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Stability Analysis of Parabolic Linear PDEs with Two Spatid
Dimensions Using Lyapunov Method and SOS

Evgeny Meyer and Matthew M. Peet

Abstract—In this paper, we address stability of parabolic
linear Partial Differential Equations (PDEs). We considerPDEs
with two spatial variables and spatially dependent polynonal
coefficients. We parameterize a class of Lyapunov functions
and their time derivatives by polynomials and express stattity
as optimization over polynomials. We use Sum-of-Squares dn
Positivstellensatz results to numerically search for a sation
to the optimization over polynomials. We also show that our
algorithm can be used to estimate the rate of decay of the
solution to PDE in the Lo norm. Finally, we validate the
technique by applying our conditions to the 2D biological KISS
PDE model of population growth and an additional example.

. INTRODUCTION

it provides the boundary control law. Applications for two-
dimensional cases were discussed in [15] and [16]. However,
backstepping requires us to guess on the target PDE and
solve the PDE for kernel, which may be a challenging task
for PDEs with two spatial variables and spatially dependent
coefficients. Moreover, backstepping cannot be used for
stability analysis in the absence of a control input.

Note that SOS has been previously applied in [17] and [18]
to find Lyapunov functionals for 1D parabolic PDE. Input-
Output analysis of PDE systems with SOS implementation
is discussed in [19]. Examples of using SOS in controller
design for one-dimensional PDEs can be found in [20]-[22].

Stability analysis and controller design for Partial Dif- The main contribution of this paper is to provide an
ferential Equations (PDEs) is an active area of researeigorithm for stability analysis of 2D parabolic PDEs with
[1], [2]. One approach to stability analysis of PDEs is tcspatially varying coefficients. We search for polynomial
approximate the PDEs with Ordinary Differential Equationgvhich defines a Lyapunov functional of the form
(ODEs) using, e.g. Galerkin's method or finite difference, )
and then apply finite-dimensional optimal control methods, Viu(t,-)) = /Qs(x)u(t,x) dx
€.g. [3}-16]. In this paper we consider stability analySiswhereu is the solution of the PDE, represents timey and

without d|s_cr_et|z§1t|on. Specifically, we use Sum (.)f Sesar (2 are the spatial variable and domain. We introduce stability
(SOS) optimization to construct Lyapunov functionals for . ; )

. . . . . conditions in the form of parameter dependent LMIs, which
parabolic PDEs with two spatial variables and spatiall

dependent coefficients. ¥:ert|fy Lyapunov inequalities, i.e.

It is well-known that existence of a Lyapunov function /(¢ .)) > 0 andi [V(u(t,"))] <0forallt>0. (1)
for a system of ODEs or PDEs is a sufficient condition dt

for stability. For example, [7] uses a Lyapunov approaciihere exist several algorithms for optimization over poly-
and Linear Operator Inequalities (LOIs) to provide suffitie homials which can be applied t61(1) in order to fifd
conditions for exponential stability of a controlled heada See e.g., [24] for a survey on algorithms for optimization
delayed wave equations. Another method based on Lyapun@f/polynomials. In this paper, we apply SOS and the Posi-
and semigroup theories was applied in [8] for analysi§vstellensatz results to find a solution to parameter dégen

of wave and beam PDEs with constant coefficients andMIs. For details on Positivstellensatz see [23] or [25]. We
delayed boundary control. In [9] a Lyapunov based analysi¢se the MATLAB toolbox SOSTOOLS (see [26] for details
of semilinear diffusion equations with delays gave stapili on SOSTOOLS) and SeDuMi, a well-known semidefinite
conditions in terms of Linear Matrix Inequalities (LMIs). programming solver, to solve the SOS optimization problem.
Extensive examples of applying the backstepping method to The paper is organized as follows. In Section 2 we
the boundary control of PDEs can be found in [10]-[14]specify the notation and provide some background. Lyapunov
Briefly speaking, backstepping uses a \olterra operator &ability conditions for parabolic PDEs are given in Settio
search for an invertible mapping from the original PDE td3. We demonstrate the proposed method in Section 4 and
a chosen "target” PDE, known to be stable. In order to fing@resent SOS optimization problems in Section 5. Finally, we
such mapping, one has to solve analytically or numerically @iscuss numerical implementations in Section 6 and coeclud

PDE for Volterra operator’s kernel. If the mapping is foundthe paper in Section 7 with ideas about future research.steps
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N is the set of natural numbers ang) := NU {0}. R"
andS"™ are then-dimensional Euclidean space and space of
n x n real symmetric matrices. Far € R", let 27" denote
transposed andz; € R is thei-th component ofc. || - ||; is
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a norm onR", defined ag|z|; := >, |2;|. For X € S", Polynomial matrices and SOS matrices are defined in a
X < 0 means thafX is negative semidefinite. The symbol similar manner (See, e.g. [27]). We u3€[S(z)] to denote
will denote the symmetric elements of a symmetric matrixthe set of real symmetric SOS polynomial matricesMfe
ForQ € R" and f : © — R let f(z) stand for > [S™(x)] then for allz € R, M (z) € S™ andM (z) > 0.
f(z1,...,z,) and [, f(x) dz represent an integral of over

" C. C i L
Q with dz := dz1dzsy...dz,. omparison Lemma

Let N# := {a € R" : o; € No}. A vector o € N7 is Recall the comparison principle from, e.g. [28].
called multi-index. Foil € N define the set Lemma 1: Consider the scalar differential equation
Liu(t)] = f(t,u(t), u(to) = uo, Where f(t,z) is con-
Q' ={aeNg:[alh <1} (2)  tinuous int and locally Lipschitz inz, for all ¢ > 0 and all

x € J CR. Let[ty,T) (T could be infinity) be the maximal
interval of existence of the solution and suppose(t) € J

o _o” 1T 9™ for all t € [to,T). Let v be a continuous function whose
Delgla)] = Ox™ lo(=)) = b oz} lg(@)]: 3 upper right-hand derivativ® " [v(¢)] satisfies

Fora € Nj, z € R™ andg : R" — R partial derivative

Note that%[g(x)] = g(z) for anyi € {1,...,n}. We will D p(t)] < f(t,v(1), v(to) < uo
also use classical notation,, ., (t, z) := 52 [z2-[u(t,)]]. With v(t) € J for all ¢ € [to, T). Then,v(t) < u(t) for all

If for a function f : @ — R and somen € Nj derivative € [to, T).
D*[f(x)] exists for allz € ©, there existy : 2 — R such
thatg(z) — D[f(x)] for all = € Q. For brevityD®[f] := g. 1. LYAPUNOV STABILITY FOR PARABOLIC PDE
Further we useW?2(Q). It is one of Banach spaces First consider the following general form of parabolic
WkP(Q) which denote Sobolev spaces of functiens2 —  PDEs. For allt € (0,00) andz € Q C R",
R with D[u] € L,(Q) for all « € Q7, whereQ? is defined o o
as in m) and norzl?n * g ut(tv'r) - F(ta x, D (1)[u(ta I)] sy D (k)[u(tv'r)])a (4)

fullkp =Y D]l whereu : [0,00) x Q — R and fori = 1, ..., k, D*@[u(t, z)]

ol <k are partial derivatives as denoted [} (3). Assume that solu-
where L, (Q2) stands for the space of Lebesgue-measurabli@ns to [3) exist, are unique and depend continuously on ini
functionsg : © — R with norm, forp € N tial conditions. This implies that the function is contirusty

1/p differentiable int and for eacht € [0, 00), u(t, ) € W2(1Q).
lgllz, = (/Q |g(5)|pd8) Theorem 1: Let there exist continuou¥’ : Ly(Q) — R,

I,m e N andb,a > 0 such that
and||g r.. := supseq |9(s)]-

It is known that for continuous functions : [0,00) — alvl|h, < V() <b|lv|7, )
W22(Q) andV : W22(Q) — R their composition(V o u) :
[0,00) — R is also continuous and the upper right-han
derivative D,V (u(t)) is defined by

V(u(t + h)) — V(u(t) D [V (u(t,-))] < —cllu(t, )T, (6)

éor all v € Ly(2). Furthermore, suppose that there exists
¢ > 0 such that for alt > 0 the upper right-hand derivative

DTV (u(t))] := limsup

s O h wherew satisfies[(#). Then
Note trlat ifv : [Oéoo) — R is differentiable att € (0,00) |y (¢, )|, < { é||u(0, .)||7Ln2/l expd—Z¢l forall ¢t > 0.
then D [u(#)] = Zlv(t)] Proof: Let conditions of Theoreml 1 be satisfied. Since
B. Polynomials W?22(Q) C Ly(Q), from (@) it follows that for eacht > 0
For a multi-indexas € Nj and z € R”, let 2 := allu(t, )|y, < V(u(t,-)) < bllu(t, )| 7. @)

[T, a8 = 2 292, 2%, Thenz® is a monomial of de-

greel|«|lx € No. A polynomial is a finite linear combination Dividing both sides of the second inequality il (7) by

results in

of monomialsp(z) := > paz®, where the summation is “Vult, ) < [t )| 8)
applied over a given finite set of multi-indexesandp,, € R b C T P
denotes the corresponding coefficient. [Rft] stand for After multiplying both sides of[(8) by-c, we have
polynomial ring inn variablesz, ..., x,, with coefficients in —ellult, )P < —EV(u(t ). 9)
R. The degree of a polynomiale R[] is the largest degree ' 2T ’
among all monomials, and is denoted by @8ge No. From (@) and[(P) it follows that

A polynomialp € R[z] is called Sum of Squares (SOS), D [V(ult, )] < —EV(u(t, ). (10)
if there is a finite number of polynomiats € R[z] such that _ b _
for all z € R™, p(z) = 3, zi(x)?. We denote the set of sum To use the comparison principle, consider the ODE
of square polynomials in variablesby > [z]. If p € > [x], d c

thenp(z) > 0 for all z € R™. 7 0@ = —70(t), #(0) =V(u(0,))),  (11)



wheret € (0, 00) and functionp : [0, 00) — R is continuous. where

The well-known solution for[(11) is L(t) :/ 2s(x)u(t, v)a(x)ug, o, (t, z) d,
c Q
8(0) = V (w(0, ) exp { ~31} L(t) = / $(@)u(t, 2)b(@) gy, (1, 7) da,
for all t > 0. Applying Lemma 1 for[(ID) and(11) results !
in . I5(t) ':/ s(@)u(t, 2)b(x)ug, o, (t, ) da,
V(u(t,)) < V(u(0, ) exp{~7t} (12) ’
I,(¢) ':/ 2s(x)ult, 2)e(x) gy, (t, ) da,
for all ¢ > 0. Substitutingt = 0 in the second inequality of Q
(@) implies I5(t) -—/ 2
- 5() = [ 2s(@)u(t,o)(d@)us, (t,2)
V(u(0,-)) < b[u(0, )z, (13) o (
Combining the first inequality of{7) witfi{13) and {12) gives +e(@)uz, (t,2) + f(@)ult, x)) d.
c Note that, based on section 5.2.3 of [29], we have
alu(t, Y, < V() < V((o, ) exp {5t} 129]
c Uiy (8 T) = Ugnar, (E, @) (20)
< bf|u(0,)[|7, expy—-t - (14)  for all z € . We used property{20) to define and ;.
b
o . ) Alternatively, I5 can be formulated as
Dividing (I4) by a and taking thd*" root results in
I5(t) = / UT(t,2)Zs(z)U(t, z) d, (22)
lu(t, ), < fn m/lexp{_it} for all £ > 0. 9
Ib where for allz € Q
IV. STABILITY TEST EXPRESSED AS ™ UT(t,2) = [u(t, ) ue, (t,2) ug,(t, )] (22)
OPTIMIZATION OVER POLYNOMIALS and
In this paper, we focus on PDEs of the following form. 2s(x)f(z) s(z)d(z) s(z)e(z)
Forallt >0 andz € Q := (0,1)?, Zs(x) = * 0 0
t, = a1z (L +b a1z (L * § 0
ult, 7) = (@t f) (Z)u (t ?) Using integration by parts and boundary conditidng (Z6),
+ (@)U, (t, ) + d()us, (¢, 2) can be rewritten as follows.
et e, 9y 2 st aat) g o) de
wherea, b, c,d, e, f € R[z]. Assume that solution t@_(IL5) ex- .
ists, is unique and depends continuously on initial coodgi _ / (s(:c)u(t 2)a(z)ug, (t, )| =L
For eacht > 0 supposeu(t,-) € W22(Q). Furthermore, let 0 7 B
satisfy zero Dirichlet boundary conditions, i.e. ! d
u satisfy e ! y ° i _ /0 ey (t.2) - s(a)u(t, 2)a(a)] day ) das
u(t,1,22) = u(t,0,22) = u(t,x1,1) = u(t,z1,0) =0 (16) d
for all z1, o € [0,1]. DefineV : Ly(Q) — R as - /Q 2z, (8, 2) (u(t’x)d—:cl[s(x)a(x)]
V(o) = / s(@)v(z)? dx, (17) + s()a(e)us, (1,2)) da
Q
- T(t,2)z t,x)d 23
wheres € R[z]. Usingu(t, -) for v in (T7) and differentiating /Q Un (o) 21 (@)U (¢ ) da, (23)
the result with respect to gives where for allz € O
d d ) 0 drl[ s(z)a(z)] 0
It [V (u(t, )] = P [/Q s(@)u(t, ) dx} Zi(x) := [* 2s(x)a(xz) 0] .
* * 0
/ 2s(x)ult, 2)ue(t, ) de. (18) Following steps of[(23) for,, I; and I, we get
Substltutmg foru,(t, z) from CI:B) into [I8) implies _ / d
B(0) = | s(eyut,2)b(e) g e, (1, 2)] da
2s(x)u(t Uy, (L, T 1 _
| 2l (a(@)ttay, (2, 2) _ / (s(ayult, 2)b()ue, (¢ 2) 2125
+ b(2) a2y (t, ) + C(T)Uagas (T, ) 0 1 d
] — [ st ) @t )p(a)] da )
Ppult.)) de ; .
= —/ UT(t,2) Zo(x)U(t, x) de,
:Il()+IQ()+Ig()+I4(t)+I5(t), (29) Q



d
s(x darg — [ug, (¢, )] dx

%@\

)b(x)us, (t, )52,

d
_ /0 ey (1) [s(x)u(t, 2)b()]dzs ) day
= —/QUT(t,x)Zg(x)U(t,x)d:c,

Ii(t) = /Q2s(x)u(t,:c)c(:1:) d2 (g, (L, )] dx

—AZUT(t,x)Z4(x)U(t,x) dx, (24)
whereU is defined as in[(22) and for all € Q
00 oL [s(x)o(a)
Zo(x) = |x 0 25(x)b(x) )
ER 0
[0 55 [s(2)b(2)]
Zs(x) == % 0 2s(x)b(x) |
| * * 0
[0 0 d%[S(@)C(I)]]
Zy(z) =[x 0 0 .
L« o« 2s(x)e(x)
By combining [19),[(21),[{23) and_(R4) it follows that
L, )= [ U0 0Q@UE D), (25)
Q
where for allz € Q
2s(z)f(x) Q1(z) Q2(z)
Q(z) = * —2s(z)a(z) —s(z)b(x) (26)
* * —2s(x)c(x)
with
Qu(2) s = s(@)d(w) = - [s(@a(e)] - 5 [s()b(o)],
Qa(2) s = sla)elo) — 5 = ls(a)b(w)] — = [s(a)e(w)]

A. Spacing functions

If Q(z) < 0 for all x € €, then the time derivative
in (8) is clearly non-positive for alk > 0. However,
such a condition onp is conservative. To decrease that
conservatism, we introduce matrix valued functidhssuch

that
/ UT(t,2)Ys(z)U(t,z)dx =0
Q

and, therefore, can be added t® without altering the
integral. Y; are called spacing functions. We parameteriz

T; by polynomialsp;. The idea came from [27].

The following holds for anyp; € R[z], because of the

boundary conditiond(16).
d
/del[ u(t, )y (x)ult, )] dz

= [ (w128 s =0. @D

Using the chain rule, we have
d
d_xl[u(tvx)pl(x)u(tvx)]

= ult, )y lu(t. ) + 201 (2)ult, 2, (1. 2)
=UT(t,x)Y1(2)U(t, ), (28)

} . (29)
Combining [27) and[{28) results in

/ Ut,z)"'Y1(z)U(t,z) dz = 0.
Q

Likewise in [2T), because of the boundary conditidng (16),
the following holds for any, € R]x].

/diz[ (t, 2)p2(z)u(t, x)] dz = 0.
[u(t, z)ps (z)ult,

where for allz € Q
=[p1(2)] pi(2)

Ti(x):= |: * 0

* *

o O O

(30)

Following steps of[(28) ford%2 x)], gives

Zp2)] 0 pa(z)
Ty(z) = * 0 0 (31)
* * 0
such that
/ Ut,z)" Yo(z)U(t, ) dz = 0. (32)
Q

Similarly to (27), the following is true for anyz € R|x].
/ i[u(lf, x)p3(x)uy, (t,2)] dx = 0.
Q dIQ
Note that the left-hand side df{833) can be written as follows
d
t o (tx)] d
| - ol (0] da
= [ (tealt2lpa(o, (8. 0)
Q
d
Tz (@), (1,2) ) de
4 [t o) unsn (1) de, (38)
Q

where we need propertly (20). Applying integration by parts
to the second integral of the right-hand side of the last
equation in IZ3|4) results in

o 1t (@) (1.2)]

/ t T p3
1
e
0
A
Q

(33)

+u(t,z)—

Y (t, 2)[71 g

[u(t, z)ps (2)] dxl) dazs

lpa@)]) da
)

u;m t ‘T)p3( )—i—u(t,x)



From [34) and[(35) the following holds.
/ %[U(a 2)p3(2)uay (8, 2)] dx
Q 2
:/ (u(t,x)%[]ﬂa(iﬁ)]um(tvx)
Q 2

— uf(t, x)d;::l [p3 ()]s, (T, :C)) dx
~ / Ut 2)T Ta(@)U (L, 7) dx, (36)
Q
where for allz € Q
{0 sas3(@)]  —55e[pa(@)]
Ts(x):= |« 0 0 (37)
* * 0
Combining [38) and[{36) gives
/ U(t,x)TT3(z)U(t, x) dz = 0. (38)
Q

Following steps[(33) —[(36) for-[u(t, )pa(z)us, (t, )]
with any ps € R[z], leads to the following.

/ U(t,2)T Ty (z)U(t,z) dz = 0,
Q

where for allz € Q

(39)

{0 —37=[pal@)] 3% [m(@]]
YTa(x) = |x 0 0 (40)
* * 0

From [25), [30),[(3R),[{38) and (B9) the following holds.
%[V(u(t, ] /QUT (t,x ( +ZT ) (t,z)dz. (41)

By substituting for@ andT'; from QE), [29),[(3L),[(37) and
(4Q) in (43) we can define
M:‘I)(a,b,C,d,e,f,s,pl,pg,pg,p4), (42)

if forall z € Q

Ml(I) MQ(ZC) Mg(ZC)
M(x) = * —2s(z)a(z) —s(x)b(z) |, (43)
* * —2s(x)c(x)
where
d d
Mi(o) 1= 25(0) (&) + -lpr ()] + - lpa(o)]
Ma(o) i= s(2)dlz) = - [s(@)a(w)] — 57— {s(a)b(a)
i) + 3l (o) — o)
My(e) = s(ale(a) — 5 - [s(@)e)] = - ls(a)e(a)]
+p2(a) + 5 [pa(e) ~ pa(a)] (44)
such that !
GV = [ U oM@U . @)
dt N o ’

Theorem 2: Suppose that fof (15) there existp; € R[z],
fori =1,...,4,andf > 0, such thats(x) > 6 andM (z) <0
for all z € Q, where M is defined as in[{42) 4(44). Then
(I35) is stable.

Proof: If conditions of Theorenh]2 are satisfied, let

a = inf {s(z)}, b= sup{s(x)}. (46)
zeQ e
Sinces(xz) > 6 > 0 for all z € Q, thenb,a > 0 and the
following holds for allv € Ly(€2).

allvl?, = inf {s(a }/ d:z:</ﬂ s(z)v?(z) da

[ o @7)
Using [I7) we haveu|jv[|7, < V(v) < b|v]|7,. Since
M(z) < 0, from {@5) it follows that2 [V (u(t,-))] < 0 for
all t > 0. TheoreniL witha, b, defined as in[(46)n = [ = 2
andc = 0 ensures stability of(15). [ |
Theorem 3: Suppose that for (15) there exi8ty > 0
ands,p; € R[z], for i = 1,...,4, such thats(z) > ¢ and
M(x)+~S(z) <0 forall z € Q, whereM is defined as in

@2) - [43) and
s(z) 0 0
* 0 0].
[ * * 0]

Then for allt > 0 solution to [Ib) satisfies

Jutt oo < /2100 s, e, (@9)

wherea, b are defined as il (46).
Proof: Under the assumptions of TheorEm[3.1(47) holds.
With (@8) and [[2R) we can write

/ U(t,2)TS(x)U(t, ) da.
Q

Since M (x) +~vS(x) <0 for all x € Q, it holds that

< sup{s(z
€

x) dz = bl|v]Z,-

S(x) == (48)

V(ut, ) = (50)

/Q UT(t,2)(M(z) +~vS(2))U(t, ) dz < 0. (51)

Since~ is a scalar,[(31) can be easily satisfied as follows.
/UT(t,x)M(:zr)U(t,x)d:r S—’y/U(t,a:)TS(:zr)U(t,x)da:,
Q Q

which with (@8) and [(B0) provides% [V (u(t,-))] <
—V (u(t,-)). Using proof of Theoreni]l withc/b = +,
results in [(4D). [ |

V. LYAPUNOV STABILITY IN TERMS OF
SOS OPTIMIZATION

Solving optimization over polynomials is computationally
hard. Thus, in this section we present SOS programming
alternatives, whose solutions yield solutions to probléms
Theoremg R anfll 3 and, therefore, provide sufficient condi-
tions for stability of System[{15).



Theorem 4: Suppose that fof (15) there existp; € R|x]
fori =1,...,4,0 > 0, n;,ne € X[z] and Q1,Q2,Q3 €

Y[S3(z)] such that for allry, zo € (0,1)
s(z) =04 x1(1 — z1)n1(x) + 22(1 — x2)na(x),
M(z) = — Q1(z) — 21(1 — 21)Q2(x)

— ,Tg(l — wg)Qg(w), (52)

where M is defined as in[{42) £ (44). The {15) is stab
Proof: If (82) holds, then clearlys(z) > 6 anc
M (z) < Oforall z € . Using Theorerfil2 provides stabil

of (I5). [ |
Theorem 5: Suppose that for(15) there exigty > 0,

s,pi € Rlz|fori=1,...,4,n1,ne € X[z] andQy, Qs, Qs €
Y[S3(z)] such that for allrq, 22 € (0,1)
s(x) =04 21 (1 — z1)n1(z) + 22(1 — z2)na (),
M(z) +~S(z) = — Qa(z) — 21 (1 — 21)Q5(x)
— x2(1 — 22)Q¢(x), (53)

where M is defined as in[(42) £(44) angl as in [48), then
for all £ > 0 solution to [I5) satisfies

Jutt Moo < /2100 s, el 6)

wherea, b are defined as if_(46).
Proof: If (EJ) is true, then for allz € Q, s(x) > 0

and M (z) +vS(x) < 0, which, combined with Theoref] 3,

gives [54). [ |
VI. NUMERICAL VERIFICATION OF THE
PROPOSED METHOD
A. KISS model

&deg(s)=4
15 ©deg(s)=6
- <tdeg(s)=8
= 1r deg(s)=10
- +deg(s)=12
= 05 Numerical
3
= o
=
20-0.5
2
_l,
_15 1 1 1
0 0.05 0.15 0.2

0.1
t

Fig. 1. Semi-log plots of thé> norm of the numerical solution tb (55) with
u(0,x) = 103z122(1 — x1)(1 — 22) and bounds, given by the proposed
method with different deg).

TABLE |
MINIMUM h., VS DEG(s) FOR (55)
degb) 4 6 8 10 12 analytic
her 0.332 || 0.259 || 0.238 || 0.229 || 0.227 0.203

may be shown to be feasible. Results for different degrees
of s (deg(s)) are presented in Tablé (1).

Now we choosé = 1, h = 2 andr = 4. Using a bisection
search overy, we determine the maximum for which the
SOS problem in Theorefd 5, with (58), may be shown to be
feasible. Results for different deg(are presented in Table
(. Using finite difference scheme, we numerically solve
(G8) with w(0,2) = 103z122(1 — 21)(1 — z2). Plots of
logyo (||u(t,)||L,) versust, using a numerical solution, and
bounds orog;, (||«(t,)||z,), given by the proposed method
for different degds), are presented in Figl](1). These plots
allow us to determine; by examining the rate of decrease

We applied the method described in Sections] (IV) anih the L norm. Plots are aligned a&t= 0 in order to better
() to stability of the biological KISS PDE named aftercompare our SOS estimates-pfo the estimate of, derived
Kierstead, Slobodkin and Skelam, which describes popul&om numerical simulation as a function of increasing dgg(
tion growth on a finite area. For more details see [30]. Thg Randomly generated system

system is modeled by the following PDE.
up(t,x) = h (Ugyz, (8, 2) + Ugyay (6, 2)) + ru(t,z), (55)

whereh,r > 0, z € Q C R? and scalar function satisfies
zero Dirichlet boundary conditions.

It is claimed in [30] that ifQ is a square with edge of

length/, then

defines a critical length. That means] if- I..., then [5b) is
unstable. Alternatively, for givehandr (G8) definesh., as
hep := 1%1/27°. (57)

Therefore, ifh < h.., then [Gb) is unstable.
For our purpose we fik= 1 and arbitrarily choose = 4.
Thus, according td_(37);., =~ 0.203.

(56)

Using a bisection search ovér we determine minimum

her for which SOS problem in Theoreli 4, with
a(z) =h, blx)=0, c(z)=nh,

d(z) =0, e(z)=0, f(z)=4 foralxzecQ (58)

Consider

uy(t, x) = (523 — 152129 + 1323) (Usy 0, (¢, T)
F Uppas (6, 2)) + (1021 — 1522) Uy, (L, )
+ (1521 + 262)uy, (t, ©) — (1727 — 3022
— 2527 — 8a — 50z )u(t, ),

u(0,2) = 10321 29(1 — 1) (1 — 22) (59)

wherex € Q := (0,1)? and the scalar function satisfies

zero Dirichlet boundary conditions.
Using a bisection search over we determine maximum
~ for which SOS problem in Theorel 5, with

a(r) = 5x? — 15z w9 + 1323,  e(x) = —1527 + 2622,
c(x) = bxt — 15z 00 + 1323,  d(z) = 10z, — 1522,
f(x) = —(172} — 302y — 2522 — 823 — 5023), b(z) =0

may be shown to be feasible.

TABLE Il
MAXIMUM ~y VS DEG(s) FOR(BE)WITH h = 2

degB) q 6 || 8 | 10 12
~ 4025 || 53 || 59 || 61 || 62




2 ‘ ‘ [10]
¢ Proposed method
1.5 #*Numerical simulation
= ] (11]
< 05 1
3
= o 1 [12]
=
ED—O.S* 1 3]
_17 4
1% 0.05 otfl 0.15 0.2 (14]
) . . _ [19]
Fig. 2. Semi-log plots of thd.o norm of the numerical solution t@_(59)

and bound, given by the proposed method with degf 8.

Using finite difference scheme, we numerically so[vg (59)[.16]
The estimated rate of decay, based on numerical solution,
is 13.07. The computed rate of decay, based on our SOS
method, is12.5 for deqs) = 8. Plots are given in Fig.]2 [
and, as for Figl]1, are aligned at= 0.

VIl. CONCLUSION AND FUTURE WORK (18]

In this paper we have presented a method which allows
us to search for Lyapunov functionals for parabolic linea 19]
PDEs with two spatial variables and spatially dependent
coefficients. We demonstrated accuracy of the method in
estimating critical diffusion for the KISS PDE and the ratgzo]
of decay for the KISS PDE and for a randomly chosen PDE.
In future work, we will extend the method by considering
Lyapunov functionals of more complicated types, e.g. func-
tionals with semi-separable kernels, as in [31]. In additio 21
we will consider alternative boundary conditions, as wsll a

semi-linear and nonlinear 2D and 3D parabolic PDEs. 22]
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