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Abstract— This paper considers a sequential estimation and optimal for this problem [5], [6] and even for more general

sensor scheduling problem with one sensor and one estimator settings where the process is not necessarily memorylgss [5
The sensor makes sequential observations about the state of 6]

an underlying memoryless stochastic process, and makes a . . .
decision as to whether or not to send this measurement to Note that all prior work considered the problem with

the estimator. The sensor and the estimator have the common Perfect (noiseless) communication between the sensor and
objective of minimizing expected distortion in the estimaion  the estimator, which was an important starting point for

of the state of the process, over a finite time horizon, with ta  thijs line of research. More realistic scenarios, howeves, a
constraint that the sensor can transmit its observation on} those where the transmission channels are noisy—a problem

a limited number of times. As opposed to the prior work that ¢ | chall Th in difficulty h
where communication between the sensor and the estimator (@l Presents several challenges. € main dimculty here

was assumed to be perfect (noiseless), in this work an addieé IS that with noise in the channel, and under an average
noise channel with fixed power constraint is considered; hese, power constraint, the sensor has to encode its message befor
the sensor has to encode its message before transmissionr Fo transmission, and the estimator has to consider this engodi
some specific source and channel noise densities, we obtaing,an5ing in its estimation mapping. However, the optimal
the optimal encoding and estimation policies in conjunctia . . . . .
with the optimal transmission schedule. The impact of the zero-delay enCOd_'ng/eSt'mat'on_ mappings are no_t known in
presence of a noisy channel is analyzed numerically based general, except in the Gaussian source-Gaussian channel
on dynamic programming. This analysis yields some rather case; see e.g., [8], for which the mappings are known to be
surprising results such as a phase-transition phenomenomi Jinear (or affine if the random variables are not zero-mean)
the number of used transmission opportunities, which was M0 ¢ 41| power levels. Even in this special case, howevergonc
encountered in the noiseless communication setting. o T
the sensor observation is thresholded, the distributiomois
. INTRODUCTION longer Gaussian, and hence linear (or affine) mappings may
. heduli d L %O longer be optimal, making the problem fairly intractable
Joint sensor scheduling and remote state estimation proby, [9], the settings where linear (or affine) strategies are
S‘ptimal for zero-delay communication have been character-
ized in terms of the source and the additive channel noise
distributions. It was shown that if and only if a “matching
acondition”, defined over the characteristic functions of th

source and the channel noise, is satisfied, then the linear en

tion of energy limited sensor networks, see e.g., [1]-[4 an
the references therein.

In [4], the following problem was considered: Estimate
one-dimensional discrete-time stochastic process blig&d

independently and identically (i.i.d.) over a decisionihon coding/estimation policies are optimal. This charactitn

of length T using only N' < T’ measurements. Both the enables tractability of the zero-delay communication prob

measurement and the estimation of the process were carrjed - beyond the Gaussian source-Gaussian channel case
out sequentially by two different decision makers, the eensImplications of this matching condition on the adversarial

and thehes(;umatotr. Over thte d_te_mslor: horlzqtn_tof I%ﬁgmhf_ zero-delay communication was studied in [10], where it was
sensor had exactly’ opportunities to transmit its observation hown that the optimal strategy for an adversarial aget wit

to the estimator. These transmissions were assumed to d jamming power is to render the effective channel noise

error and noise free, and _the problem pqsed was to Jo'mly.distribution to match that of the source, so that the matchin
determine the best sensing and estimation policies that M0 nditions are satisfied. and the optimal encoding/degpdin
imize the average estimation error between the process '

: . . o . ppings are linear.
its estimate. Optimum transmission decisions were sought

: : .2 7In [11], we applied the matching condition of [9] to
in the class of threshold based strategies and the Optm}ﬂle problem of sensor scheduling and remote estimation
decision sequence, i.e., the evolution of the thresholtmia '

based th lizati £ th btained and showed optimality of threshold based sensor scheduling
ased on {ne realization ol n€ process, were oblaine Vﬁ%licies and affine encoding/estimation policies for theeca
dynamic programming. Later, using majorization and relate

of Laplacian source and Gamma channel noise, \sitth

techniques, such threshold based strategies were shoven tOc8nstrai nts over the number of transmissions. In this paper,
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done in [4], we obtain the optimal transmission schedulinget X, be the message received by the encoder. Assume that
policy. Beyond the expected results, we notice some rathtfre transmission from the sensor to the encoder is perfect,
surprising effects of the noisy communication considerati then

in this class of remote estimation problems. For example, - Xy, fU =1

over a time horizorl" and with a hard transmission limit, Xt = .

N < T, if the state realizations were so that at time ské&p & iU, =0

the sensor has used only— 7'+ K transmissions out aV,  wheree is a free symbol standing for no transmission is
the intuitively appealing solution to the noiseless vaoiabf made. After receiving the message from the sensor, the
the problem was to transmit all the observed state reabizati encoder sends an encoded message to the communication
without any thresholding, i.e., the threshold is effediv&t channel, denoted by;, ¥; € R. The encoder is not able to

to zero for samples at time steps+1,..., 7. However, in  send any message to the communication channel if it does
the noisy setting, we have noticed that this is not the casgot receive any message from the sensor, which is denoted
the sensor may not use all the transmission opportunitigy Y, = ¢. The encoder has average power constraint:

left. This is due to the fact that threshold information+ttha )

is whether or not the state sample belongs to an interval— E[Y U =1] < Pr

may be more valuable than a "noisy” observation of thyhere Py is known, and this holds for ail Assume that the
state. In fact, depending on the signal-to-noise ratio (ENRencoded message is disturbed by an additive channel noise
of the channel, there is a fixed number of useful (in averagg), {v;} is an i.i.d. random process with Gamma distribution
number of transmissions, and allowing transmissions Mol ) which is independent of X, }. Let Y; be the noise-

than this number, on the average, does not help decrease ¢a¢rupted message received by the decoder, we have
expected mean square error (MSE).

The rest of the paper is organized as follows. In Section - Yi+Vi, ifY,#e¢
[ we formulate the problem. In Sectidnllll, we present Yi iy —
some preliminary results. In Sectign]lV, we present and & i =e
prove the main results. In Sectibn V, we present and discus¢hen sending the encoded messaggethe encoder is able
some numerical results. Finally in Sectibnl VI, we includeo transmit the sign of, to the decoder via a noiseless side

conclusions and discuss some future directions. channel, denoted by;. Again, the encoder is not able to
send any message to the decoder via the side channel if it
Il. PROBLEM FORMULATION does not receive any message from the sensor, then
A. System Model

sgn(X,), if X, #e

€, if X, =¢

Based on the received messagésand S, the decoder
generates an estimate &f, denoted byf(t. The decoder is
charged for distortion in estimation. Assume that the disto
tion functionp(X, X,) is the squared errqtX, — X,)2, and

the cumulative distortion is the sum of stage-wise squared
Fig. 1. System model errors over the decision horizon.

t
Sensor

Side channel

Consider a remote sensing and estimation system proga- Decision Strategies
gating in discrete time over a finite time horizon, namekhy, Assume that at time, the sensor has memory on all its
1,2,...,T. In the system, there isne remote sensompne measurements by, denoted byX;., and all the decisions
encoder anane estimator (which is also called “decoder”).it has made by — 1, denoted byU;.;—;. The sensor makes
The sensor takes measurements on a one-dimensional, indecisionU; based on its current informatidiX;.;, Uy.+—1),
pendent identically distributed (i.i.d.) random procé¢s§}, thatis
which has Laplace distribution with parameteis A\~ 1). Ur = fi(X1:t, Urie—1)
Assume that at t|me_ the sensor takes aper_fectmeasureme%hereft is the sensor scheduling policy at timendf =
on X;, and then decides whether to transmit the measurem . .
- . . 1, f2,..., fr} is the sensor scheduling strategy.

to the encoder or not. Let a binary varialblgbe the sensor’s ol . .

Iy . o Similarly, at time ¢, the encoder is assumed to have
decision at timet, whereU; = 0 stands for no transmission .

memory on all the messages received from the sensor by

andU; = 1 stands for transmission. The sensor is restrictep denoted byX,,,, and all the encoded messages it has sent
to make no more thamV times of transmissions over the ’ Lits g

time horizon. that is to the communication channel iy 1, denoted byY;., ;.
' The encoder generates the encoded messagased on its
current information(X;.,, Y1..—1), that is

T
YU <N ~
=1 Y = ge( X1, Yie—1)



where ¢, is the encoding policy at time and g = Theorem 1. [11] Consider the communication problem

{91,92,...,97} is the encoding strategy. described above, and restrict the sensor to apply symmetric
Finally, it is assumed that at tim¢ the decoder has threshold based policy, that is

memory on all the messages received from the encoder by .

t, denoted byY/l:t,Sl;t. The decoder produces estimate L if [X]>p

based on its current informatidiY;.;, S1.;), namely U=fX)= 0, i [X|< 3

Xy = hy(Y1ua, S1t) where > 0 is the threshold. Then,

where h; is the decoding policy at tim¢ and h = 1) The optimal scheduling pollcy s the one with threshold
{h1, ha,...,h7} is the decoding strategy. = J/c+ m, wherem = = 1 =
Remark 1: Although we do not assume that the encoder 2) The optimal encoding and decoding policies are as
and the decoder have memory @f.;, yet they can de- follows
duce Uy.; from X, and Yi.;, respectively. S|m|larly, the a|)~(| —af —axl, if X +e
decoder can deduce the previous estimalgs,_;, from g(j() = ’ )
(Yi:4—1,51:4—1) and{h1, ha,... , hi—1}. €, if X =e
C. Assumptions on the Parameters 1 ¥ RS
» _ _ o5 (AET AT ) T S £
Let o be the variance of/;. Since V; has gamma h(Y,S) = .
distribution T'(k,0), 0% = k6% Let a := A\/Pr, and 0, if Y,S=¢
= £z~ is also called signal to noise ratio (SNR). Assume
Zhat oy g ( ) wherea = \\/Pr, v = W
0=+ Pr IV. MAIN RESULTS
Then, we have . We first define E; as the number of communication
a=M, y= - (1) opportunities left at time, i.e.,
A detailed explanation of the maotivation for these assump- 5N i U
tions can be found in [11, Remark 2]. t

D. Optimization Problem Then, the communication constraint can be expressed by
Consider the system described above, given the time
horizonT', the number of transmission opportuniti&s the Vi< B, Vt=12,....T

statistics of{X;} and {V;}, and the power constrainr. By Remark,U/;.,_; is the common information shared by
Determine the sensor scheduling strategy, encoding gitateihe sensor, the encoder, and the decoder, and hBEpde

and decoding strategif,g,h) that minimize the expected zi50 known by all the decision makers. Then we have the
value of the sum of stage-wise estimation costs over the timgjiowing theorem.

horizon, that is, Theorem 2: Consider the sensor scheduling and remote
T o estimation problem described in sectich Il. Without loss of
(f,g.h) {Z (Xi — Xt) } optimality, we can restrict the sensor scheduling, enapdin

t=1 and decoding policies to the forms:

subject to the communication constraint of the sensor and

the power constraint of the encoder. Up = fiXe, Er), Ye = gu(Xe, Br), Xo = he(Y, ¢, Br)

Proof: At time ¢t = T', we want to desigrt f, g7, hr)
I11. PRIOR WORK to minimize

Consider the sensor scheduling and remote estimation - o2
problem described above, but with the following modifica- In(fr,gr,hr) = E {(XT Xr) }

tions: where Ur = fr(Xir,Urr—1), Yr = gr(Xiz, Yir—1),
1) The time horizoW’ = 1 (and hence we suppress inthis . — 1,,.(V,.,, S1.7). We call this problenProblem T1. De-
section the subscript for time in all the expressions).note by Iz, Iz, I+ the information about the past system

2) The sensor is not constrained by the number of trangtates available to the sensor, the encoder, and the decoder
missions. Instead, it is charged a codftit transmits its  regpectively, at timd, i.e., iy = A{Xvr-1, Ut} Ler =

observation. No transmission means no communicationg, .., v, ;}, and I;z = {Yi.7_1, S1.7—1}. Then the
)

cost. decisions at timel" are generated by/r = fr(Xr, L),

3) The optimization problem is to design the schedulmg/T = gr(Xp, Iy), X7 = ho(Yp, Sr, Lar).
policy, encoding policy, and decoding poli¢y, g, h) Denote byl the information set about the past system
that minimize the following cost function: states at tim&’, namely,

. 2 - -
J(f,9:h) =E {CU + (X~ X) } It = { X111, Urr—1, Xvr—1, Yir—1, Yior—1, Str—1}



Then Iy, I.7, Isr € Ir. Consider another problem, which The first term depends on the choice(¢f—1, gr—1 , h7—1),
we call Problem T2, wherelr is available to the sensor, the and the second part depends only Bn ; and fr_;. By
encoder, and the decoder, and we want to de§fgng7-, A7) an argument similar to the one above, when minimizing

to minimize Jr—1(fr-1,9r—1, hr_1), itis sufficient for decision makers
b L2 to consider onlyE; ; instead oflyp_1y, Ie(r—1), Lacr—1)-
Jr, (fr, 97, hr) = E{(XT - Xr) } Similarly, the optimal cost starting from tim& — 1 is a

function of Er_4, to be denoted by/*(T' — 1, Er—1). By
induction one can show that there is no loss of generality
B(}/ [estricting Ut = ft(XtaEt)vift = gt(XhEt),Xt =

where Ur = fr(X7,Ir), Yr = g (Xr,Ir), X7

o (Yr, Sr,Ir). Since the sensor, the encoder, and th
decoder can always ignore the redundant info_rmation ar)lt(yt S, E,), and the optimal cost starting from tinés a
behave as if they only knowir, I.7, 147, respectively, the functijon’of Et to be denoted by* (¢, E;) -
system inProblem T2 cannot perform worse than the system The proof (;f Theorerfi]2 also shc;ws that the optimal cost

in Problem T, i.e., function J*(¢, E;) and the optimal policie$f;, g;, h;) can

Iy (frs gy Bp) < min Jr, (fr, g7, hr) be computed by the standard dynamic programming equation
(f1,gh %) (fr.g97,hT) [12] as follows,
Similarly, consider a third problem, which we c&toblem J(T+1,)=0

T3, where only Er is available to the sensor, the encoder,
and the decoder. We want to desigi}, g7, h/) to minimize  J*(t, E;) = fmn}I {E[(Xt — XY +E[J(t+1, EtH)]}
t,gt Nt
~ 2

Jr,(f1, 97, ) =E {(XT - Xr) } where the evolution of’; is described by[{2), ang.(-,0) =
0 due to the constraint on the communication opportunities.
Depending on the realization oX;, F:;;1 may be E; or
Ey — 1. Therefore the dynamic programming equation can
also be written as

where Ur = féf(XT,ET), Yr = gljlw(XT,ET), XT

= h%(ffT,ST,ET). Since £+ can be deduced from

Iyr, I.7, 147, by a similar argument as above, the perfor
mance of the system iRroblem T1 is no worse than the

performance of the system FProblem T3, that is, J*(t,E;) = min {]E[(Xt — XY+ (t+1, B —1)

L ZE t7ht
min Jr,(frogr hr) < min T (F g HE) "

S e [ e Bopx@de + 0+ 1,8) - [0 s E)
Let us now return toProblem T2. Since the distortion
function p(-,-) and the power constraint of the encoder do s : %2
not deper(ld 2)n[T, the communication constraint depends pX(x)dw} =S+ LB+ min {E[(Xt Xe)]
on I only via Ep, and {X;} and {V;} are i.i.d. random
processesX, andVy are also independent &f- and thereis ~ +ci(Et) - /ft(iv, Et)px(:v)d:v}

ft,gt,h

no loss of opti[nality if we restrictr = 1 (Xe,Er), Yr = A3)

9r(Xr, Er), Xo = hip(Yr, S, Er) and wherec,(E,) = J*(t+1, E, — 1) — J*(t + 1, ;). Note that
i I (F e BL) — i T (£ th_e m|n|m|z_at|on in [®) aboye is just the_ one-stage problem

(fﬁgir,lh;) r.(fr: 97, hr) (,f}’{?é?h%) v (/7. 97, hr) discussed in sectionJIl with communication cas{E;).

The equality above shows that roblem T1 the sensor, Hence we have the following theorem.

the encoder and the decoder can ignore their information Theor_em 3. Consider th(_e sensor scheduhng and rem_ote
about the past, namelfyr, .., and Iz, respectively, but estimation problem described in sectibh II. If we restrict

just considerEy. Moreover, the optimal cost at tim@ the sensor to apply the symmetric threshold based policy

is a function of By, denoted byJ*(T, Er). Note that the (introduced in sectiof1ll), then the optimal policies for
evolution of B, is d'escribed by ' the sensor, the encoder, and the decoder can be described,

respectively, as follows:

Ey, = N .

B B U, >0 (@) LB = 1, if By > 0and|Xy| > 5} (E)

Therefore at timel’ — 1 we want to design fr—1, gr—1 , 0, it By =0or |Xi| < Bi(E)
he_1) to minimize ) | Xy — aBf(E) —ax™t, if X, #e
Jr_a(fr—1,97-1,hr-1) 95X E) = e, if X, =¢

~ 2 ~ 2

:E{(XTA - X7_1) }—FE{(XT - X7) } s, - (é%ffri_ %/\71 +ﬂf(Et)) :
=E {(XT_l - XT_I)Q} + ]E{J* (T, ET))} hi(Yy, Sty By) = if Y;,9; # e

E{(XT—l _XT—1)2}+E{J*(T7ET—1 —UT—1)} 0, if V5,8 =



WhereB:(Et) = \/Ct(Et) —+m, Ct(Et) = J*(t + 1,Et — 200

1)—J*(t+1,Et),m:%A—lz,a:)\\/P_,W:%. 180 777::21).1
Remark 2: ¢;(E;) can be interpreted as the opportunity . SNR=10
cost for choosing to communicate with the estimator rather & **°|
than not to communicate. M\
Remark 3. Consider the case wherg; > T — ¢, that % 1201
is, the sensor is always allowed to communicate with the 100 \
estimator for the rest of time. First, we note that the op- 2 AN
portunity costc,(E;) is zero. Also, even though the sensor % " \‘\\\\\
can always communicate with the estimator, the optimal £ \\\
communication policy is still the threshold-based polidghw o D T i) S e S A
thresholds3; (E;) = v/m > 0, which might seem counter- 2 T 11 ]

o

intuitive: why would the sensor not transmit its observatio 0 10 20 w0 o o 9 0 w0 100
although it is allowed to do so? This surprising result is due Number of communication opportunities

to the fact that threshold information, i.e., whether or not
the state sample belongs to a fixed, known interval, migt’rffltgiész'
be more informative than a noisy observation of the state at
the output of the noisy channel. Hence, it might be better

not to communicate explicitly over the noisy channel but

rely on the side channel which signals where the sampFéa” minimal error as the optimal 100-stage estimation error
lies. For example, at the extreme case of a very noisyith the number of communication opportunities above the

channel { — 0) the output of the communication channel, pportunity thr_eshold. One can also see from Eb 2 that
Y,, is effectively useless, irrespective of the realization when the SNR increases, the opportunity threshold incecase
However, depending on the threshold and the realizatiild the rr_ummal error decregses. )
X,, thresholding information could be significantly more The existence of opportunity threshold can be interpreted
informative. as follows: since we restrict the sensor to apply the thigsho
based policy with threshold; (E;) = \/c:(E:) +m > /m,
V. NUMERICAL RESULTS the expected number of communication opportunities that
By plugging the optimal sensor scheduling, encoding, andill be used is upper bounded Wy - P(|.X:| > /m) =
decoding policies(f;, g;, h}) described in Theoreifl 3 into Te=*™. Therefore when the communication opportunities
the dynamic programming equatidi (3), we get the explici§ greater thanTe=*", the optimal expected estimation

update rule for the optimal cost functiokt (¢, E; ), as shown €rror will not decrease even though the sensor can have
below more communication opportunities. It can also be checked

. y _ . from Fig.[2 that the opportunity thresholds under different
Tt EBy) Jr(E+ 1B 207 it By =0 signal to noise ratios are roughe=*". Moreover, since
J*(t, Ey) JH(t+1,E) + 2272 —2)72 m= g5, Te " = Te *G71, which is an increasing
'(%Z‘(Et)/\ i 1) CeMIED i By >0 function of the SNRy. 'I_'herefore the opportunity threshold

increases as the SNR increases.
where §; (E;) = /ci(E;) +m, m = -3 55. The compu-  Fig.[3 depicts a sample path of the number of communica-
tation complexity of the dynamic programming equation ision opportunities left when the sensor applies the thriesho
O(TN), whereT is the time horizon andV is the number based scheduling policy described in TheorEm 3. When
of transmission opportunities. generating the plot we chosE = 100, A = 1, v = 0.1,

We choose parameters as followis:= 100, A = 1. In  and the number of communication opportuniti&s= 50.
particular, we choosé = 10,1, 0.1, which corresponds to One can see that all the communication opportunities are
signal to noise ratio (SNRy = 0.1,1,10 by (@). We solve not used up by the end of the time horizon.

(3 by applying the update rule for optimal cost function as \when the number of communication opportunities is
described above. We plot the optimal 100-stage estimatiQgrger than the opportunity threshold, the optimal estiomat
error versus the number Of Communication Opportunitieérror does not Change with respect to the number of com-
under different SNRs, as shown in Figlie 2. munication opportunities. Without loss of generality wa ca
One can see that, as to be expected, for each fixed SNigsume that the sensor is allowed to communicate at each
the optimal 100-stage estimation error is non-increasng istep, thatisN = T'. Then the opportunity cost is(E;) = 0.
terms of the number of communication opportunities. T@Recall thats; (E;) = Vi (Er) +m andm = ﬁx_lz Hence

be more specific, there exists a threshold on the number gfe update rule for the cost function can be simplified as
communication opportunities (call @pportunity threshold)  fgllows:

such that the optimal 100-stage estimation error decreases
when the number of communication opportunities is below 92 20/m 2 B
the threshold, and it stays constant above the threshold. We (¢, 1) = J*(t +1,T) + (p - (T + p) e Ar)

100-stage estimation error vs. number of commuioicatpportu-
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with J*(T + 1,T) = 0, which implies that

. 2 2v/m 2 T
FOT) = T - () )
1 I
— . -2, — ( ——— . I+~
= T2 1 (m—i-l)eVT]

It is straightforward to check that*(1,T") is a decreasing

function of the SNRy. Hence, the minimal error decreases

as the SNR increases.

We plot the opportunity threshol@e=*" versus the
minimal errorJ*(1,T) under different SNRs (dash line) in
Fig.[2 and arrive at Fid.]14.
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Fig. 4. Opportunity threshold vs. minimal error under diffet signal to
noise ratios

Consider the asymptotic case where the SNR» oo,
and thusm = #% — 0. Then the opportunity threshold
Te=*™ — T, and the minimal errorJ*(1,7) — 0.
Hence, the optimal 100-stage estimation error will be #yric
decreasing in terms of the number of communication oppor-
tunities in the asymptotic case, as also noted in prior work
[4]. Furthermore, the estimation error will reach zero when
the number of communication opportunities equals the time
horizon.

VI. CONCLUSIONS

In this paper, we have considered a sensor scheduling
and remote estimation problem with limited communication
opportunities and noisy communication channel. The main
contribution is that, as opposed to prior work that assume a
perfect communication channel in the problem formulation,
we have solved here the problem with an additive noise
channel. For a Laplacian source and Gamma channel noise,
we have obtained the optimal encoding and estimation poli-
cies and the optimal transmission schedule using dynamic
programming. Our analysis has uncovered a rather surgrisin
result: There might be cases where the sensor does not use all
the available transmission opportunities, which is in argha
contrast with the noiseless setting, where all commurdaoati
opportunities are used. Future directions for researdudiec
extensions to higher dimensional spaces and multi-channel
settings.
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