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Optimal Estimation with Limited Measurements and Noisy
Communication

Xiaobin Gao, Emrah Akyol, and Tamer Başar

Abstract— This paper considers a sequential estimation and
sensor scheduling problem with one sensor and one estimator.
The sensor makes sequential observations about the state of
an underlying memoryless stochastic process, and makes a
decision as to whether or not to send this measurement to
the estimator. The sensor and the estimator have the common
objective of minimizing expected distortion in the estimation
of the state of the process, over a finite time horizon, with the
constraint that the sensor can transmit its observation only
a limited number of times. As opposed to the prior work
where communication between the sensor and the estimator
was assumed to be perfect (noiseless), in this work an additive
noise channel with fixed power constraint is considered; hence,
the sensor has to encode its message before transmission. For
some specific source and channel noise densities, we obtain
the optimal encoding and estimation policies in conjunction
with the optimal transmission schedule. The impact of the
presence of a noisy channel is analyzed numerically based
on dynamic programming. This analysis yields some rather
surprising results such as a phase-transition phenomenon in
the number of used transmission opportunities, which was not
encountered in the noiseless communication setting.

I. I NTRODUCTION

Joint sensor scheduling and remote state estimation prob-
lems have recently gained renewed interest due to prolifera-
tion of energy limited sensor networks, see e.g., [1]–[7] and
the references therein.

In [4], the following problem was considered: Estimate a
one-dimensional discrete-time stochastic process distributed
independently and identically (i.i.d.) over a decision horizon
of length T using only N ≤ T measurements. Both the
measurement and the estimation of the process were carried
out sequentially by two different decision makers, the sensor
and the estimator. Over the decision horizon of lengthT , the
sensor had exactlyN opportunities to transmit its observation
to the estimator. These transmissions were assumed to be
error and noise free, and the problem posed was to jointly
determine the best sensing and estimation policies that min-
imize the average estimation error between the process and
its estimate. Optimum transmission decisions were sought
in the class of threshold based strategies and the optimal
decision sequence, i.e., the evolution of the thresholds intime
based on the realization of the process, were obtained via
dynamic programming. Later, using majorization and related
techniques, such threshold based strategies were shown to be
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optimal for this problem [5], [6] and even for more general
settings where the process is not necessarily memoryless [5],
[6].

Note that all prior work considered the problem with
perfect (noiseless) communication between the sensor and
the estimator, which was an important starting point for
this line of research. More realistic scenarios, however, are
those where the transmission channels are noisy—a problem
that presents several challenges. The main difficulty here
is that with noise in the channel, and under an average
power constraint, the sensor has to encode its message before
transmission, and the estimator has to consider this encoding
mapping in its estimation mapping. However, the optimal
zero-delay encoding/estimation mappings are not known in
general, except in the Gaussian source-Gaussian channel
case; see e.g., [8], for which the mappings are known to be
linear (or affine if the random variables are not zero-mean)
for all power levels. Even in this special case, however, once
the sensor observation is thresholded, the distribution isno
longer Gaussian, and hence linear (or affine) mappings may
no longer be optimal, making the problem fairly intractable.

In [9], the settings where linear (or affine) strategies are
optimal for zero-delay communication have been character-
ized in terms of the source and the additive channel noise
distributions. It was shown that if and only if a “matching
condition”, defined over the characteristic functions of the
source and the channel noise, is satisfied, then the linear en-
coding/estimation policies are optimal. This characterization
enables tractability of the zero-delay communication prob-
lems, beyond the Gaussian source-Gaussian channel case.
Implications of this matching condition on the adversarial
zero-delay communication was studied in [10], where it was
shown that the optimal strategy for an adversarial agent with
fixed jamming power is to render the effective channel noise
distribution to match that of the source, so that the matching
conditions are satisfied, and the optimal encoding/decoding
mappings are linear.

In [11], we applied the matching condition of [9] to
the problem of sensor scheduling and remote estimation,
and showed optimality of threshold based sensor scheduling
policies and affine encoding/estimation policies for the case
of Laplacian source and Gamma channel noise, withsoft
constraints over the number of transmissions. In this paper,
building on this recent prior work [11], we consider a
hard constraint on the number of transmission times over
a finite time horizon, i.e, we extend the work in [4] to noisy
communication settings for Laplacian source and Gamma
channel noise. Using a dynamic programming approach, as
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done in [4], we obtain the optimal transmission scheduling
policy. Beyond the expected results, we notice some rather
surprising effects of the noisy communication considerations
in this class of remote estimation problems. For example,
over a time horizonT and with a hard transmission limit,
N ≤ T , if the state realizations were so that at time stepK,
the sensor has used onlyN−T +K transmissions out ofN ,
the intuitively appealing solution to the noiseless variation of
the problem was to transmit all the observed state realizations
without any thresholding, i.e., the threshold is effectively set
to zero for samples at time stepsK +1, . . . , T . However, in
the noisy setting, we have noticed that this is not the case,
the sensor may not use all the transmission opportunities
left. This is due to the fact that threshold information–that
is whether or not the state sample belongs to an interval–
may be more valuable than a “noisy” observation of the
state. In fact, depending on the signal-to-noise ratio (SNR)
of the channel, there is a fixed number of useful (in average)
number of transmissions, and allowing transmissions more
than this number, on the average, does not help decrease the
expected mean square error (MSE).

The rest of the paper is organized as follows. In Section
II, we formulate the problem. In Section III, we present
some preliminary results. In Section IV, we present and
prove the main results. In Section V, we present and discuss
some numerical results. Finally in Section VI, we include
conclusions and discuss some future directions.

II. PROBLEM FORMULATION

A. System Model

Fig. 1. System model

Consider a remote sensing and estimation system propa-
gating in discrete time over a finite time horizon, namely,t =
1, 2, . . . , T . In the system, there isone remote sensor,one
encoder andone estimator (which is also called “decoder”).
The sensor takes measurements on a one-dimensional, inde-
pendent identically distributed (i.i.d.) random process{Xt},
which has Laplace distribution with parameters(0, λ−1).
Assume that at timet, the sensor takes a perfect measurement
onXt, and then decides whether to transmit the measurement
to the encoder or not. Let a binary variableUt be the sensor’s
decision at timet, whereUt = 0 stands for no transmission
andUt = 1 stands for transmission. The sensor is restricted
to make no more thanN times of transmissions over the
time horizon, that is

T
∑

t=1

Ut ≤ N

Let X̃t be the message received by the encoder. Assume that
the transmission from the sensor to the encoder is perfect,
then

X̃t =







Xt, if Ut = 1

ǫ, if Ut = 0

where ǫ is a free symbol standing for no transmission is
made. After receiving the message from the sensor, the
encoder sends an encoded message to the communication
channel, denoted byYt, Yt ∈ R. The encoder is not able to
send any message to the communication channel if it does
not receive any message from the sensor, which is denoted
by Yt = ǫ. The encoder has average power constraint:

E[Y 2
t |Ut = 1] ≤ PT

wherePT is known, and this holds for allt. Assume that the
encoded message is disturbed by an additive channel noise
Vt. {Vt} is an i.i.d. random process with Gamma distribution
Γ(k, θ), which is independent of{Xt}. Let Ỹt be the noise-
corrupted message received by the decoder, we have

Ỹt =







Yt + Vt, if Yt 6= ǫ

ǫ, if Yt = ǫ

When sending the encoded messageYt, the encoder is able
to transmit the sign of̃Xt to the decoder via a noiseless side
channel, denoted bySt. Again, the encoder is not able to
send any message to the decoder via the side channel if it
does not receive any message from the sensor, then

St =







sgn(X̃t), if X̃t 6= ǫ

ǫ, if X̃t = ǫ

Based on the received messagesỸt and St, the decoder
generates an estimate onXt, denoted byX̂t. The decoder is
charged for distortion in estimation. Assume that the distor-
tion functionρ(Xt, X̂t) is the squared error(Xt− X̂t)

2, and
the cumulative distortion is the sum of stage-wise squared
errors over the decision horizon.

B. Decision Strategies

Assume that at timet, the sensor has memory on all its
measurements byt, denoted byX1:t, and all the decisions
it has made byt− 1, denoted byU1:t−1. The sensor makes
decisionUt based on its current information(X1:t, U1:t−1),
that is

Ut = ft(X1:t, U1:t−1)

whereft is the sensor scheduling policy at timet and f =
{f1, f2, . . . , fT } is the sensor scheduling strategy.

Similarly, at time t, the encoder is assumed to have
memory on all the messages received from the sensor by
t, denoted byX̃1:t, and all the encoded messages it has sent
to the communication channel byt− 1, denoted byY1:t−1.
The encoder generates the encoded messageYt based on its
current information(X̃1:t, Y1:t−1), that is

Yt = gt(X̃1:t, Y1:t−1)



where gt is the encoding policy at timet and g =
{g1, g2, . . . , gT} is the encoding strategy.

Finally, it is assumed that at timet, the decoder has
memory on all the messages received from the encoder by
t, denoted byỸ1:t, S1:t. The decoder produces estimatêXt

based on its current information(Ỹ1:t, S1:t), namely

X̂t = ht(Ỹ1:t, S1:t)

where ht is the decoding policy at timet and h =
{h1, h2, . . . , hT } is the decoding strategy.

Remark 1: Although we do not assume that the encoder
and the decoder have memory onU1:t, yet they can de-
duceU1:t from X̃1:t and Ỹ1:t, respectively. Similarly, the
decoder can deduce the previous estimatesX̂1:t−1 from
(Ỹ1:t−1, S1:t−1) and{h1, h2, . . . , ht−1}.

C. Assumptions on the Parameters

Let σ2
V be the variance ofVt. Since Vt has gamma

distribution Γ(k, θ), σ2
V = kθ2. Let α := λ

√
PT , and

γ := PT

σ2
V

. γ is also called signal to noise ratio (SNR). Assume
that

θ =
√

PT

Then, we have

α = λθ, γ =
1

k
(1)

A detailed explanation of the motivation for these assump-
tions can be found in [11, Remark 2].

D. Optimization Problem

Consider the system described above, given the time
horizonT , the number of transmission opportunitiesN , the
statistics of{Xt} and {Vt}, and the power constraintPT .
Determine the sensor scheduling strategy, encoding strategy,
and decoding strategy(f, g, h) that minimize the expected
value of the sum of stage-wise estimation costs over the time
horizon, that is,

J(f, g, h) = E

{

T
∑

t=1

(Xt − X̂t)
2

}

subject to the communication constraint of the sensor and
the power constraint of the encoder.

III. PRIOR WORK

Consider the sensor scheduling and remote estimation
problem described above, but with the following modifica-
tions:

1) The time horizonT = 1 (and hence we suppress in this
section the subscript for time in all the expressions).

2) The sensor is not constrained by the number of trans-
missions. Instead, it is charged a costc if it transmits its
observation. No transmission means no communication
cost.

3) The optimization problem is to design the scheduling
policy, encoding policy, and decoding policy(f, g, h)
that minimize the following cost function:

J(f, g, h) = E

{

cU + (X − X̂)
2
}

Theorem 1: [11] Consider the communication problem
described above, and restrict the sensor to apply symmetric
threshold based policy, that is

U = f(X) =







1, if |X | > β

0, if |X | ≤ β

whereβ > 0 is the threshold. Then,

1) The optimal scheduling policy is the one with threshold
β∗ =

√
c+m, wherem = 1

γ+1
1
λ2

2) The optimal encoding and decoding policies are as
follows

g(X̃) =







α|X̃| − αβ∗ − αλ−1, if X̃ 6= ǫ

ǫ, if X̃ = ǫ

h(Ỹ , S) =







S ·
(

1
α

γ
γ+1 Ỹ + γ

γ+1λ
−1 + β∗

)

, if Ỹ , S 6= ǫ

0, if Ỹ , S = ǫ

whereα = λ
√
PT , γ = PT

kθ2 .

IV. M AIN RESULTS

We first defineEt as the number of communication
opportunities left at timet, i.e.,

Et = N −
t−1
∑

i=1

Ui

Then, the communication constraint can be expressed by

Ut ≤ Et, ∀ t = 1, 2, . . . , T

By Remark 1,U1:t−1 is the common information shared by
the sensor, the encoder, and the decoder, and henceEt is
also known by all the decision makers. Then we have the
following theorem.

Theorem 2: Consider the sensor scheduling and remote
estimation problem described in section II. Without loss of
optimality, we can restrict the sensor scheduling, encoding
and decoding policies to the forms:

Ut = ft(Xt, Et), Yt = gt(X̃t, Et), X̂t = ht(Ỹt, St, Et)
Proof: At time t = T , we want to design(fT , gT , hT )

to minimize

JT1(fT , gT , hT ) = E

{

(XT − X̂T )
2
}

whereUT = fT (X1:T , U1:T−1), YT = gT (X̃1:T , Y1:T−1),
X̂T = hT (Ỹ1:T , S1:T ). We call this problemProblem T1. De-
note byIsT , IeT , IdT the information about the past system
states available to the sensor, the encoder, and the decoder,
respectively, at timeT , i.e.,IsT = {X1:T−1, U1:T−1}, IeT =
{X̃1:T−1, Y1:T−1}, and IdT = {Ỹ1:T−1, S1:T−1}. Then the
decisions at timeT are generated byUT = fT (XT , IsT ),
YT = gT (X̃T , IeT ), X̂T = hT (ỸT , ST , IdT ).

Denote byIT the information set about the past system
states at timeT , namely,

IT = {X1:T−1, U1:T−1, X̃1:T−1, Y1:T−1, Ỹ1:T−1, S1:T−1}



Then IsT , IeT , IdT ∈ IT . Consider another problem, which
we call Problem T2, whereIT is available to the sensor, the
encoder, and the decoder, and we want to design(f ′

T , g
′
T , h

′
T )

to minimize

JT2(f
′
T , g

′
T , h

′
T ) = E

{

(XT − X̂T )
2
}

where UT = f ′
T (XT , IT ), YT = g′T (X̃T , IT ), X̂T =

h′
T (ỸT , ST , IT ). Since the sensor, the encoder, and the

decoder can always ignore the redundant information and
behave as if they only knowIsT , IeT , IdT , respectively, the
system inProblem T2 cannot perform worse than the system
in Problem T1, i.e.,

min
(f ′

T
,g′

T
,h′

T
)
JT2(f

′
T , g

′
T , h

′
T ) ≤ min

(fT ,gT ,hT )
JT1(fT , gT , hT )

Similarly, consider a third problem, which we callProblem
T3, where onlyET is available to the sensor, the encoder,
and the decoder. We want to design(f ′′

T , g
′′
T , h

′′
T ) to minimize

JT3(f
′′
T , g

′′
T , h

′′
T ) = E

{

(XT − X̂T )
2
}

where UT = f ′′
T (XT , ET ), YT = g′′T (X̃T , ET ), X̂T

= h′′
T (ỸT , ST , ET ). Since ET can be deduced from

IsT , IeT , IdT , by a similar argument as above, the perfor-
mance of the system inProblem T1 is no worse than the
performance of the system inProblem T3, that is,

min
(fT ,gT ,hT )

JT1(fT , gT , hT ) ≤ min
(f ′′

T
,g′′

T
,h′′

T
)
JT3(f

′′
T , g

′′
T , h

′′
T )

Let us now return toProblem T2. Since the distortion
function ρ(·, ·) and the power constraint of the encoder do
not depend onIT , the communication constraint depends
on IT only via ET , and {Xt} and {Vt} are i.i.d. random
processes,XT andVT are also independent ofIT and there is
no loss of optimality if we restrictUT = f ′

T (XT , ET ), YT =
g′T (X̃T , ET ), X̂T = h′

T (ỸT , ST , ET ) and

min
(f ′

T
,g′

T
,h′

T
)
JT2(f

′
T , g

′
T , h

′
T ) = min

(f ′′
T
,g′′

T
,h′′

T
)
JT3(f

′′
T , g

′′
T , h

′′
T )

The equality above shows that inProblem T1 the sensor,
the encoder and the decoder can ignore their information
about the past, namelyIsT , IeT , andIdT , respectively, but
just considerET . Moreover, the optimal cost at timeT
is a function ofET , denoted byJ∗(T,ET ). Note that the
evolution ofEt is described by

E1 = N

Et = Et−1 − Ut−1, t ≥ 2
(2)

Therefore at timeT − 1 we want to design(fT−1, gT−1 ,
hT−1) to minimize

JT−1(fT−1, gT−1, hT−1)

= E

{

(XT−1 − X̂T−1)
2
}

+ E

{

(XT − X̂T )
2
}

= E

{

(XT−1 − X̂T−1)
2
}

+ E

{

J∗
(

T,ET )
)

}

= E

{

(XT−1 − X̂T−1)
2
}

+ E

{

J∗
(

T,ET−1 − UT−1

)

}

The first term depends on the choice of(fT−1, gT−1 , hT−1),
and the second part depends only onEt−1 and fT−1. By
an argument similar to the one above, when minimizing
JT−1(fT−1, gT−1, hT−1), it is sufficient for decision makers
to consider onlyEt−1 instead ofIs(T−1), Ie(T−1), Id(T−1).
Similarly, the optimal cost starting from timeT − 1 is a
function of ET−1, to be denoted byJ∗(T − 1, ET−1). By
induction one can show that there is no loss of generality
by restricting Ut = ft(Xt, Et), Yt = gt(X̃t, Et), X̂t =
ht(Ỹt, St, Et), and the optimal cost starting from timet is a
function ofEt, to be denoted byJ∗(t, Et)

The proof of Theorem 2 also shows that the optimal cost
functionJ∗(t, Et) and the optimal policies(f∗

t , g
∗
t , h

∗
t ) can

be computed by the standard dynamic programming equation
[12] as follows,

J∗(T + 1, ·) = 0

J∗(t, Et) = min
ft,gt,ht

{

E[(Xt − X̂t)
2] + E[J∗(t+ 1, Et+1)]

}

where the evolution ofEt is described by (2), andft(·, 0) =
0 due to the constraint on the communication opportunities.
Depending on the realization ofXt, Et+1 may beEt or
Et − 1. Therefore the dynamic programming equation can
also be written as

J∗(t, Et) = min
ft,gt,ht

{

E[(Xt − X̂t)
2] + J∗(t+ 1, Et − 1)

·
∫

ft(x,Et)pX(x)dx + J∗(t+ 1, Et) ·
∫

(1− ft(x,Et))

pX(x)dx

}

= J∗(t+ 1, Et) + min
ft,gt,ht

{

E[(Xt − X̂t)
2]

+ct(Et) ·
∫

ft(x,Et)pX(x)dx

}

(3)
wherect(Et) = J∗(t+1, Et− 1)− J∗(t+1, Et). Note that
the minimization in (3) above is just the one-stage problem
discussed in section III with communication costct(Et).
Hence we have the following theorem.

Theorem 3: Consider the sensor scheduling and remote
estimation problem described in section II. If we restrict
the sensor to apply the symmetric threshold based policy
(introduced in section III), then the optimal policies for
the sensor, the encoder, and the decoder can be described,
respectively, as follows:

f∗
t (Xt, Et) =







1, if Et > 0 and |Xt| > β∗
t (Et)

0, if Et = 0 or |Xt| ≤ β∗
t (Et)

g∗t (X̃t, Et) =







α|X̃t| − αβ∗
t (Et)− αλ−1, if X̃t 6= ǫ

ǫ, if X̃t = ǫ

h∗
t (Ỹt, St, Et) =



















St ·
(

1
α

γ
γ+1 Ỹt +

γ
γ+1λ

−1 + β∗
t (Et)

)

,

if Ỹt, St 6= ǫ

0, if Ỹt, St = ǫ



whereβ∗
t (Et) =

√

ct(Et) +m, ct(Et) = J∗(t + 1, Et −
1)− J∗(t+ 1, Et), m = 1

γ+1
1
λ2 , α = λ

√
PT , γ = PT

kθ2 .
Remark 2: ct(Et) can be interpreted as the opportunity

cost for choosing to communicate with the estimator rather
than not to communicate.

Remark 3: Consider the case whereEt > T − t, that
is, the sensor is always allowed to communicate with the
estimator for the rest of time. First, we note that the op-
portunity costct(Et) is zero. Also, even though the sensor
can always communicate with the estimator, the optimal
communication policy is still the threshold-based policy with
thresholdβ∗

t (Et) =
√
m > 0, which might seem counter-

intuitive: why would the sensor not transmit its observation
although it is allowed to do so? This surprising result is due
to the fact that threshold information, i.e., whether or not
the state sample belongs to a fixed, known interval, might
be more informative than a noisy observation of the state at
the output of the noisy channel. Hence, it might be better
not to communicate explicitly over the noisy channel but
rely on the side channel which signals where the sample
lies. For example, at the extreme case of a very noisy
channel (γ → 0) the output of the communication channel,
Ỹt, is effectively useless, irrespective of the realizationXt.
However, depending on the threshold and the realization
Xt, thresholding information could be significantly more
informative.

V. NUMERICAL RESULTS

By plugging the optimal sensor scheduling, encoding, and
decoding policies(f∗

t , g
∗
t , h

∗
t ) described in Theorem 3 into

the dynamic programming equation (3), we get the explicit
update rule for the optimal cost functionJ∗(t, Et), as shown
below

J∗(t, Et) = J∗(t+ 1, Et) + 2λ−2, if Et = 0

J∗(t, Et) = J∗(t+ 1, Et) + 2λ−2 − 2λ−2

·
(

2β∗
t (Et)λ+ 1

)

· e−λβ∗
t (Et), if Et > 0

whereβ∗
t (Et) =

√

ct(Et) +m, m = 1
γ+1

1
λ2 . The compu-

tation complexity of the dynamic programming equation is
O(TN), whereT is the time horizon andN is the number
of transmission opportunities.

We choose parameters as follows:T = 100, λ = 1. In
particular, we choosek = 10, 1, 0.1, which corresponds to
signal to noise ratio (SNR)γ = 0.1, 1, 10 by (1). We solve
(3) by applying the update rule for optimal cost function as
described above. We plot the optimal 100-stage estimation
error versus the number of communication opportunities
under different SNRs, as shown in Figure 2.

One can see that, as to be expected, for each fixed SNR,
the optimal 100-stage estimation error is non-increasing in
terms of the number of communication opportunities. To
be more specific, there exists a threshold on the number of
communication opportunities (call itopportunity threshold)
such that the optimal 100-stage estimation error decreases
when the number of communication opportunities is below
the threshold, and it stays constant above the threshold. We
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Fig. 2. 100-stage estimation error vs. number of communication opportu-
nities

call minimal error as the optimal 100-stage estimation error
with the number of communication opportunities above the
opportunity threshold. One can also see from Fig. 2 that
when the SNR increases, the opportunity threshold increases,
and the minimal error decreases.

The existence of opportunity threshold can be interpreted
as follows: since we restrict the sensor to apply the threshold
based policy with thresholdβ∗

t (Et) =
√

ct(Et) +m ≥ √
m,

the expected number of communication opportunities that
will be used is upper bounded byT · P(|Xt| ≥ √

m) =
Te−λm. Therefore when the communication opportunities
is greater thanTe−λm, the optimal expected estimation
error will not decrease even though the sensor can have
more communication opportunities. It can also be checked
from Fig. 2 that the opportunity thresholds under different
signal to noise ratios are roughlyTe−λm. Moreover, since
m = 1

γ+1
1
λ2 , Te−λm = Te

− 1
λ(γ+1) , which is an increasing

function of the SNRγ. Therefore the opportunity threshold
increases as the SNR increases.

Fig. 3 depicts a sample path of the number of communica-
tion opportunities left when the sensor applies the threshold
based scheduling policy described in Theorem 3. When
generating the plot we choseT = 100, λ = 1, γ = 0.1,
and the number of communication opportunitiesN = 50.
One can see that all the communication opportunities are
not used up by the end of the time horizon.

When the number of communication opportunities is
larger than the opportunity threshold, the optimal estimation
error does not change with respect to the number of com-
munication opportunities. Without loss of generality we can
assume that the sensor is allowed to communicate at each
step, that is,N = T . Then the opportunity cost isct(Et) = 0.
Recall thatβ∗

t (Et) =
√

ct(Et) +m andm = 1
γ+1

1
λ2 . Hence

the update rule for the cost function can be simplified as
follows:

J∗(t, T ) = J∗(t+ 1, T ) +
( 2

λ2
−
(2

√
m

λ
+

2

λ2

)

· e−λ
√
m
)
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Fig. 3. A sample path of the number of communication opportunities left
vs. time

with J∗(T + 1, T ) = 0, which implies that

J∗(1, T ) = T ·
( 2

λ2
−

(2
√
m

λ
+

2

λ2

)

· e−λ
√
m
)

= T · 2λ−2 ·
[

1−
( 1√

1 + γ
+ 1

)

· e−
1√
1+γ

]

It is straightforward to check thatJ∗(1, T ) is a decreasing
function of the SNRγ. Hence, the minimal error decreases
as the SNR increases.

We plot the opportunity thresholdTe−λm versus the
minimal errorJ∗(1, T ) under different SNRs (dash line) in
Fig. 2 and arrive at Fig. 4.
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Fig. 4. Opportunity threshold vs. minimal error under different signal to
noise ratios

One can see that the intersection between the dash line and
each solid line is roughly the turning point of the solid line.
Therefore, the plot of opportunity threshold versus minimal
error under different SNRs is an important one. In fact, the
plot suggests the lowest capacity of the battery that one
should choose when building a physical system so that the
expected estimation error is minimized. Furthermore the plot
predicts the minimal expected estimation error.

Consider the asymptotic case where the SNRγ → ∞,
and thusm = 1

γ+1
1
λ2 → 0. Then the opportunity threshold

Te−λm → T , and the minimal errorJ∗(1, T ) → 0.
Hence, the optimal 100-stage estimation error will be strictly
decreasing in terms of the number of communication oppor-
tunities in the asymptotic case, as also noted in prior work
[4]. Furthermore, the estimation error will reach zero when
the number of communication opportunities equals the time
horizon.

VI. CONCLUSIONS

In this paper, we have considered a sensor scheduling
and remote estimation problem with limited communication
opportunities and noisy communication channel. The main
contribution is that, as opposed to prior work that assume a
perfect communication channel in the problem formulation,
we have solved here the problem with an additive noise
channel. For a Laplacian source and Gamma channel noise,
we have obtained the optimal encoding and estimation poli-
cies and the optimal transmission schedule using dynamic
programming. Our analysis has uncovered a rather surprising
result: There might be cases where the sensor does not use all
the available transmission opportunities, which is in a sharp
contrast with the noiseless setting, where all communication
opportunities are used. Future directions for research include
extensions to higher dimensional spaces and multi-channel
settings.
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