,Pm) - (27c)
SOS based procedure to directly compute the mateix(a;j | .

in the comparison equation {16). Then it is easy to see that,

. T
5A = [a;j] is strictly diagonally dominant ify ;4 |a&j| < |ail,Vi. Z=9, if AW <0, W = (Vl)’ W’ ) Vr?]) . (28)



V. NUMERICAL EXAMPLE

A. Model Description

We consider a network of nine Van der Pol ‘oscillators
[20], with parameters of each oscillator chosen to make them
individually stable. Each Van der Pol oscillator consgtia
subsystem, with the interconnections shown below

M {1,259} A5:{2,1,3} .A5:{3,2,8}
A5:{5,1,6} .46:{6,4,5}

N30 {4,6,7)

similar to [25)426), to find the maximat;, Vi, the ‘self-
decay rates’, for a set of givenO,Vi. Higher values of
i indicates better chance of finding a Hurwitz comparison
matrix. In Fig[2 we show the variations @f, for eachi,
when the initial level set? is varied from 0 to 1. For each
subsystem, aﬁo approaches 1g; approaches 0. This shows
that it is not possible to obtain a Hurwitz comparison matrix
when the initial conditions lie close to the boundary of the
estimated ROAs, and hence the exclusion/b 1 in (23).

N7:{7,4,8,9} A5:{8,3,7} A5:{9,1,7}.
The dynamics of each oscillator, in presence of the neighbor
interactions, is given by
vje{12,...,9},
)‘(j’l = le’z (3061)

Xj2=HiXj2(1=X¢1) = Xj1+%X1 S BiXz, (30b)
keA\{i}
where p;,V]j, are chosen randomly froni—3,—1) and
the interaction coefficientg, Vj,vke.4j\ {j}, are chosen
randomly from(—0.4, 0.4).
Using the expanding interior algorithm, we find estimates
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T~ 0.25F

0.2r

0.15]

0.1(]

0.05]

of the ROAs of the isolated, or ‘free’, subsystems via 0
quadratic Lyapunov functions. As an example, Eig. 1 shows
a comparison of the true ROA of the isolated subsystem 9
and an estimate using a quadratic Lyapunov function,

A3 ={(Xo1.X02)| Vo < 1}, (31a)
where Vg = 0.595x5 ; +0.227Xg.1X9 2 + 0.520x5,. (31b)

0 0.2 0.4 0.6 0.8 1

Fig. 2. Evolution of self-decay rates against varying a&itevel-sets.

C. Comparison Equation

We recall that two sufficient criteria for a domais to
be an estimate of the ROA, are that the comparison matrix
in (I8) is Hurwitz andZ is an invariant domain under the
dynamics[(P). To compare the performance of the traditional
3 o~ ] approach and the direct approach, we need to monitor how
/ ) well the above mentioned criteria are satisfied for a set of
arbitrarily chosenz.

While this would require an exhaustive simulation over all
possible domain® defined in [2B), we choose to examine

& 0 only thoseZ wherey? =2 =... = \§ = y*, i.e.
- 9
P = {xeRg ﬂvlgy*} (33)
2 i=1
Tt S for somey*<(0,1). For eachy*, and domainz, we compute
6 2 o ] 5 3 the comparison matrices using the traditional and the tlirec

Xg 1 approach. Denoting by R@) the real parts of the eigenval-
ues of a matrix, we note that if the maximum of (R¢ is
negative, then the matrix is Hurwitz. Further, by applying
(28), the domain[(33) is guaranteed to be invariant if the
maximum row-sum of the comparison matrix is negative.
Fig.[3 shows an evolution of these two properties (maximum
Existence of a comparison matr = [aj] requires that Re(A) and maximum row-sum) for the comparison matrices,
the diagonal entries;; are negative, which necessitates thatomputed using the two approaches, for a rangg*of
. . Te s . ! We note that both the maximum row-sum and the max-
Vi, 36 >0, so thatlVi fi < —aiVi, v € 7 (32) imum ReA) generally increases ag increases from 0 to
where 2, Vi, were defined in[(23). Note that the conditionl, indicating that as the domai# ‘expands’, it becomes
(32) is a sufficient condition of exponential stability fdret more difficult to certify stability. We also note that, for tho
isolated subsystems, as [d (3). We can use SOS optimizati@pproaches, the maximum row-sum becomes positive before

Fig. 1. Comparison of estimated and true ROA for isolatedsgstem 9.

B. Exponential Stability of Isolated Subsystems



‘ ‘ ‘ and Ay® < 0. The solutionw(t) € R®, of the corresponding

—— max. Re() [traditional] comparison equatiow = Aw, w(0) = y°, is plotted against

| e o irage ! e the actual Lyapunov level sets in Fig.5, for subsystems 2,
' 7 6, 7 and 8. The trajectories(t) exponentially converge to

0.2F| == max. row-sum [direct]
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Fig. 3. Evolution of the properties of comparison matricesnputed using
traditional and direct approach, against varying initetdl-sets. 0.1
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maximum RéA ), indicating that the ‘invariance’ criterion is t

lost before the ‘Hurwitz’ criterion. Significantly, we alsmte

that both the Hurwitz and invariance criteria are satisfimd f Fig. 5. Comparison of the actual Lyapunov level sets andr thpper

a wider range ofy* in case of the direct approach than jnPounds from the linear comparison equation.

the case of the traditional one. Thus, with regards to bath th

criteria, the direct approach is seen to perform better than zero and, from Lemnid1, provide an upper bound on the

traditional approach. corresponding subsystem Lyapunov function level sets.
When the same procedure is done with the_traditional
D. Test Case approach, we obtain a Hurwitz comparison matéx,with

Let us illustrate how this method can be used to certifynaximum RéA) as -0.001, but With,&(yo)l/z > 0, thus
exponential convergence of a given initial condition to th&iolating the invariance condition.
origin. The system dynamics is evolved against a randomly
generated initial condition, and is found to be converging t
the origin. Figl&t shows the evolution of the states beloggin
to subsystems - 2,6,7 and 8. The initial condition yields thg  ~;nclusions

VI. CONCLUSIONS AND FUTURE WORKS

We have presented an SOS based direct approach to
compute the linear comparison principle for stability anal
ysis of interconnected systems. We have also discussed the
traditional approach to obtaining the comparison equation
and shown how the direct approach can yield ‘better’, or
less conservative, certificates of exponential stabilitying
a network of Van der Pol systems we have presented a
comparison of the two approaches. The proposed approach
can be implemented on a suitable parallel platform where
each row of the comparison matrix, corresponding to each
subsystem, is computed in parallel.
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0 5 10 15 B. Future Works

A decentralized control framework can be visualized
Fig. 4. Evolution of subsystem states under an arbitrarfudiance. where each subsystem computes a local control law that
will guarantee satisfaction of the Hurwitz and invariance
following level sets, conditions. SOS methods can be used to extend the stability
/° = [0.08,0.56, 0.58, 0.31,0.08, 0.61, 0.18, 0.45,0.14]T  analysis to higher order, and more general, comparison
equations. Also, it would be interesting to see how the use
which is then used to define the domain in (23). Then of higher order (for example, quartic) Lyapunov functions i
the SOS-based direct approach is used to compute the cotime comparison equation affects the conservativenesseof th
parison matrix,A € R%<9, with maximum Ré\) as -0.078, stability certificates.
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APPENDIX

A. Proof of Lemm&]2

SinceVi = V2 Vi and&j > 0 Vi # j, we have

. m
Vie{L2..mb, Vi<2vy &y
j=1

Choosinga; = ( & + Z'j“:lﬁij)

< 2§ii\/i+2§_ﬁijvivj
IEall

< 254i\/i+§_5ij Vi+Vj)
JF#!

m
m+z&jw+§%W(M)
=1 JF#l

Vi, anda;j = &;j Vi # j, and

recalling thaty |, &j <0 we may conclude the proof.
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