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Constructing distance functions and piecewise quadratic Lyapunov
functions for stability of hybrid trajectories

J. J. Benjamin Biemond, W. P. Maurice H. Heemels, Ricardo G. Sanfelice and Nathan van de Wouw

Abstract— Characterising the distance between hybrid tra-
jectories is crucial for solving tracking, observer design and syn-
chronisation problems for hybrid systems with state-triggered
jumps. When the Euclidean distance function is used, the so-
called “peaking phenomenon” for hybrid systems arises, which
forms a major obstacle as trajectories cannot be stable in the
sense of Lyapunov using such a distance. Therefore, in this
paper, a novel and systematic way of designing appropriate
distance functions is proposed that overcomes this hurdle and
enables the derivation of sufficient Lyapunov-type conditions,
using minimal or maximal average dwell-time arguments, for
the stability of a hybrid trajectory. A constructive design
method for piecewise quadratic Lyapunov functions is presented
for hybrid systems with affine flow and jump maps and a jump
set that is a hyperplane. Finally, we illustrate our results with
an example.

I. INTRODUCTION

Hybrid system models combine continuous-time dynamics
with discrete events or jumps and are invaluable in numerous
application domains [9], [10]. Many results on hybrid sys-
tems exist and, particularly, the stability of isolated points or
closed sets of hybrid systems is well understood [9], [10].
However, the stability of time-varying trajectories received
significantly less attention and many issues are presently
unsolved. Given the importance of stability of trajectories
in, e.g., tracking control, observer design and synchronisation
problems, it is important to address these open issues.

One of the main complications to study the stability of hy-
brid trajectories is the “peaking phenomenon,” as discussed,
e.g., in [14], [17], [3], [12]. “Peaking” of the Euclidean
error occurs when two solutions from close initial conditions
do not jump at the same time instant. If before the first
jump the Euclidean error is small, then the Euclidean error
approximately equals the jump distance directly after the
first jump. As the amplitude of the resulting peak in the
Euclidean error cannot be reduced to zero by taking closer
initial conditions, trajectories of hybrid systems with state-
triggered jumps are generically not asymptotically stable
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with respect to the Euclidean measure, see also Fig. 1 below.
This behaviour (including the “peaking” in the Euclidean
measure) might still represent desirable stability behaviour.
Consequently, the Euclidean error is not a good measure to
analyse when jumps are state-triggered.

Focussing on mechanical systems with unilateral posi-
tion constraints, two approaches have been presented in
the literature to avoid the “peaking behaviour”. Firstly, the
Zhuravlev-Ivanov method, cf. [5] and the related approach in
[7] are proposed, where tracking control and observer prob-
lems require asymptotic stability of a set that consists of the
real system and the mirrored images. As a second approach,
in [8], the standard Euclidean state error is employed away
from the impacts times, while near impacts, only the position
error, and no velocity error is considered.

The “peaking” of the Euclidean error is partially due to
the comparison of the value of two trajectories at the same
continuous-time instant. Alternatively, the graphs of com-
plete trajectories can be compared. Based on this approach,
continuity of trajectories with respect to initial conditions
is investigated in [6], [15]. However, analysis tools and an
appropriate definition for the stability of a trajectory are
hard to formulate as complete trajectories are considered.
To overcome the mentioned issues, in this paper, a distance
function is formulated between states of the system (as
opposed to complete trajectories).

The comparison of trajectories is facilitated by a distance
function that takes the jumping nature of the hybrid system
into account, therewith avoiding the “peaking phenomenon.”
In [3], conditions on this distance function are presented
such that stability in this distance function corresponds to
an intuitively correct stability notion: when this distance
is small, time mismatches between jumps of trajectories
with close initial conditions are small, and away from
the jump times, states are close. Focussing on a class of
constrained mechanical systems, a similar distance function
was employed in [19] to study continuity of trajectories with
respect to initial conditions. Both in [3] and in [19], ad-hoc
techniques were used to design the distance function.

As a first main contribution, we present a constructive
and general design method for the distance function. The
proposed distance function provides a good comparison
between two hybrid trajectories and we show that an intuit-
ively correct definition of asymptotic stability, with respect
to the new distance, is attained. As a second contribution,
sufficient conditions for asymptotic stability are presented
that rely on Lyapunov functions that may increase during
either flow or jump, as long as the Lyapunov function even-
tually decreases along solutions. For this purpose, maximal



or minimal average dwell-time arguments are employed,
as proposed in the context of impulsive systems in [11].
The third contribution consists of a constructive piecewise
quadratic Lyapunov function design for a class of hybrid
systems where the jump map is an affine function of the
state, the jump set is a hyperplane, and the continuous-time
dynamics can be influenced by a bounded control input.
This class of systems contains certain models of mechanical
systems with unilateral constraints. Finally, the results of this
paper are illustrated with an example.
Outline: We present the class of hybrid systems con-
sidered in Section II and design the distance function in
Section III. Subsequently, the stability of trajectories is
defined in Section IV. A Lyapunov theorem to study the
stability of a hybrid trajectory is presented in Section V
and a constructive piecewise quadratic Lyapunov function
is designed in Section VI for a class of hybrid systems.
Finally, an example is presented in Section VII, followed
by conclusions in Section VIII.
Notation: Let N and N>0 denote the set of nonnegative
and positive integers, respectively. The set B ⊂ Rn is the
closed unit ball. Given a map F with dom F ⊆ Rn and
a set S ⊆ dom F , F (S) = {y|y ∈ F (x), with x ∈ S}
denotes its image; F (y) = ∅ for y 6∈ dom F , F k(x), with
x ∈ Rn, k ∈ N>0, denotes F (F k−1(x)) and for all x ∈ Rn,
F 0(x) = {x}. Let F−1(S) denote the pre-image, namely,
F−1(S) = {x : F (x) ∩ S 6= ∅}. Using Definition 1.4.11 in
[2], an outer semicontinuous mapping F : S ⇒ Y is proper
if for every sequence {(xn, yn)}n∈N where yn ∈ F (xn) and
yn converges in Y , the sequence {xn}n∈N has a cluster point
x̄. For n,m ∈ N>0, let In and Omn denote the identity
matrix and the matrix of zeros of dimension n × n and
m × n, respectively, and for x ∈ Rn and y ∈ Rm, (x, y)
denotes (xT , yT )T . Given matrices A,B ∈ Rn×n, A � B
and A � B denote that A,B are symmetric and that A−B is
positive definite or positive semidefinite, respectively. Given
A ∈ Rn×n, A � 0 and x ∈ Rn, ‖x‖2A denotes xTAx.

II. HYBRID SYSTEM MODEL

Consider the hybrid system

ẋ ∈ F (t, x) x ∈ C, (1a)
x+ ∈ G(x) x ∈ D (1b)

with F : [0,∞) × C ⇒ Rn and G : D ⇒ Rn, where
C ⊆ Rn and D ⊆ Rn. We emphasize that the jump map
G is independent of the time t, which will be exploited
in the design of the distance function below. In contrast to
embedding continuous time as a state variable in the hybrid
dynamics, we prefer to use explicit time-dependency of the
flow map F , as this allows to study the perturbation of initial
conditions without perturbing the initial time. The class of
hybrid systems in the form (1) is quite general and permits
modelling systems arising in many relevant applications.

To illustrate the “peaking behaviour,” in Fig. 1, a reference
trajectory xd and a trajectory x are shown of a hybrid system
with data

C = [0,∞)× R, D = {0} × (−∞, 0],
F (t, x) = (x2,−g + u(t)), G(x) = −x, (2)
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Fig. 1. a),b) Projection on the t-axis of trajectories x and xd obtained for
the hybrid system with data (2). c) Euclidean distance function.

with g = 9.81. The reference trajectory xd is generated
by the hybrid system with input u ≡ 0 and xd0(0, 0) =
(0, 10), while the input u, that generates the trajectory x
from initial condition x(0, 0) = (0, 3), enforces convergence
of x to xd in the sense that when the time domain is
projected onto the continuous-time axis, the graphs of both
trajectories converge to each other. Indeed, the error between
the jump times of both trajectories approaches zero over time,
and, in addition, away from the jump times, the states of
both systems approach each other. However, the Euclidean
distance between the trajectories does not converge to zero,
cf. Fig 1c. This “peaking phenomenon” renders the Euclidean
distance not appropriate to compare these hybrid trajectories,
thereby motivating this study towards systematic techniques
to design proper distance functions that do converge to zero
in situations as in Fig. 1.

We will propose such distance functions for systems (1)
that satisfy the “hybrid basic conditions” as defined for
autonomous systems in [9] adapted here to allow functions
F (t, x) in (1a) which depend on t. The conditions in As-
sumption 1 below are used, firstly, to employ Krasovskii-type
solutions during flow, and, secondly, to enable a comparison
between trajectories, as will become more clear in Theorem 1
below.

Assumption 1 The data of the hybrid system satisfies
• C,D are closed subsets of Rn with C ∪D 6= ∅;
• the set-valued mapping F (t, x) is non-empty for all

(t, x) ∈ [t0,∞)×C, measurable, and for each bounded
closed set S ⊂ [t0,∞) × C, there exists an almost
everywhere finite function m(t) such that ‖f‖ ≤ m(t)
holds for all f ∈ F (t, x) and for almost all (t, x) ∈ S;

• G : D ⇒ Rn is nonempty, outer semicontinuous and
locally bounded.

We consider solutions ϕ to (1) defined on hybrid time
domains dom ϕ ⊂ [t0,∞) × N as introduced in [9] (for
t0 = 0). The function ϕ : dom ϕ → Rn is a solution of
(1) when dom ϕ is a hybrid time domain, jumps satisfy
(1b) and, for fixed j ∈ N, the function t → ϕ(t, j) is
locally absolutely continuous in t and a solution to (1a).
This means ϕ(t, j) ∈ D and ϕ(t, j + 1) ∈ G(ϕ(t, j)) for all
(t, j) ∈ dom ϕ such that (t, j + 1) ∈ dom ϕ; ϕ(t, j) ∈ C,
d
dtϕ(t, j) ∈ F̄ (t, ϕ(t, j)) for almost all t ∈ Ij := {t| (t, j) ∈



dom ϕ} and all j such that Ij has nonempty interior. Herein,
F̄ (t, x) =

⋂
δ≥0 co{F (t, (x + δB) ∩ C)} represents the

Krasovskii-type convexification of the vector field which is
restricted to C, cf. [18], where co denotes the closed convex
hull operation. The solution ϕ is said to be complete if
dom ϕ is unbounded. The hybrid time domain dom ϕ is
called unbounded in t-direction when for each T ≥ 0 there
exist j such that (T, j) ∈ dom ϕ. In this paper, we only
consider maximal solutions, i.e., solutions ϕ such that there
are no solutions ϕ̄ to (1) with ϕ(t, j) = ϕ̄(t, j) for all
(t, j) ∈ dom ϕ, and dom ϕ̄ a hybrid time domain that strictly
contains dom ϕ.

III. DISTANCE FUNCTION DESIGN

A distance function will be presented that does not experi-
ence the “peaking behaviour” that can occur in the Euclidean
distance between two trajectories of (1). We do so for hybrid
systems that satisfy the following assumption.

Assumption 2 The data of the hybrid system (1) is such
that G is a proper function, there exists an integer k > 0 for
which Gk(D) ∩D = ∅, and every maximal solution of (1)
has a hybrid time domain that is unbounded in t-direction.

We now formulate the distance function.

Definition 1 Consider the hybrid system (1) satisfying As-
sumptions 1 and 2 and let k̄ > 0 denote the minimum
integer for which Gk̄(D)∩D = ∅. Let the distance function
d : (C ∪D)2 → R≥0 be defined by

d(x, y) = infz∈A ‖(x, y)− z‖ , with (3)

A :=
{

(zx, zy) ∈ (C ∪D)2
∣∣ ∃k1, k2 ∈ {0, 1, . . . , k̄},

Gk1(zx) ∩Gk2(zy) 6= ∅
}
. (4)

Hence, d vanishes on the set A, which represents all pairs
of states x, y ∈ C ∪D that either are equal or that can jump
onto each other by subsequent jumps characterised by (1b).
The following theorem summarises particular properties of
the distance function d in Definition 1.

Theorem 1 Consider the hybrid system (1) satisfying As-
sumption 1 and 2 and let k̄ > 0 denote the minimum integer
for which Gk̄(D)∩D = ∅. The function d in Definition 1 is
continuous and satisfies

1) d(x, y) = 0 if and only if there exist k1, k2 ∈
{0, 1, . . . , k̄} such that Gk1(x) ∩Gk2(y) 6= ∅,

2) {y ∈ C∪D| d(x, y) < β} is bounded for all x ∈ C∪D,
and all β > 0, and

3) d(x, y) = d(y, x) for all x, y ∈ C ∪D.
In addition, the set A in Definition 1 is closed.

Proof: The proof can be found in [4].
To illustrate that this distance function d(x, y) is non-

peaking, in Fig. 2, the function d(x, y) is evaluated along the
trajectories of Fig. 1. While this function is discontinuous
in continuous-time t when jumps occur, the function does
converge to zero for t→∞. Hence, the depicted behaviour
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Fig. 2. Distance function d in (3) evaluated along the trajectories shown
in Fig. 1 of the hybrid system with data in (2).

corresponds to the intuitive observation that when the time
domain is projected onto the continuous-time axis, the graphs
of both trajectories converge towards each other.

IV. STABILITY OF HYBRID TRAJECTORIES

We now evaluate the distance function d along two tra-
jectories ϕx, ϕy of (1). In order to enable the comparison
of the states of two trajectories in terms of the distance
d, following [3], we introduce an extended hybrid system,
such that a combined hybrid time domain is created. Let
q = (x, y) ∈ (C ∪D)2, and

q̇ ∈ Fe(t, q) := (F (t, x), F (t, y)), q ∈ Ce := C2,

q+ =Ge(q) :=


(G(x), y) if x ∈ D, y ∈ C \D
(x,G(y)) if x ∈ C \D, y ∈ D
{(G(x), y), (x,G(y))} if x, y ∈ D,

q ∈ De :=
{

(x, y) ∈ (C ∪D)2
∣∣ x ∈ D ∨ y ∈ D} . (5)

Given the initial conditions ϕx(t0, 0) and ϕy(t0, 0) at
initial time (t0, 0) for the individual trajectories ϕx, ϕy ,
respectively, we select the initial condition ϕq(t0, 0) =
(ϕx(t0, 0), ϕy(t0, 0)). Solutions of this extended system
generate a combined hybrid time domain. This allows to
compare two trajectories of the hybrid system at every hybrid
time instant (t, j) ∈ dom ϕq . Hereto, let

ϕ̄x(t, j) :=
(
In Onn

)
ϕq(t, j),

ϕ̄y(t, j) :=
(
Onn In

)
ϕq(t, j).

(6)

Given a trajectory ϕx of (1), we say that a trajectory
(ϕ̄x, ϕ̄y) of (5) represents ϕx in the first n states when ϕ̄x
is a reparameterisation of ϕx, i.e., there exists a function
jx : N → N such that ϕ̄x(t, j) = ϕx(t, jx(j)) for all
(t, j) ∈ dom q. Clearly, any trajectory to (5) represents ϕx
in the first n states when both ϕ̄x(t0, 0) = ϕx(t0, 0) holds
and this initial condition corresponds to a unique solution to
(1), as considered in [3].

The distance function defined in (3) allows to compare
different points x, y ∈ C∪D while taking the jumping nature
of the hybrid system (1) into account. Hence, following [3],
system (5) allows to define stability of trajectories as follows.

Definition 2 Consider a hybrid system (1) satisfying As-
sumption 2 and let d be given in (3). The trajectory ϕx of
(1) is said to be stable with respect to d if for all ε > 0 there
exists δ > 0 such that for every initial condition ϕy(t0, 0)
satisfying d(ϕx(t0, 0), ϕy(t0, 0)) ≤ δ, it holds that

d(ϕ̄x(t, j), ϕ̄y(t, j)) < ε for all (t, j) ∈ dom ϕq,



with ϕq(t, j) = (ϕ̄x(t, j), ϕ̄y(t, j)) being any traject-
ory of the combined system (5) with initial condition
(ϕx(t0, 0), ϕy(t0, 0)) that represents ϕx in the first n states.
It is called asymptotically stable with respect to d
if it is stable with respect to d and, for sufficiently
small δ̄ > 0, d(ϕx(t0, 0), ϕy(t0, 0)) ≤ δ̄ implies
limt+j→∞ d(ϕ̄x(t, j), ϕ̄y(t, j)) = 0.

V. LYAPUNOV CONDITIONS FOR STABILITY OF
TRAJECTORIES WITH RESPECT TO d

We now present sufficient conditions for stability of a
trajectory of the system (1) in the sense of Definition 2,
that are based on the existence of an appropriate Lyapunov
function. In order to allow the Lyapunov function to increase
during flow, and decrease during jumps, or vice versa, the
following definitions of minimal and maximal average inter-
jump time are adapted from [17].

Definition 3 A hybrid time domain E is said to have
minimal average inter-jump time τ > 0 if there exists N0 > 0
such that for all (t, j) ∈ E and all (T, J) ∈ E where T+J ≥
t+j, it holds that J−j ≤ N0+ T−t

τ . It has maximal average
inter-jump time τ > 0 if there exists N0 > 0 such that for
all (t, j) ∈ E and all (T, J) ∈ E, where T + J ≥ t + j, it
holds that J−j ≥ T−t

τ −N0. We say that a hybrid trajectory
ϕq has a minimal (or maximal) average inter-jump time if
dom ϕq has a minimal (or maximal, respectively) average
inter-jump time.

The following theorem presents Lyapunov-based sufficient
conditions for the stability of a trajectory of (1). We are
interested in the stability of a trajectory, so these conditions
are imposed locally near this trajectory. For this purpose, we
recall that given a function V : R2n → R≥0 and scalar vL >
0, V −1([0, vL]) denotes the set {q ∈ R2n| V (q) ∈ [0, vL]}.

Theorem 2 Consider a hybrid system (1) satisfying Assump-
tions 1 and 2. Let d be given in (3). The trajectory ϕx
of system (1) is asymptotically stable with respect to d if
there exist a continuous function V : Rn × Rn → R≥0,
K∞-functions α1, α2, a scalar vL > 0 and scalars λc, λd
such that V is differentiable on an open domain containing
VL := V −1([0, vL]) and, for all (t, j) ∈ dom ϕx, it holds
that

α1(d(ϕx(t, j), y)) ≤ V (ϕx(t, j), y) ≤ α2(d(ϕx(t, j), y)),

for all y such that (ϕx(t, j), y) ∈ Ce ∪De, (7)

V (g) ≤ eλdV (q), for all g ∈ Ge(q),
and y such that q = (ϕx(t, j), y) ∈ De ∩ VL, (8)〈
∂V
∂q

∣∣∣
q
, f
〉
≤ λcV (ϕx(t, j), y) for all f ∈ F̄e(t, q)

and y such that q = (ϕx(t, j), y) ∈ Ce ∩ VL, (9)

and at least one of the following conditions are satisfied:
1) λc < 0, λd ≤ 0;
2) all trajectories of (1) have minimal average inter-jump

time 2τ > 0, λc ≤ 0 and λd + λcτ < 0;

3) all trajectories of (1) have maximal average inter-jump
time 2τ > 0, λd ≤ 0 and λd + λcτ < 0.

Proof: The proof can be found in [4].

Remark 1 The Lyapunov conditions in this theorem are
closely related to the Lyapunov conditions used for incre-
mental stability, see e.g. [1], [16], [13], [20]. In fact, if
the conditions of Theorem 2 hold for any solution ϕx(t, j)
of (1), then they imply an incremental stability property
with respect to the distance d. Sufficient conditions for
this more restrictive/powerful system property are attained
by replacing ϕx(t, j) in (7)-(9) with x and requiring the
conditions to hold for all (x, y) ∈ Ce ∪De.

VI. CONSTRUCTIVE LYAPUNOV FUNCTION DESIGN FOR
HYBRID SYSTEMS WITH AFFINE JUMP MAP

In this section, for a specific class of hybrid systems, a
piecewise quadratic Lyapunov function is presented which
satisfies the requirements (7) and (8) by design. Hereby,
we provide a constructive Lyapunov-based approach for the
(local) stability analysis of trajectories.

For this purpose, we focus on the class of hybrid systems
that have single-valued, affine, and invertible jump maps and
have jump sets characterised by a hyperplane. In addition,
the boundary of the flow set C contains the jump set D
and its image G(D), and the jump set D is contained in a
hyperplane, or a halfspace of a hyperplane. These assump-
tions are satisfied for a relevant class of hybrid systems,
such as models of mechanical systems with impacts, see,
for instance, the example in Section VII. To be precise, we
focus on the class of hybrid systems given by

ẋ = f(t, x), x ∈ C, (10a)
x+ = Lx+H, x ∈ D (10b)

with the function f measurable in its first argument and
Lipschitz in its second argument, the matrix L ∈ Rn×n being
invertible, and H ∈ Rn. Furthermore, the sets

C ⊆ {x ∈ Rn| Jx+K ≤ 0∧
(JL−1x+K − JL−1H)s ≤ 0}, (10c)

D := {x ∈ C| Jx+K = 0 ∧ z1x+ z2 ≤ 0} (10d)

are non-empty and closed, where the parameters JT , zT1 ∈
Rn \ {0}, K ∈ R, z2 ∈ R characterise the half hyperplane
containing D, and s ∈ {−1, 1} is selected such that ngd :=
s(L−1)TJT is a normal vector to G(D) pointing out of C,
cf. Fig. 3. We note that G(D) ⊂ {x ∈ Rn| JL−1x + K −
JL−1H = 0} follows from the definitions of D and G. Let
G(D) ⊂ C and let the following assumption hold.

Assumption 3 The data of (10) is such that there exist
scalars z3, z4, z5 > 0 such that
• z1x+ z2 ≥ z3 for all x ∈ G(D),
• Jx+K < −z4 for all x ∈ C that satisfy |z1x+z2| ≤ z3,
• for all x ∈ C with z1x + z2 ≤ 0, there exists y ∈ D

such that Jx+K ≤ −z5‖x− y‖,
• all maximal solutions of (10) are complete.
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Fig. 3. Pictorial illustration of the phase space of (10) for the case n = 2.

Note that this assumption directly implies D ∩ G(D) = ∅,
as D and G(D) are positioned at opposite sides of the
hyperplane {x ∈ Rn| z1x+ z2 = 0}. We observe that, with
Assumption 3, all solutions to (10) have a time domain that is
unbounded in t-direction, as, firstly, G(D)∩D = ∅ excludes
Zeno-behaviour since D is closed, secondly, G is linear and,
thirdly, f is Lipschitz in its second argument. Hence, the
hybrid system (10) satisfies Assumptions 1 and 2.

In order to present a constructive Lyapunov function
design, we first introduce the function Ḡ : Rn → Rn as

Ḡ(x) := Lx+H+M(Jx+K)+sLJT max(0, z1x+z2), (11)

where the parameter M ∈ Rn is to be designed. Note that
if x ∈ D, then Ḡ(x) = G(x) = Lx+H .

Since G(D)∩D = ∅, Definition 1 implies that d(x, y) =
0 if and only if x = y, or x = G(y) or y = G(x). To
design a Lyapunov function V , we note that (7) requires that
V (x, y) = 0 if and only if d(x, y) = 0. Hence, we propose
the following piecewise quadratic Lyapunov function

V (x, y) = min(‖x− y‖2P0
, ‖x− Ḡ(y)‖2Ps

, ‖Ḡ(x)− y‖2Ps
),

(12)
where the positive definite matrices P0, Ps ∈ Rn×n are to be
designed. While this function is not smooth, we will restrict
our attention to a sufficiently small sub-level set where V is
locally differentiable.

Design of Lyapunov function parameters
The following theorem allows to design the parameters

P0, Ps and M of the Lyapunov function V in (12).

Theorem 3 Consider the hybrid system (10), let M ∈ Rn
satisfy (JL−1M + 1)s < 0, let P0, Ps � 0 and let
Assumption 3 hold. Consider the function V in (11),(12).
If for some λd ∈ R it holds that

(L+MJ)TPs(L+MJ) � eλdP0, (13)

P0 � eλdPs, (14)

then there exist K∞-functions α1, α2 and vL > 0 such that
the conditions (7) and (8) in Theorem 2 are satisfied with
VL = V −1([0, vL]) and the function V in (12) is smooth on
an open domain containg VL.

Proof: The proof can be found in [4].
This theorem provides conditions on the data of the hybrid

system (10) and on the Lyapunov function such that (7) and
(8) are satisfied. Additionally, (9) in Theorem 2 imposes
conditions on the evolution of the Lyapunov function along
flows of (1). In the following section, for an example, we
present a controller design such that these conditions are also

u

ε

x1
c

k

Fig. 4. Dissipative mechanical system with impacts.

satisfied. As shown in [4], for the class of systems considered
here, such control laws can be designed in a constructive
manner.

VII. EXAMPLE

In this example, a hybrid system is considered and a
control law is proposed for which a maximal dwell-time
argument proves asymptotic stability of the reference tra-
jectory, illustrating case 3) of Theorem 2. Consider a single
degree-of-freedom mechanical system with a damper with
damping constant c > 0 and a spring with stiffness k > 0
and unloaded position x = x̄1 > 0, as shown in Fig. 4.
Impacts can only occur at the constraint at x1 = 0 and are
modelled with a restitution coefficient ε = 0.9. Hence, the
impacts are dissipative, which allows to study the stability
of the trajectory using a maximal average inter-jump time
result. Assuming that no persistent contact occurs on the
trajectory of which stability is studied, the hybrid system is
locally described by (10) with f(t, x) = Ax+E+Bu(t, x),

A =

(
0 1
−k −c

)
, B =

(
0
1

)
, E =

(
0
kx̄1

)
, L = −εI2,

J =
(
1 0

)
, K = 0, H = 0, s = −1, z1 =

(
0 1

)
, z2 = 0

and the set C is selected to exclude the origin. Herein, u(t, x)
represents a control law and the parameters x̄1 = 1, k = 1
and c = 0.02 are used.

Let the reference trajectory xd be a solution to (10) for
a feedforward function u = uff(t) = 100 cos(ωt), with ω =
0.4. This forcing is selected such that the reference trajectory
xd with initial condition xd(0, 0) = (50, 0) has a maximal
average inter-jump time τd > 0. In addition, xd(t, j) stays
away from the origin, and simulation of nearby trajectories
suggests that without control, the trajectory is unstable.

We now design a control law such that, for the closed-
loop system, the conditions of Theorem 2 hold with λd =
log(ε) < 0 and λc = 0, such that accurate tracking of the tra-
jectory xd is attained. Let x̄d(t) := xd(t,min(t,j)∈dom xd

j)

and consider the control law u(t, y) = uff(t)+ufb(t, y) with

ufb(t, y)=


0, (x̄d(t), y) ∈ S0

− 1+ε
ε (kx̄1 + uff(t)), (x̄d(t), y) ∈ S1

−(1+ε)(kx̄1+uff(t)), (x̄d(t), y) ∈ S2

(15)

with P0 =

(
k 0
0 1

)
, Ps = 1

εP0, M = 0 and the sets

S0, S1, S2 given by

S0 := {(x, y) ∈ (C∪D)2| V (x, y) = ‖x− y‖2P0
},

S1 := {(x, y) ∈ (C∪D)2| V (x, y) = ‖x− Ḡ(y)‖2Ps
},

S2 := {(x, y) ∈ (C∪D)2| V (x, y) = ‖Ḡ(x)− y‖2Ps
}.
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Fig. 5. a) First state of reference trajectory xd and plant trajectory x for the
dissipative mechanical system and periodic forcing. b) Euclidean tracking
error. c) Distance function (3).

We observe that the conditions of Theorem 3 are satisfied
with λd = log(ε) < 0. Since P0A+ ATP0 � 0 and PsA+

ATPs =

(
0 0
0 − 2c

ε2

)
� 0, (9) follows with λc = 0.

As the trajectory xd has a maximal average inter-jump
time, denoted τd, it always crosses the set D transversally.
Consequently, any nearby trajectory y will cross D at nearby
times, such that y has a maximal average inter-jump time
τy that is close to τd (as (xd, y) stays within a sufficiently
small sublevelset of the Lyapunov function, y remains close
to xd). Therewith, it can be shown that the trajectory of the
embedded system (5) has a maximal average inter-jump time
max(τd,τy)

2 > 0. Consequently, case 3) of Theorem 2 proves
that the trajectory is asymptotically stabilised with respect to
d by the control law (15). In Fig. 5, the performance of this
controller is illustrated with a trajectory with initial condition
x(0, 0) = (100, 0). Despite the fact that the Euclidian
distance does not converge to zero (Fig. 5.b), the distance
function d does (Fig. 5.c) and the graphs of the trajectories
indeed converge to each other (Fig. 5.a).

From (15), we observe that no control is active when
V (ϕ̄y(t, j), xd(t, j)) = ‖ϕy(t, j) − xd(t, j)‖2P0

. The control
input u only needs to compensate the potentially destabil-
ising effect of the forcing term (E + Buff(t)) during the
“peaks” of the Euclidean error.

VIII. CONCLUSION

In this paper, we considered the asymptotic stability of
time-varying and jumping trajectories of hybrid systems with
state-triggered jumps. A general distance function design was
proposed that allows to compare two trajectories of a hybrid
system, thereby enabling the stability analysis for hybrid
trajectories. Sufficient conditions for stability have been
formulated using Lyapunov functions with sub-level sets
that consist of disconnected pieces. Moreover, the stability
conditions are formulated in terms of maximum or minimum
average inter-jump time conditions to allow for increase of
the Lyapunov function over flow or jumps, respectively. In
case the jump map is an affine function and the jump set
a hyperplane, a piecewise quadratic Lyapunov function was
proposed that can be constructed systematically. Finally, we
applied our results in an example that illustrated that the
presented asymptotic stability notion indeed corresponds to

desired tracking behaviour. As such, the proposed distance
function and Lyapunov function design enable a good com-
parison between hybrid trajectories and have the potential to
play an important role in tracking control, observer design
and synchronisation problems for hybrid systems.
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tracking for a particle in elliptical billiards,” International Journal of
Control, vol. 81, no. 2, pp. 189–213, 2008.

[9] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid dynamical systems:
Modeling, Stability and Robustness. Princeton University Press,
Princeton, 2012.

[10] W. P. M. H. Heemels, B. De Schutter, J. Lunze, and M. Lazar,
“Stability analysis and controller synthesis for hybrid dynamical
systems,” Philosophical Transactions of the Royal Society A: Math-
ematical,Physical and Engineering Sciences, vol. 368, no. 1930, pp.
4937–4960, 2010.

[11] J. P. Hespanha, D. Liberzon, and A. R. Teel, “Lyapunov conditions
for input-to-state stability of impulsive systems,” Automatica, vol. 44,
no. 11, pp. 2735 – 2744, 2008.

[12] R. I. Leine and N. van de Wouw, Stability and convergence of
mechanical systems with unilateral constraints, ser. Lecture Notes
in Applied and Computational Mechanics. Springer-Verlag, Berlin,
2008, vol. 36.

[13] Y. Li, S. Phillips, and R. G. Sanfelice, “Results on incremental stability
for a class of hybrid systems,” in Proceedings of the 53rd IEEE
Conference on Decision and Control, Los Angeles, 2014, pp. 3089–
3094.
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