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Optimal Dynamic Formation Control of Multi-Agent Systems in
Environments with Obstacles

Xinmiao Sun and Christos G. Cassandras

Abstract— We address the optimal dynamic formation prob-
lem in mobile leader-follower networks where an optimal
formation is generated to maximize a given objective function
while continuously preserving connectivity. We show that in
a convex mission space, the connectivity constraints can be
satisfied by any feasible solution to a mixed integer nonlinear
optimization problem. When the optimal formation objective
is to maximize coverage in a mission space cluttered with
obstacles, we separate the process into intervals with no
obstacles detected and intervals where one or more obstacles
are detected. In the latter case, we propose a minimum-effort
reconfiguration approach for the formation which still optimizes
the objective function while avoiding the obstacles and ensuring
connectivity. We include simulation results illustrating this
dynamic formation process.

I. INTRODUCTION

The multi-agent system framework consists of a team
of autonomous agents cooperating to carry out complex
tasks within a given environment that is potentially highly
dynamic, hazardous, and even adversarial. The overall ob-
jective of the system may be time-varying and combines
exploration, data collection, and tracking to define a “mis-
sion”. Related problems are often referred to as multi-
agent coordination [1]-[3] or cooperative control [4]-[6].
In many cases, mobile agents are required to establish and
maintain a certain spatial configuration, leading to a variety
of formation control problems. These problems are generally
approached in two ways: in the leader-follower setting, an
agent is designated as a team leader moving on some given
trajectory with the remaining agents tracking this trajectory
while maintaining the formation; in the leaderless setting
the formation must be maintained without any such benefit.
Examples of formation control problems may be found in
[71, [8], [9]-[12] and references therein. In robotics, this
is a well-studied problem; for instance in [10], a desired
shape for a networked strongly connected group of robots
is achieved by designing a quadratic spread potential field
on a relative distance space. In [9], a leader and several
followers move in an area with obstacles which necessitate
the transition from an initial formation shape to a desired
new shape; however, the actual choice of formations for a
particular mission is not addressed in [9], an issue which
is central to our approach in this paper. In [12] the authors
consider the problem of preserving connectivity when the
nodes have limited sensing and communication ranges; this
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is accomplished through a control law based on the gradient
of an edge-tension function. More recently, in [11], the goal
is to integrate formation control with trajectory tracking and
obstacle avoidance using an optimal control framework.

In this paper, we take a different viewpoint of forma-
tions. Since agent teams are typically assigned a mission,
there is an objective (or cost) function associated with the
team’s operation which depends on the spatial configuration
(formation) of the team. Therefore, we view a formation
as the result of an optimization problem which the agent
team solves in either centralized or distributed manner. We
adopt a leader-follower approach, whereby the leader moves
according to a trajectory that only he/she controls. During
the mission, the formation is preserved or must adapt if the
mission (hence the objective function) changes or if the com-
position of the team is altered (by additions or subtractions
of agents) or if the team encounters obstacles which must be
avoided. In the latter case in particular, we expect that the
team adapts to a new formation which still seeks to optimize
an objective function so as to continue the team’s mission
by attaining the best possible performance. The problem is
complicated by the fact that such adaptation must take place
in real time. Thus, if the optimization problem determining
the optimal formation is computationally demanding, we
must seek a fast and efficient control approach which yields
possibly suboptimal formations, but guarantees that the initial
connectivity attained is preserved. Obviously, once obstacles
are cleared, the team is expected to return to its nominal
optimal formation.

Although the optimal dynamic formation control frame-
work proposed here is not limited by the choice of tasks
assigned to the team, we will focus on the coverage control
problem because it is well studied and amenable to efficient
distributed optimization methods [6], [13]-[19], while also
presenting the challenge of being generally non-convex and
sensitive to the agent locations during the execution of a
mission. The local optimality issue, which depends on the
choice of objective function, is addressed in [20]—-[22], while
the problem of connectivity preservation in view of limited
communication ranges is considered in [12], [18].

The contribution of this paper is to formulate an op-
timization problem which jointly seeks to position agents
in a two-dimensional mission space so as to optimize a
given objective function while at the same time ensuring
that the leader and remaining agents maintain a connected
graph dictated by minimum distances between agents, thus
resulting in an optimal formation. The minimum distances
may capture limited communication ranges as well as any



other constraint imposed on the team. We show that the
solution to this problem guarantees this connectivity. The
formation becomes dynamic as soon as the leader starts
moving along a given trajectory which may either be known
to all agents in advance or determined only by the leader.
Thus, it is the team’s responsibility to maintain an optimal
formation. We show that this is relatively simple as long as
no obstacles are encountered. When one or more obstacles
are encountered (i.e., they come within the sensing range of
one or more agents), then we propose a scheme for adapting
with minimal effort to a new formation which maintains
connectivity while still seeking to optimize the original team
objective.

The paper is organized as follows. In Sec. II, we formulate
a general optimal formation control problem. In Sec. III,
we focus on a convex feasible space and derive a mixed
integer nonlinear problem whose solution is shown to ensure
connectivity while maintaining an optimal formation. In Sec.
IV, we propose a scheme to solve the optimal formation
problem in a mission space with obstacles. We propose an
algorithm to first obtain a connected formation and then
optimize it while maintaining connectivity. Simulation results
are included in Sec. V.

II. OPTIMAL FORMATION PROBLEM FORMULATION

Consider a set of N+ 1 agents with a leader labeled 0 and
N followers labeled 1 through N in a mission space Q € R?.
Agent i is located at s;(¢) € R? and let s(t) = (so(¢),...,sn(t))
be the full agent location vector at t. The leader follows a
predefined trajectory so(¢) over z € [0,T] which is generally
not known in advance by the remaining agents. We model the
agent team as a undirected graph ¥4(s) = (.4',&,s), where
A ={0,1,...,N} is the set of agent indices and let A7 =
{1,...,N} C A4 be the set of follower indices. In this model,
the set of edges & = {(i,j) : {,j € A4} contains all possible
agent pairs for which constraints may be imposed.

In performing a mission, let H(s(z)) be an objective func-
tion dependent on the agent locations s(¢). If the locations
are unconstrained, the problem is posed as maxg;)cq H(s())
subject to dynamics that may characterize the motion of
each agent. If 7 is fixed, then this is a nonlinear parametric
optimization problem over the mission space Q [18]. If,
on the other hand, agents are required to also satisfy some
constraints relative to each other’s position, then a formation
is defined as a graph that satisfies these constraints. We then
introduce a Boolean variable c(s;,s;) to indicate whether two
agents satisfy these constraints:

c(sis;) = 1 all constraints are satisfied 1
P77 0 otherwise

and if ¢(s;,s;) = 1 we say that agents i and j are connected.
A loop-free path from i to the leader, w; = {0,...,a,b,...,i},
is defined as an ordered set where neighboring agents are
connected such that ¢(s,,s,) = 1. Let IT; be the set of all
possible paths connected to the leader. The graph ¥(s) is
connected if IT; # @ for all i € .4%. We can now formulate
an optimal formation problem with connectivity preservation

Fig. 1: A mission space example where the triangle is the leader and the red line
is a predefined trajectory in [0,7]. The circles are followers and the rectangle is an
obstacle. The formation is maintained in [0,#;], but at #, a new formation is needed.

as follows, for any fixed ¢ € [0, T7:

H(s(t
Jmax, (s(z))
HEFCQ, i€ )

t) is given

S.t. S,'(
so(

4 (s(t)) is connected

For the sake of generality, we impose the constraint s;(r) €
F C Q for all follower agents to capture the possibility that
a formation is constrained. The feasible space F can be
convex (e.g., followers may be required to be located on one
side of the leader relative to a line in Q that goes through
so(t)) or non-convex (e.g., followers may be forbidden to
enter polygonal obstacles and F is the set Q excluding
all interior points of the obstacles). The solution to this
problem is an optimal formation at time ¢t and is denoted
by 9r(s(t)). Given a time interval [t;,#;], the formation is
maintained in [t,t] if s;(z) — si(t1) = s0(¢) — s0(t1) holds
for all ¢ € [f1,12], i € AF; otherwise, it is a new formation.
Figure ?? shows an example of optimal dynamic formation
control in a mission space with obstacles. Clearly, this is a
challenging problem. To begin with, the last constraint in (2))
is imprecise and may be different in a convex or non-convex
feasible space. In addition, the computational complexity of
obtaining a solution may be manageable in determining an
initial formation but becomes infeasible if a new formation
Yr(s(t)) is required during the real-time execution of a
mission. In the following two sections, we first propose an
approach to solve this problem in a convex feasible space
and then use this solution to enable the maintenance of a
formation in a non-convex case.

III. OPTIMAL DYNAMIC FORMATION CONTROL IN A
CONVEX FEASIBLE SPACE

In a convex feasible space, the simplest connection con-
straints are of the form d;;(t) = ||si(t) —s;(¢)|| < G for
some pair (i, ), i,j € {0,1,...,N}, where C;; > 0 is a given
scalar. This may be the minimum distance needed to establish
communication or d;; may be used to enforce a specific
desired shape in the formation. Techniques based on the
graph Laplacian [23] are often used to solve this kind of
problem, e.g., [24]. However, our goal is to determine a
formation which solves the optimization problem in (2) for
a given H(s(r)). Thus, we describe next an approach to



transform the last constraint in (2) into a mixed integer
nonlinear optimization problem by introducing a set of flow
variables over ¥(s). The leader 0 is assumed to be a
source node which sends N units of flow through the graph
¢(s) to all other agents. Let p;; € ZT, i € A, j€ N
be an integer flow amount through link (i, ;). Note that,
in general, p;; # pj; and that either p;; > 0 or p; >0
implies that c(s;,s;) = 1. We can then define a flow vector
p= (P017P11,PN17 < s PONs - -+ 7pNN)' Observe that Pio,1 € N
is not a flow variable in p since the leader is not allowed to
receive any flows from the followers. For each follower j,
we define an auxiliary variable N; to be the net flow at node

J:
Nj= ) pij— ) Pj 3)
eV ie N
Using this notation, we introduce next a number of linear
constraints that represent a connected graph. First, the leader
provides N units of flow:

Y pui=N (4)
i€ENF
Next, each follower j must receive a net flow N; =1 in order
to ensure that there is one path from the leader to j:

Ni=Y pij— Y pji=1, jeSr (5)
€N i€ N

To prohibit self loops we require that

pi=0, ie N (6)

Finally, the maximal flow capacity is upper bounded by the
source amount N:

p,'jSN, iG,/V, ‘]GJ%? (7)

Observe that () and (5) are linearly dependent since }; N; =
N. Thus, the constraint (@) is redundant and may be omitted.

Theorem 1 If there exists a flow vector p such that
constraints (3)-(7) hold, then there exists a connected graph
% (s). Moreover, the number of possible graphs is finite.

Proof: We use a contradiction argument. Assume that at
least one follower agent is not connected to the leader while
satisfying (3)-(7). We can separate the follower agents into
two sets: Ny = {k : IT; # 0} and N> = {j : II; = 0}. Then,
Prj = 0 must be true for all k € Ny and j € N;. This is
because if pyj > 0, then there exists a path 7; = {m, j} where
7. € I, which contradicts the fact that j € N,. In addition,
obviously pp; = 0 for j € N>. Summing the left-hand-sides
of all constraints (5 such that j € N>, we obtain

Eu- X (Lo X o)

JEN, JENy \keN ke NF
=Y | X o+ )Y Peitpoi— ( Y it ) ij)]
JEN> | kEN; keN, keN; keN,
=Y Yo=Y Y Pk~ Y, X Pi
JEN> kEN, JENL kEN, JEN> kEN]
==Y ) pu=0
JEN> keN,

®)

Next, summing the right-hand-sides of the constraints ()
over j € Np we get } jen, Nj =N > 0. This contradicts the
constraint leading to the conclusion that the graph ¥(s)
is connected. The additional constraints (6)-(7) are necessary
to ensure that the number of feasible flow vectors p is finite.
Clearly, (6) prohibits self-loops while (7) prevents an infinite
number of solutions where edges (i, j) in ¢(s) may take any
unbounded flow value p;; > 0. B

Observe that p;; > 0 indicates a connection between agents
i and j. This can be combined with the constraint d;;(r) <
Cij to write p;j(d;j(t) —Cij) < 0 for all edges (i,j) in
%(s). Moreover, the convex set F can be expressed through
linear constraints. Thus, the optimal formation problem with
connectivity preservation at any fixed ¢ € [0,T] becomes a
Mixed Integer Nonlinear Problem (MINLP):

min — H(s(1),p)
s(t),p

st. sit)eFCQ, i=0,...,N
Y pij— ) pi=1, jeS

ieN i€ N &)
pij(dij(t) = Cij) <0, i€ AN, jE N
pii=0, i€ N

pij <N, ic N, jeAN

Note that any agent position vector s(z) specifies a graph at
time . The role of p is in ensuring that this graph is con-
nected by satisfying the constraints in (9), thus creating an
optimal formation. However, there is no advance information
regarding what the optimal formation looks like and how the
optimal formation changes over time as the leader moves in
a time interval [0,7] unless H(s(z)) is given some specific
structure.

For the remainder of this paper, we will consider the class
of coverage control problems [6], [13]-[19] which impose
a particular structure on H(s(¢)). Agents are assumed to
be equipped with some sensing and some communication
capabilities. In particular, we assume that agent i’s sensing
is limited to a set Q;(¢) C Q. For simplicity, we let Q;(¢) be
a circle centered at s;(r) with radius §;. Thus, Q;(7) = {x:
di(x,t) < &;} where di(x,t) = ||x — s;(¢)||, the standard Eu-
clidean norm. To further maintain simplicity without affect-
ing the generality of the analysis, we set §; = & for all agents.
We define p;(x,s;(f)) to be the probability that i detects an
event occurring at point x. This function is defined to have the
following properties: (i) pi(x,si(¢)) =0 if x ¢ Q;(¢), and (i)
pi(x,si(t)) > 0 is a monotonically nonincreasing function of
di(x,t). The overall sensing detection probability is denoted
by pi(x,s;(¢)) and defined as

R pi(x,si(t)) if xe .Q,'([)

ix,silt)) = . 10
Pl si(t)) {O i oasom (0
Note that p;(x,s;(#)) may not be continuous in s;(¢). The
joint detection probability, denoted by P(x,s(z)), captures the
sensing ability of the entire agent team. That is, an event at
x € Q is detected by at least one of the N cooperating agents



with probability P(x,s(¢)) is given by

N

P(x,s(t)) = 1= JI1 = pi(x,5i(2))]

i=0

Y

where we assume that agents sense independently of each
other. In addition to sensing, the communication capabilities
of agents are defined by their relative distance: agents i and
J can establish a communication link if |[s;(r) —s;(z)|| < C.
Thus, in this class of problems a formation is required to
maintain full communication among agents. Finally, one of
the agents, indexed by 0, is designated as the leader whose
position sq(#) is given.

The objective function for optimal coverage is the same as
in [18] except for the presence of a leader whose position is
predefined. For any x € Q, the function R(x) : Q — R captures
an a priori estimate of the frequency of event occurrences at
x and is referred to as an “event density” satisfying R(x) >0
for all x € Q and [, R(x)dx < co. In this problem, we assume
that the event density is a constant for any x € Q. We are
interested in maximizing the total detection probability over
the mission space Q:

max H(s(r)) = / R(x)P(x,s(t))dx
s(r) Q

so that the objective in () is H(s(t),p) =
JoR(x)P(x,s(t))dx. Figures [2| and [3| show optimal formation
examples obtained by solving (9) at time ¢ with so(¢) located
at the center of the mission space.

12)

Fig. 2: Optimal formation for 5 fol- Fig. 3: Optimal formation for 11 fol-

lowers (numbers) and one leader (L) lowers and a leader. Followers are

in a bounded mission space. constrained to the left side of the
leader.

A solution of this MINLP is computationally costly so
that it is not realistic to expect re-solving it over the course
of a mission ¢ € [0,7] as the leader moves. However, it is
not always necessary to repeatedly solve this problem over
[0,T]. Theorem 2 presents a condition under which we only
need to solve the problem at t = 0. This simply formalizes the
rather obvious fact that if no new constraints (e.g., obstacles)
are encountered over ¢ € (0,71, then the optimal formation at
t =0 can be preserved by maintaining fixed relative positions
for all agents.

Theorem 2 Let s(0) be an optimal solution of problem
(O) at r =0 and assume that Q;(r) C F,i € .4 and that so(r)
is known to all followers for all 7 € (0,T]. If s;(t) = 5;(0) +
s0(t) = s0(0), i € AF, then s(r) maximizes H(s(z)) in (12).

Proof: Let us introduce a local polar coordinate system for
each agent i, so that the origin of i’s local coordinate system
is s; and the axes are parallel to those in the mission Cartesian

coordinate system. Given any point x = (xy,x,) € F, let
I = (r;,6;) be the polar coordinates in i’s local coordinate
system. Then, the transformation that maps (r;, 6;) onto the
global coordinate system is x = s;(¢) + [r;cos ; r;sin6]7.
Upon switching to this local coordinate system, the sensing
probability becomes p;(x,si(¢)) = pi(r;) if r; < 8. Since
Q;i(t) € F for all t € [0,T], the local sensing range of s;(¢),
which is denoted by QF = {(r;,6,) : r; < C,0 < 6; < 27},
is time-invariant. Therefore, recalling (II)), the objective
function in (12) is

H(s(1)) = /Q R(X)P(x,s(1))dx

- /  RWP(rs()dx
U,‘:o Q[(t)

N

- U?I:()Qi(l)R(X){l _g[l = pi(x,si(1))] }dx
N

— ol riR(r;,6,){1 — i];(l)[l — pi(r)|}drid6;

13)

so that the objective function value remains fixed for any
t €10, T]. Since for any agents i and j, by assumption, s;(t) —
() = 5i(0) +50(1) —50(0) — (5;(0) +50{r) — 50(0)) = 5:(0) —
5;(0), and s(0) is an optimal solution of (9), it follows that
%(s(0)) is connected, therefore, ¥ (s(¢)) is also connected
and we conclude that s(#) maximizes H(s(z)). B

The implication of Theorem 2 is that when a mission space
has no obstacles in it or the leader follows a trajectory where
no obstacles are encountered by any agent, our problem
is reduced to one of ensuring that all agents accurately
track the leader’s trajectory. We may discretize time so
that agents update their locations at 0 <t} < --- <tg =T.
Assuming that problem (9) is solved at r =0, an optimal
formation is obtained and we subsequently strive to maintain
this formation until a significant “event” occurs such as an
agent failure, a change in objective function H(s(¢)), or
encountering obstacles; at such a point, some amount of
reconfiguration is required while still aiming to maximize

H(s(1)).

IV. OPTIMAL DYNAMIC FORMATION CONTROL IN A
MISSION SPACE WITH OBSTACLES

We have thus far solved an optimal dynamic formation
problem with connectivity constraints in a convex feasible
space F by solving a MINLP. However, this method may
fail when F is non-convex, e.g., when F cannot be described
through linear or nonlinear constraints. In this section, we
address the optimal dynamic formation problem in a mission
space with obstacles, thus considering a non-convex feasible
space.

We model the obstacles as m non-self-intersecting poly-
gons denoted by M;, j=1,...,m. The interior of M; is
denoted by M;, so that the overall feasible space is F =
Q\ (M;U...UM,), ie., the space Q excluding all interior
points of the obstacles. In this setting, we seek to ensure
the following two requirements. First, the distance between
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Fig. 4: An example of a connected network at ¢ and constructed connected network
by Algorithm 1 at 7+ &.

two connected agents must be < C. We define ¢ (s;,s j) to
indicate whether this requirement is satisfied:

L flsi=sjll <€

c1(si,s;) —{ 0 otherwise (1

Second, the connected agents are required to have a line
of sight with respect to each other. We define ¢ (s;,s;) to
indicate this requirement:

ea(50,57) = { 1 asi+(l—a)s;eF forall o €]0,1]
nJ 0 otherwise

(15)
Agents i and j satisfying ci(s;,s;) =1 as well as c3(s;,5;) =
1 are referred to as connected. We also define c(s;,s;) =
c1(si,sj)ca(si,s)).

A version of this connectivity preservation problem was
addressed in [18], where agents are required to remain con-
nected with a fixed base while at the same time maximizing
the objective function in (I2). A gradient-based algorithm,
termed Connectivity Preservation Algorithm (CPA), was de-
veloped for agent position updating and it was shown that,
given an initially connected network and if only one agent
updates its position at any given time, the CPA preserves
connectivity. The algorithm is applied iteratively over one
agent at a time and it converges to a (generally local)
optimum. The CPA exploits the existence of distributed op-
timization algorithms for optimal coverage to attain optimal
agent locations while also preserving connectivity to a base
(details on the CPA and its complexity are provided in [18]).

Our approach here is to take advantage of the CPA. In
our problem, however, the conditions for applying the CPA
do not generally hold; this is because the leader’s motion
does not take connectivity with its neighbors into account
and the presence of an obstacle, for example, may cause it
to disconnect from one or more followers. This is illustrated
in Fig. @} At time ¢, the agent network shown (represented
by three blue circles and a blue triangle as the leader) is
connected. At ¢+ €, the leader (triangle) moves to so(z + €)
and if agent 2 moves to the point shown in yellow (as
expected by Theorem 2), then it becomes disconnected from
the leader because of the obstacle present. We propose an
algorithm next to construct a connected graph, which may

Encounter obstacles

Constrained State

(Ua)N (UL 1) #0

Free State

(o) N (U, )

Avoid obstacles

Fig. 5: Two states of the agents network and the transition time points between the
two states.

no longer be optimal in the sense of problem (9) but it
does provide a valid initial condition for invoking the CPA
described above (this is illustrated in Fig. [ as the solid red
graph). This immediately allows us to iteratively apply the
CPA so as to obtain a new (locally optimal) formation.

Clearly, it is also possible to invoke (9) as soon as a
formation reconfiguration is needed. However, the set F
is no longer convex and the computational complexity of
this problem makes it infeasible for the on-line adaptation
required, whereas the approach we propose and the use of
the CPA render this process computationally manageable.
In particular, whereas the MINLP is generally NP hard, in
the CPA each agent i determines its new position through
a gradient-based scheme using only its neighbor set and its
downstream and upstream agent sets relative to the leader
(formally defined in the next section). When the number of
agents increases, note that the the number of neighbors of i
may not be affected. The overall increase in complexity is
linear in the network size.

Before proceeding, we identify the precise instants when
formation reconfiguration is necessary due to obstacles en-
countered by agents as the mission unfolds over [0,7].
We define two states that the agent team can be in: (i)
The constrained state occurs when the sensing capability
of an agent is hindered by an obstacle, captured by the
condition (Ufio Q,-) ﬂ( ;":111311-) #0, i.e., the intersection of
the sensed part of Q and the set of interior points of any
obstacle is not empty, and (ii) The free state corresponding
to (UXoQ)N (UL, M;) = 0. Thus, the interval [0,7] is
partitioned into free and constrained intervals with transitions
at times 1) <1} <ty <..<t <ty <. <T.This is de-
scribed in Fig. [5] Next, we consider how to generate optimal
formations over different alternating intervals [t’;,té‘“) and
[thrl?thrl).

A. Optimal formation control in free states

When the agent network enters a free state at time tjlﬁ,
k=0,...,z, since (UfVZQQ,-(t)) ﬂo( l’”ZIA;Ii) =0 for all t €
[1f,6671) and F = Q\ (M U...UM,,), so Q;(t) € F for any i
overt € [t]jf,té‘“ ), the optimal formation is maintained based

on Theorem 2.



B. Optimal formation control in constrained states

We begin this subsection with some additional notation
and definitions. Given a connected graph ¥(s), we have
defined a loop-free path connecting agent i to the leader
as 1, ={0,...,a,b,...,i}, an ordered set where neighboring
agents are connected; we have also defined II; to be the set
of all possible paths connecting i to the leader. Let 7; x be the
kth path in IT; and we use 71:1.{ ¢ to denote the jth element in
. Let Z; = U wi(7; ;) be the set of agents downstream
from i (further away from the leader 0) where

[+1 r o . . . 1/

T, ifienmjy, i#jandi=m;
wi(Ti k) = Jik Tk Jk 16
(i) { 0  otherwise (16)

We also define the set of upstream agents from i as % =
{j:i€2,j€0,....,N}.
The length of a path m;; is defined as W(mx) =

|7 11

X

|5 —s41|l, where || is the cardinality of 7.
ik ik .
For agent i, the shortest path connected to the leader is

mf =arg min ¥P(m;)
7; k €11; ’
For example in Fig. 4] in the path 73 | = {0,2,3}, we have 3
€D, 0 €U, ¥(m,1)=|so—s2|| + |ls2 — s3||; for the path
m3 =10,1,2,3}, we have W(m3,) = ||so —s1|| + [|s1 — 52| +
||s2 — s3]|. Therefore, 5 = 73 1 is the shortest path from agent
3 to the leader.

Let m; and 7; be two paths. Then, we define 7; + 7; =
{m;, m}, where m = m;\ m;, as an ordered set. Note that
7+ m; is generally different from 7; + m; because of the
order involved. Given a connected graph ¥(s), We define

0(s)=maf+...+ 7y (17)

to be an ordered set containing a permutation of the agent
set {0,1,...,N} constructed so as to start with the shortest
path 77 from O to agent 1, followed by 7} \ #; and so
on. It immediately follows from this construction that the
first element of Q(¥4(s)) is O and that |Q(4(s))| =N+ 1.
Therefore, we can rewrite Q(¥4(s)) as

Q(g(s)) = {O?QZa cee 7C]N+1}

where gq; € AF,j=2,...,N+ 1. For example, in Fig.
at time 7, Q(¥%(s(r))) = {0,1,2,3}. We show next that
0(¥(s)) has the following property regarding the order of
its elements.

Lemma 1 If g; is the ith element of Q(¥(s)) constructed
from a connected graph ¢ (s), then there exists g; € %, such
that ¢; is the jth element of Q(¥(s)), and j < i for all ¢; €
NE.

Proof: If for all g; € %qi, Jj > i, we cannot find a subset
of Q(¥(s)) that includes {q;,q;}, q; € %, then there is no
path connected to ¢;. This contradicts the assumption that
0(¥(s)) is constructed from a connected graph. l

We also define a projection of x € R? on a set A € R? as

Py(x) = argmin|}x — y|
yEA

Next, let % (s;) = {y :y € R?, ¢(s;,y) = 1). Recalling the
definition of ¢(-,-), % (s;) is the set of points with which s;

can establish a connection. For any subset of agents ¥ C ./,
let (7)) =U,cy % (si) be the union of all connection regions
for agents in . For example, in Fig. 4] the grey area is (%)
for ¥ ={0,1} at time ¢t + €.

We are now ready to deal with the situation where the
formation is in a constrained state and may lose connectivity
at time 7 + € given that the graph ¢(s(¢)) is connected. In
particular, suppose that when the leader is about to move to
so(t +¢€) and informs the followers, at least one of the agents
will lose connectivity with the formation. Our task is to
obtain an optimal formation at ¢ 4 € and this is accomplished
in two steps: (i) Construct a connected graph ¥ (s(¢+¢€)) for
time ¢+ ¢, and (ii) Use this connected graph ¥ (s(t + €)) as
an input to invoke the CPA. Step (i) is crucial because of the
fact that the CPA relies on an initially connected graph before
it can be executed to seek (locally) optimal agent locations
which still preserve connectivity. This first step is carried out
by constructing a connected graph through Algorithm |1} We

Algorithm 1 Connected Graph Construction Algorithm
Input: Graph ¥(s(t)), so(t + €)

Output: Graph ¥ (s(t+¢))

Initialization: %, 2; for i € A, ¥ = {0}, Q(¥(s(¢))) =
{0,92,...,qn+1} using

For agenti=g;,j=2,...,N+1

Do the following procedure:

1: Generate a candidate next location for i: § = s;(¢) +AyL.

2: For all agents v e %NV, if ¢(8,s,(t+€)) =0, go to
Step [3} else, go to Step [}
3: Project s; onto X(% 7). Set §; = Pyanyv) (5i)-
4: Set S,‘(l +€) = §;.
5: Add i to ¥
End

use Ar(t) = so(t +€) —so(t) to denote the position change
vector of the leader from ¢ to t + &, where we assume that
followers have the Ay (f) information available at .

Theorem 3 ¥(s(r+¢€)) obtained by Algorithm [1] is
connected.

Proof: Since ¥(s(t)) is connected, % # 0 for i € . We
then use induction to prove that the graph constructed by
agents in ¥ remains connected at Step [5] in every iteration.
Initially, #" = {0} which is connected. Next, assuming there
are n agents in ¥ and the graph they form is connected, we
will prove that after adding the (n+ 1)th agent, say i, the
graph remains connected.

The addition of i to ¥ occurs at Step 5. There are two
possible sequences for reaching this step: [[}2}f4] and [TH2}
At Step @2l %N # 0 because of the property of
0(¥(s)) in Lemma 1. It follows that before i performs the
procedure, there is at least one upstream agent in 7. In
the sequence, there exists some m € ¥ N %; such that
¢(8i,8m(t + €)) = 1. Therefore, all agents in ¥ including i
will be connected. In the sequence, at Step [3] agent
i’s position is projected onto the connection ranges of all
v e ¥ N%. It follows that the graph formed by agents in



{7 ,i} is connected. Step 5 adds agents to ¥ one by one
until ¥ = ¥, therefore, the graph ¢ (s(t + €)) is connected.
]

Obviously, Algorithm |If does not provide a unique way
to construct a connected graph. For example, the formation
could be adjusted to a line or a star configuration with so(z +
€) as the center of the star. However, this would entail a
major formation restructuring whereas in Algorithm [I| we
seek to retain the closest possible formation to the original
(optimal) one by setting candidate locations as seen in Step
E} If such a candidate is not feasible, then the agent will move
a minimal distance (in the projection sense) to be connected.

Once step (i) above is completed by obtaining this con-
nected graph ¥(s(¢)), step (if) is performed by invoking
the CPA to optimize the agent locations within the new
formation. Clearly, once obstacles are cleared and the agent
team re-enters a free state (see Fig. [5), we may revert to the
original optimal formation.

V. SIMULATION RESULTS

In this section, we provide a simulation example illustrat-
ing what the optimal formation maximizing coverage in a
mission space with obstacles looks like and how it changes
at some significant instants.

We choose the event density functions to be uniform, i.e.,
R(x) = 1. The mission space is a 60 x 50 rectangle. The
distance constraint is C = 10 and the sensing range of each
agent is 0 = 8. At every step, the leader moves to the right
one distance unit per unit of time. The mission space is
colored from dark to lighter as the joint detection probability
decreases (the joint detection probability is > 0.50 for green
areas, and near zero for white areas). The leader (labeled
“L”) moves along a predefined trajectory (the purple dashed
line). There are 8 followers, indicated by numbers, which are
restricted to locations on the left side of the leader during
any movement.

Figures [6HT1] show snapshots of the process at selected
events of interest over [0,7]. Figure @ shows the initial
configuration at ¢t = 0, where the agent team is located in a
convex feasible space. As shown in Sec. III, in this case, the
optimal formation can be obtained by solving a MINLP [25].
In the results shown, we have used TOMLAB, a MATLAB-
based optimization solver. For the non-convex objective
function defined in @]), the solution is usually a local
maximum; we sought to find the best local (possibly global)
optimum possible by implementing a multi-start algorithm
on the solver. This is done at the start of the mission, when
an off-line computationally intensive procedure is possible.
Moreover, this local maximum can be improved by applying
the CPA; in fact, in this example the use of the CPA led
to an improvement from H(s) = 741.5 to H(s) = 816.7, as
shown in Fig. [/} Thus, in general, supplying the CPA with
an initial connected graph obtained by solving the MINLP
enables it to converge to a better value. For example, Fig.
is a local maximum attained by starting with a star-like
connected graph shown in Fig. [12| with the objective function
value H(s) =781.1 (although this is still worse than the value

in Fig. [7).

%

Fig. 6: At ¢ =0, optimal formation from Fig. 7: At t =0, optimal formation im-
MINLP, H(s) = 741.5 proved by CPA of Fig. [f] with H(s) =

?16.7
N
A

Fig. 8: Att =35, agent 5 needs projection Fig. 9: At ¢ =7, apply CPA after projec-
in Step 3 of Algorithm 1 tion in[§] the structure of the tree doesn’t
change

AL
)

®

Fig. 10: At r = 12, the structure of the Fig. 11: Atz =35, the end of the mission
tree changes

[0}

Fig. 12: A star-like connected graph ~ Fig. 13: Apply CPA from H(s) =
781.1

In the time interval [0,5], the formation is maintained.
At t =5, agent 5 is located at a vertex of an obstacle and
will therefore lose connectivity as the leader moves to the
next step at t = 6. At this point, agent 5 will determine
its next position s5(6) by applying a projection at Step
of Algorithm |I} Note that only agent 5 needs to perform
this projection, rather than the whole team of agents, hence
the computational effort is minimal. Figure [9] captures the
optimal formation following Fig.

Observe that over the period [0, 12), although the optimal
formation remains a tree, it is no longer the same as the
original one. However, for each agent i, its downstream
node set Z; and upstream node set %; remain unchanged.
At t = 12, clearly, the structure of the formation has been
changed. This is a consequence of either the projection step
in Algorithm 1 or the CPA. At the end of the mission at
t = 35, the formation is shown in Fig. The agents seek



to form a line to go through the narrow region of the mission
space while at the same time maximizing coverage. During
the remaining interval [12,35], the process is similar to what
is seen over [5,12].

As we pointed out in the last section, constructing a
connected graph can be accomplished in a variety of ways.
As shown in Fig.[I2] a star-like graph is an inferior formation
to that of Fig. [7} this is expected since the latter was obtained
specifically to maximize the objective function in (I2). In
addition, a reconfiguration process as shown in Fig. [I3]
requires agents to move longer distances, hence consuming
more energy.

VI. CONCLUSIONS AND FUTURE WORK

We have addressed the issue of optimal dynamic formation
of multi-agent systems in mission spaces with obstacles.
When the agent team is in a free state (no obstacles in the
mission space affecting them), a locally optimal solution of a
MINLP can provide an initial formation that agents maintain
or it is a good initial point for using the CPA (developed in
prior work [18]) to obtain a better local optimum. When the
feasible space is non-convex and connectivity is lost, we have
developed an algorithm to construct a connected graph as an
input for the CPA while seeking to maintain the original
formation with minimal effort.

Future work aims at investigating optimal dynamic forma-
tion control for more general classes of objective functions,
beyond the coverage control problem.
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