Abstract:
The problem of estimating the initial state of 1-D wave equations with globally Lipschitz nonlinearities from boundary measurements on a finite interval was solved recent...Show MoreMetadata
Abstract:
The problem of estimating the initial state of 1-D wave equations with globally Lipschitz nonlinearities from boundary measurements on a finite interval was solved recently by using the sequence of forward and backward observers, and deriving the upper bound for exact observability time in terms of Linear Matrix Inequalities (LMIs) [7]. In the present paper, we generalize this result to n-D wave equations on a hypercube. This extension includes new LMI-based exponential stability conditions for n-D wave equations, as well as an upper bound on the minimum exact observability time in terms of LMIs. The efficiency of the results is illustrated by a numerical example.
Published in: 2015 54th IEEE Conference on Decision and Control (CDC)
Date of Conference: 15-18 December 2015
Date Added to IEEE Xplore: 11 February 2016
ISBN Information: