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Application of Economic MPC to Frequency Control in a Single-Area
Power System

Leo Emil Sokoler, Kristian Edlund and John Bagterp Jørgensen

Abstract— This paper presents a novel model predictive
control scheme for frequency control in a single-area power
system. The proposed controller provides set-point corrections
to the system power generators, based on the solution to an
optimal control problem. The optimal control problem directly
incorporates the cost of operation into its objective function.
A trade-off parameter is used to balance set-point tracking
and cost minimization. Simulations based on a Faroe Islands
case study show that the proposed approach reduces cost of
operation by almost an order of magnitude, compared to both
set-point based model predictive control as well as conventional
frequency-based PI-control.

I. INTRODUCTION

Power production planning is an important task in power
system operations. The task involves solving a mixed-integer
optimization problem for unit commitment and economic
dispatch of the system power generators [1], [2]. This opti-
mization problem is a computationally challenging problem
that may take up to several minutes, or even hours, to
solve. To compensate for real-time fluctuations in the power
production and the power consumption, a second control
layer is used. This layer is responsible for the activation of
operational reserves. Planning the operational reserves is an
integral part of the unit commitment problem. In this paper,
we refer to the solution of the unit commitment problem as
the nominal production plan.

In small isolated power systems, a single operator is
often responsible for both power transmission and power
production. An example of such an isolated power system
is the Faroe Islands. Here the municipality-owned company
SEV acts both as the transmission system operator (TSO) and
as the sole power generating company. This means that SEV
is responsible for balancing production and consumption,
including the activation of operational reserves.

In the Faroe Islands, the operational reserves can be
categorized into two main categories: automatic reserves
and manual reserves. The automatic reserves are frequency
controlled reserves that are activated in direct proportion to
frequency deviations from the nominal frequency (primary
control). Primary control stabilizes the frequency at a steady-
state that deviates from the nominal frequency. The manual
reserves are activated to eliminate the steady-state error, such
that the frequency is returned to its nominal value (secondary
control). Secondary control is also known as load frequency
control (LFC). Following the activation of manual reserves,
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a re-dispatch of the generating units may be performed to
free up the required operational reserves.

Activating reserves is associated with a cost. Some genera-
tors have a low marginal production cost (e.g. wind turbines
and hydro turbines), and others have a high marginal pro-
duction cost (e.g. diesel generators and gas turbines). While
this information is accounted for in the unit commitment
problem, it is often neglected by the controllers that activate
the operational reserves. An approximate method to use
information on the reserve activation cost, is to combine
a PI-control structure for LFC with so-called participation
factors [3]–[6]. The participation factor of a generator is
a gain that determines its degree of participation in the
LFC. The participation factors do not distinguish between
up and down regulation, which is a significant drawback
from an economical point of view. Moreover, the approach
does not consider the frequency dynamics. As an example,
it is desirable to activate fast but expensive power generators
in situations where the frequency drops significantly below
the nominal frequency. Conversely, it is attractive to activate
cheaper generators when the frequency drop is less signifi-
cant.

In this paper, we use economic model predictive control
(EMPC) [7], [8] in a novel way to active operational reserves
in an isolated power system. The reserves are activated based
on the solution to an optimal control problem (OCP), which
takes into account real-time measurements, and updated
forecasts of e.g. renewable energy production. Reference [9]
provides an example of short-term forecasts that can be used
for improved frequency control. The OCP objective function
is formulated as a bi-objective criterion that trades off the
cost of operation and set-point tracking.

Set-point based MPC have been considered for LFC in
[10]–[12], and for tertiary control in [13]. References [14]–
[16] develop distributed algorithms for such conventional
MPC schemes. In the previous work [10]–[16], quadratic
penalty functions are used to ensure 1) that the load flows
on the tie-lines to other areas are restored to their sched-
uled values, and 2) that the frequency is returned to its
nominal value. References [10] and [12] include an input-
rate regularization term in the OCP objective function, to
reduce wear and tear on the power generators. The main
novelty of this paper, is to introduce a generalized OCP
that directly incorporates the cost of operation into the MPC
layer. Moreover, while existing work focus on multi-area and
interconnected power systems, the proposed EMPC scheme
is tailored to isolated power systems. In such systems,
no power is exchanged with neighboring regions and no
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Fig. 1. Schematic diagram of the single-area power system. The system
consists of a bus, which is connected to a number of generators (G), and
an aggregation of loads (L).

markets are available for trading energy. The emphasis on
isolated power systems is motivated by the GRANI project
[17]. The GRANI project is a collaboration between DONG
Energy and the Faroe Islands. The Faroe Islands acts as a
live demonstration laboratory for testing new power system
control technologies.

To test the proposed EMPC scheme, a non-linear simula-
tion model of an isolated power system is developed. We
linearize the non-linear model for prediction and control.
To estimate non-predictable disturbances, the linear model
is augmented by a disturbance model. Simulations are per-
formed using a case study based on the Faroe Islands’ power
system. We compare EMPC to set-point based MPC and
frequency-based PI-control. Set-point based MPC occurs as
a special case of the proposed EMPC scheme. Simulations
show that significant cost reductions can be achieved by
trading off cost of operations and set-point tracking, even
without compromising the high quality frequency control
associated with set-point based MPC.

We have organized this paper as follows. Section II derives
a non-linear simulation model of an isolated power system.
Section III introduces an EMPC scheme for frequency con-
trol in this system, and Section IV presents a Faroe Islands
case study. Section V concludes the paper.

II. MODEL

This section presents a stochastic non-linear simulation
model of a small isolated power system. The system is
represented by a single-area power system, in which the
frequency is equal for all the power generators. The Faroe
Islands is a fairly meshed system, where line capacity
constraints and transmission losses are negligible for the
application considered in this paper. A linearized model of
the single-area power system is derived for control purpose.
We provide the Kalman filter equations for state estimation
in the stochastic linear system.

A. Simulation Model

Fig. 1 is a diagram of the single-area power system. The
system consists of three main components: a collection of
power generators, a load, and a bus. By convention, negative
sign is used for power consumption and positive sign is used
for power production.

Power generators are modeled with different levels of
detail, depending on the application of interest. Linear mod-
els are often well suited to describe the relation between
generator power set-point, and generator power production

[4], [5], [18]–[21]. Reference [22] validates such linear
models against actual measurement data. Similar models
have been used for MPC in [10]–[12], [15], [16], [18].

In this paper, a collection of M power generators is
modeled by the linear state space model

ẋgi(t) = Agixgi(t) +Bgiugi(t), i ∈M, (1a)
zgi(t) = Cgixgi(t), i ∈M, (1b)

with M = {1, 2, . . . ,M}. In Equation (1), ugi(t) is the
power set-point of generator i, xgi(t) is the state of generator
i, and zgi(t) is the power production of generator i.

The power set-point, ugi(t), is separated into the following
two components

ugi(t) = ũgi(t)︸ ︷︷ ︸
System Level

−Ki (zf (t)− f0)︸ ︷︷ ︸
Local Level

, i ∈M. (2)

The system level control component is determined at a
centralized level, in which interactions between the power
generators are accounted for. This component includes the
nominal set-point, as well as set-point adjustments resulting
from secondary control. The local level control component
models the primary control of each power generator. Pri-
mary control is activated in direct proportion to frequency
deviations from the nominal frequency [5], [20], [21]. The
nominal frequency is denoted f0, the current frequency is
denoted zf (t), and the proportional gain associated with the
primary control of generator i is denoted Ki. The model (1)
is valid for set-points in the the interval ugi(t) ≤ ugi(t) ≤
ugi(t). The parameter ugi(t) is the minimum production
of generator i, and ugi(t) is the maximum production of
generator i.

The load in Fig. 1 represents an aggregate of all the
loads in the system. The aggregate may include the power
production of non-controllable power generators, such as
non-controllable wind-turbines and solar cells. We model the
load using a linear state space model in the form

ẋl(t) = Alxl(t) +Bldl(t), (3a)
zl(t) = Clxl(t), (3b)

The input dl(t) is the load set-point, xl(t) is the load state,
and zl(t) is the actual load. Later in this paper, the load
set-point is replaced by a piecewise constant load forecast.
Modeling the load using the filtered value zl(t), instead of
the load forecast, better represents the physical behavior of
the system, since the load does not change instantaneously.

The power balance at the bus is

zb(t) =
∑
i∈M

zgi(t) + zl(t)

=
∑
i∈M

Cgixgi(t) + Clxl(t),
(4)

Using the swing equation for a synchronous machine [5],
[20], [21], the following model for the system frequency is
derived

ẋf (t) = Af (xf (t))zb(t), (5a)
zf (t) = xf (t), (5b)



where zf (t) is the system frequency, and

Af (xf (t)) = f2
0 /(2HSxf (t)). (6)

Note that (5) is a non-linear system, since Af (xf (t)) is a
function of the system frequency. In Equation (6)

H =
∑
i∈M

HiSi/S, S =
∑
i∈M

Si.

Generator i has constant of inertia Hi and rating Si. Refer-
ence [23] lists these values for different types of generators.

Collect the generator subsystems (1) into a single linear
state space model with block-angular matrices (Ag, Bg, Cg),
such that xg = [xg1 , xg2 , . . . , xgM ], and similarly introduce
ug and zg . Also define the frequency deviation variables

z∆f (t) = x∆f (t) = zf (t)− f0,

Equations (1), (2), (3), (4) and (5) are combined to form the
system model

ẋ(t) = f(x(t), u(t), d(t)), (7a)
z(t) = g(x(t)), (7b)

u(t) = ũg(t), x(t) =
[
xg(t)

T , xl(t)
T , x∆f (t)

]T
, z(t) =[

zg(t)
T , zl(t), zb(t), z∆f (t)

]T
, and d(t) = dl(t). Define the

vector function

L(x(t)) =

 Ag 0 −BgK
0 Al 0

A∆f (x(t))eTCg A∆f (x(t))Cl 0

x(t),

where e is a vector of all ones, K = [K1,K2, . . . ,KM ]
T ,

and A∆f (x(t)) = Af (f0 + x∆f (t)). Moreover, define the
matrices

B =

Bg0
0

 , E =

 0
Bl
0

 , Cz =


Cg 0 0
0 Cl 0

eTCg Cl 0
0 0 1

 . (8)

Using these definitions, the system model may be written in
the form (7) with

f(x(t), u(t), d(t)) = L(x(t)) +Bu(t) + Ed(t),

g(x(t)) = Czx(t).

The deterministic model is augmented by stochastic terms.
The stochastic model is

x(tk + Ts) = F (x(tk), u(tk) +wu(tk),

d(tk) + b(tk) +wd(tk)), (9a)
y(tk) = h(x(tk)) + v(tk), (9b)
z(tk) = g(x(tk)). (9c)

y(tk) is a vector of measurements, wu(tk) is the generator
process noise, wd(tk) is the load process noise, and v(tk)
is the measurement noise. Subscript k refers to a fixed time
index. The available measurements are the power production
of each generator, the power balance at the bus, and the
system frequency. This means that h(x(t)) = Cyx(t), where
Cy is a sub-matrix of Cz . The sampling time is denoted Ts.

Generator 1
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Generator M
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wd
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+

zb

Gf (s)

z∆f

Fig. 2. System dynamics in the linear stochastic model (10). The transfer
functions Gl(s) and Gf (s) represent the load and linearized frequency
dynamics, respectively.
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Fig. 3. Generator dynamics in the linear stochastic model (10). The transfer
function Ggi (s) represents the dynamics of generator i.

We use Ts = 0.1 s. Bold letters indicate random variables.
The system noise is assumed to consist of independent
and identically distributed random variables with wu(tk) ∼
N(0, Rwu), wd(tk) ∼ N(0, Rwd

), and v(tk) ∼ N(0, Rv).
In the stochastic model (9), d(tk) is interpreted as a piece-

wise constant load forecast. The parameters b(tk) andwd(tk)
account for the forecast errors. The term b(tk) models
unpredictable disturbances due to e.g. generator trips and
non-zero mean forecast errors, and the term wd(tk) accounts
for random fluctuations from the mean. We simulate the
system using ode45 in MATLAB.

B. Control Model

The controller proposed in this paper keeps the system
frequency, zf (t), close to its nominal value, f0. Equation (6)
shows that when xf (t) ≈ f0, then Af (xf (t)) ≈ f0/(2HS).
It follows that L(x(t)) ≈ Ax(t), with A defined accordingly.
For the application presented in this paper, it is therefore
adequate to use a linearization of (9) in the controller. Fig. 2
and Fig. 3 provide a block-diagram of the linearized system.
The saturation block in Fig. 3 illustrates that the generator
model is valid only for set-points within the generator
production limits.

With some abuse of notation, the linearized system is
written as

xk+1 = Axk +B(uk +wu,k) + E(dk +wd,k), (10a)
yk = Cyxk + vk, (10b)
zk = Czxk, (10c)

where (A,B,E) have been redefined to denote discrete-
time state space matrices. These matrices are computed from



the continuous-time state space matrices using the matrix
exponential. The matrices Cz and Cy are not redefined.
The disturbance b(tk) is not included in (10a), as this
parameter is unknown to the controller. Assuming that the
sampling time is Ts = 0.1 as in the continuous-time case,
then wu,k ∼ N(0, Rwu

), wd,k ∼ N(0, Rwd
), and vk ∼

N(0, Rv). We derive a representation of (10), with sampling
time T̄s = nTs = n0.1, for some integer n ≥ 1. Increasing
the sampling time may be necessary to accommodate the
proposed controller to an existing control system, or to
reduce the computation time of solving the OCP.

When T̄s = nTs, the control input, uk, is constant for
knTs ≤ t ≤ (k + 1)nTs. The controller assumes that the
demand forecast, dk, is constant in this interval as well.
Average values can be fed into the controller if this is not
the case.

Using Equation (10a), the state evolution from time t =
knTs to time t = (k + 1)nTs, is

x(k+1)n = Ãxkn + B̃ukn + Ẽdkn + w̃kn, (11)

where

Ã = An, B̃ =

n∑
i=1

Ai−1B, Ẽ =

n∑
i=1

Ai−1E. (12)

In addition, w̃kn ∼ N(0, R̃w), with covariance matrix

R̃w =

n∑
i=1

Ak−1
(
BRwuB

T + ERwd
ET
)

(Ak−1)T .

By letting k := nk, Equations (10b), (10c), and (11) provide
a discrete-time linear state space model for the linearization
of (9), with sampling time T̄s = nTs.

C. State Estimation

The system (9) is a stochastic system. We estimate the
system state using the Kalman filter [24]. The Kalman filter
is implemented based on the linearized model defined by
(Ã, B̃, Ẽ, Cz, Cy, R̃w, Rv). To estimate the unknown distur-
bance, b(tk), we augment the model by a disturbance model
[25], [26]. The disturbance model is

ηk+1 = ηk +wη,k (13)

withwη,k ∼ N(0, Rη). We denote the augmented state space
system by

xk+1 = Axk +Buk + Edk +wk, (14a)
yk = Cyxk + vk, (14b)
zk = Czxk. (14c)

In this system

xk :=

[
xk
ηk

]
, A :=

[
Ã Ẽ
0 1

]
, B :=

[
B̃
0

]
, E :=

[
Ẽ
0

]
,

Cz :=
[
Cz 0

]
, and Cy :=

[
Cy 0

]
. Finally, wk ∼

N(0, Rw) with Rw := blkdiag(R̃w, Rη), using MATLAB
notation.

Define Ik = {Ik−1, uk−1, dk−1, yk}, with I0 = y0. More-
over, introduce the conditional means x̂k+j|k = E [xk+j |Ik],

Algorithm 1 Economic Model Predictive Control Algorithm
Filter
ek = yk − Cyx̂k|k−1

Re,k = CyPk|k−1C
T
y +Rv

κk = Pk|k−1C
TR−1

e,k

Pk|k = Pk|k−1 − κk
(
Rv + CyPk|k−1C

T
y

)
κTk

x̂k|k = x̂k|k−1 + κkek
Regulator
uk = µ (P)
Predictor
x̂k+1|k = Ax̂k|k +Buk + Edk
Pk+1|k = APk|kA

T +Rw

ŷk+j|k = E [yk+j |Ik], ẑk+j|k = E [zk+j |Ik], and the
conditional covariance matrix Pk+j|k = V [xk+j |Ik]. The
filtered estimate, x̂k|k, and the covariance matrix, Pk|k, is
computed as

ek = yk − ŷk|k−1 = yk − Cyx̂k|k−1, (15a)

Re,k = CyPk|k−1C
T
y +Rv, (15b)

κk = Pk|k−1C
TR−1

e,k, (15c)

Pk|k = Pk|k−1 − κkRe,kκTk , (15d)
x̂k|k = x̂k|k−1 + κkek, (15e)

κ is the Kalman filter gain, ek is the innovation, and
Re,k is the innovation covariance matrix. The j-step ahead
prediction for j ≥ 0 is

x̂k+1+j|k = Ax̂k+j|k +Buk+j + Edk+j , (16a)

Pk+1+j|k = APk+j|kA
T +Rw. (16b)

Finally, ẑk+j = Czx̂k+j|k, for j ≥ 0.

III. ECONOMIC MODEL PREDICTIVE CONTROL

This section presents an EMPC scheme for controlling the
single-area power system (9). Algorithm 1 list the EMPC
scheme. The function µ solves the OCP, and returns the first
element in the optimal input sequence {u∗k+j}Nj=0. The input
argument P denotes a set of input parameters to the OCP.
The OCP solved in this paper is formulated as a convex
quadratic program.

A. Nominal Solution

The nominal production plan is computed by solving a
unit-commitment and economic dispatch problem. To ac-
count for the nominal production plan in the EMPC scheme,
we separate the inputs, states, disturbances, and outputs, in
(14), into two components

uk = unom
k + umpc

k , dk = dnom
k + dmpc

k ,

xk = xnom
k + xmpc

k , zk = znom
k + zmpc

k .

The input unom
k is the pre-computed nominal set-point, and

umpc
k is the set-point correction computed in real-time. Ac-

cordingly, the disturbance dk is partitioned into dnom
k , which

is known at the time the nominal set-point is computed,
and dmpc

k , which is known only by the real-time controller.



Using the state space model (14), with wk = vk = 0,
uk = unom

k , and dk = dnom
k , we compute the nominal state

and output values, xnom
k and znom

k , respectively. Similarly,
the generator set-points that include the effect of primary
control, as defined by (2), is written as

ug,k = unom
g,k + umpc

g,k , (17)

where the individual components are

unom
g,k = ũnom

g,k +Kznom
∆f,k, (18a)

umpc
g,k = ũmpc

g,k +Kzmpc
∆f,k. (18b)

B. Optimal Control Problem

The OCP solved at every sampling time is defined as

min.
X

φ =

N−1∑
j=0

lj

(
umpc
g,k+j , ẑ

mpc
k+j+1|k

)
, (19a)

subject to

x̂mpc
k+j+1|k = Ax̂mpc

k+j|k +Bumpc
k+j + Edmpc

k+j , j ∈ N , (19b)

ẑmpc
k+j+1|k = Czx̂

mpc
k+j+1|k, j ∈ N , (19c)

ug,k+j = unom
g,k+j + umpc

g,k+j , j ∈ N , (19d)

umpc
g,k+j = umpc

k+j +Kẑmpc
∆f,k+j|k, j ∈ N , (19e)

uk+j ≤ ug,k+j ≤ uk+j , j ∈ N . (19f)

The prediction horizon is N = {0, 1, 2, . . . , N}, with N
being the length of the horizon. The optimization variables
in (19) are

X = {ug,k+j , u
mpc
g,k+j , u

mpc
k+j , x̂

mpc
k+j+1|k, ẑ

mpc
k+j+1|k}k∈N .

As defined by (7), the frequency deviation, ẑmpc
∆f,k+j|k, is

available as part of the output vector ẑmpc
k+j|k, and ũmpc

g,k+j =

umpc
k+j . The input parameters to (19) are the state space

matrices (A,B,E,Cz), the nominal set-point unom
g,k+j , the

load forecast correction dmpc
k+j , the gain vector K, the gen-

eration limits (uk+j , uk+j), the filtered estimate x̂mpc
k|k , and

the output ẑmpc
k|k . The stage cost lj(ug,k+j , ẑk+j|k) is defined

subsequently.
Equations (19b) and (19c) are the state and output predic-

tions. These constraints are governed by the Kalman filter
equations (16). Equations (19d) and (19e) follow from (17)
and (18). Equations (19e) limits the generator set-points. The
limits are time-varying to account for both generator-specific
technical limits, as well as limits that are determined by
external factors, e.g. the wind speed for wind turbines.

C. Objective Function

The stage cost in the OCP objective function (19a) is
defined as

lk(umpc
g,k , z

mpc
k+1) = αφeco(umpc

g,k ,z
mpc
k+1)

+(1− α)φsp(umpc
g,k , z

mpc
k+1), k ∈ N .

(20)

The function φeco is an economic cost function, which is
related directly to the cost of operation. The function φsp is a
conventional set-point based penalty function. The parameter
α is a tuning-parameter to trade-off cost of operation and

set-point tracking. In general, the functions φeco and φsp

should be designed to fit the particular application. For the
application considered in this paper, we use the economic
cost function

φeco(umpc
g,k , z

mpc
k+1) = rT

∣∣∣umpc
g,k − u

mpc
g,k−1

∣∣∣ (21a)

+ cT max
(
zmpc
g,k+1, 0

)
+ c̄T max

(
−zmpc

g,k+1, 0
)

(21b)

+ qmax(zmpc
∆f,k+1 − f, 0) + qmax(f − zmpc

∆f,k+1, 0). (21c)

The max function and the absolute value function are evalu-
ated element-wise. The frequency deviation, zmpc

∆f,k+1|k, and
the generator outputs, zmpc

g,k+1|k, are available as part of the
output vector zmpc

k+1 .
The cost function (21) consists of three terms. The first

term, (21a), is an `1-regularization term on the input-rate.
The parameter r = [rg1 , rg2 , . . . , rgM ] is a cost vector
associated with wear and tear on the generators. The second
term, (21b), is related to the cost of generation, c =
[cg1 , cg2 , . . . , cgM ] for each generator. We define c̄, such that
c̄i = 1/cgi , for i ∈M. For upward activation of operational
reserves the penalty is c, and for downward activation of
operational reserves the penalty is c̄. We do not use c for
downward activation, as the operational reserves should be
activated only to compensate for the load not accounted for in
the nominal production plan. The final term, (21c), is related
to the cost of frequency deviations. The cost q is imposed for
frequency deviations larger than f , and the cost q is imposed
for frequency deviations smaller than f . The limits f and f
are the cut-off frequency deviations, at which critical actions
such as load shedding are initiated to avoid a blackout.
In case the nominal production plan contains frequency
deviations, these limits should be modified accordingly.

The set-point based penalty function, φsp, is defined as

φsp(umpc
g,k , z

mpc
k+1) =(umpc

g,k )TRspumpc
g,k

+ (zmpc
k+1)TQspzmpc

k+1 .
(22)

Note that umpc
g,k = ug,k−unom

g,k , and zmpc
k = zk− znom

g,k , such
that (22) penalizes deviations from the nominal production
plan.

The problem (19) is formulated as a convex quadratic
program. For α = 1, the quadratic terms (22) drop out of the
stage cost (20). In this special case, the optimization problem
is a linear program. We solve the OCP using Gurobi [27].

IV. CASE STUDY

In this section, we test the proposed EMPC scheme using
a simulation case study based on the Faroe Islands’ power
system. The system is a reduced system that consists of M =
4 power generators. The EMPC based controller is compared
to set-point based MPC and conventional frequency-based
PI-control. The simulations are performed using an Intel(R)
Xeon(R) CPU @ 2.67GHz with 12 GB RAM running a 64-
bit Windows 7 Enterprise operating system.

We consider a time-varying load over 300 seconds. The
load is assumed to include a portfolio of non-controllable
wind-turbines. In the Faroe Islands, there are several locally
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Fig. 4. Case study simulation scenario. The unit-commitment problem
is solved based on the nominal load forecast dnom. Updated forecasts and
measurements are used in the EMPC scheme to control the system frequency
in real-time.

owned wind-turbines that are not controlled by SEV. Fig. 4
shows the scenario set-up.

The nominal load forecast is dnom
k = −21 MW over the

entire simulation scenario. The deviations, bk and dmpc
k =

dk − dnom
k , from the nominal forecast occur due to fluctua-

tions in the power production and the power consumption.
A significant part of the deviations is due to the non-
controllable wind-turbines. The component dmpc

k is pre-
dictable during real time control, and the component, bk,
is estimated based on measurements. In addition to these
piece-wise constant deviations, the load and the generators
are affected by process noise, as defined in (9). In our
simulations the process noise covariance matrix is Rw = I4,
where I4 is the identity matrix of size 4×4. The measurement
noise covariance matrix is Rv = blkdiag(0.1I6, 0). Thus,
only the frequency measurement is noise-free. We have
provided the noise covariance matrices for (9), such that the
values can be related directly to the physical system. The
nominal frequency in the Faroe Islands’ power system is
f0 = 50 Hz.

A. System Parameters

The case study power generators are modeled as first order
systems in the form

Zgi(s) =
1

τgis+ 1
Ugi(s), i ∈M, (23)

where Zgi [MW] is the power production of generator i, and
Ugi [MW] is the power set-point of generator i. The load has
the similar form

Zl(s) =
1

τls+ 1
Ul(s), (24)

τl < τgi , for i ∈M. We use τl = 0.5 s. In (24), Ul(s) [MW]
is the load set-point, and Zl(s) [MW] is the actual load. The
transfer functions (23) and (24) are realized in state space
form, to form the system (9).

Table I lists the case study system parameters. The data
represents actual generators in the Faroe Islands. Due to
confidentiality reasons, the data has been partly modified.
Moreover, the inertia provided by each generator is scaled up

TABLE I
CASE STUDY SYSTEM PARAMETERS.

Name Type Hi [s] ui,k [MW] ui,k [MW] τi [s]

Gen. 1 Hydro 3.1 3 20 8
Gen. 2 Hydro 2.5 2 6 6
Gen. 3 Diesel 1.8 1 5 1
Gen. 4 Diesel 8.2 5 15 3

to better represent the full scale system. The parameters listed
in Table I are constant over the entire simulation scenario.
The unit rating, Si [MVA], is defined to have the same
magnitude as ui,k. The primary control gain vector is K =
[20/3, 2, 5/3, 5]T [MW/Hz]. These gains are computed based
on a 6 % speed droop for each of the generators [4]. The
power generator production costs in Euro/MWh are 4, 8, 80,
and 60, respectively. Therefore, c = T̄s/3600 · [4, 8, 80, 60]T ,
where T̄s = nTs is the sampling time of the controller. The
prices defined here are similar to the estimates provided in
[28]. The input-rate cost is defined to be 0.05 Euro/MW,
such that r = 0.05 · [1, 1, 1, 1]T . The hydro generators have
a lower production cost than the diesel generators, but they
have limited reservoirs. For this case study, the reservoirs are
assumed not to have any limits. Within each generator group,
the smaller and faster generator has the highest operating
cost.

The nominal set-point is unom
g,k = [8, 6, 1, 6]. These set-

points are computed by solving an economic dispatch prob-
lem, considering operational reserve requirements [1], [2].
The simulation is started from steady-state, such that znom

g,k =
unom
g,k . For the disturbance model defined in (13), we use the

noise covariance matrix Rη = 0.1.

B. Controller

The controller sampling time is T̄s = 0.5 seconds, and we
define the prediction horizon to be N = 80 time steps. We
have verified in simulations that the closed-loop system is
stable for this choice of N . The cut-off frequency deviations
are f = −f = 1 Hz. Frequency deviations larger than ±1 Hz
has a very high cost, as it involves potential load-shedding,
cascading generator trips, and ultimately a total blackout.
We define the price to be 1000 Euro/(Hz · s). Accordingly,
q = q = 1000T̄s. We note that the economic criterion, (21),
may be modified to include several cut-off frequencies with
different costs.

The weights in the set-point based criterion (22) are
partitioned as Qsp = blkdiag (Qsp

g , Q
sp
l , Q

sp
b , Q

sp
∆f ), and

Rsp = Rsp
g . We use Qsp

g = I4, Qsp
l = Qsp

b = 0, Qsp
∆f = 100,

and Rsp
g = I4. This means that deviations from the nominal

frequency have a much higher penalty, compared to generator
deviations from their nominal production plan. We scale the
weights Qsp and Rsp by a factor T̄s/3600, such that the
economic criterion, (21), and the set-point based criterion,
(22), is in a comparable scale.

C. Simulations

Closed-loop simulations are performed using the trade-
off specifications α = 0, α = 0.5 and α = 1. The
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Fig. 5. System frequency associated with the simulations in Fig. 6.

case α = 0 corresponds to set-point based MPC, and
α = 1 only considers cost minimization. The case α = 0.5
balances the two extreme cases. For compact notation, we
use EMPC(α) to denote EMPC with trade-off parameter α.
We also include a conventional frequency-based PI-controller
in our comparison. We have tuned the PI-controller by trial
and error.

Fig. 5 and Fig. 6 illustrate closed-loop simulations for the
four different strategies described above. Fig. 5 shows the
system frequency, and Fig. 6 shows the power production of
the generators

For α = 0, the EMPC scheme coincides with set-point
based MPC. In this case, all the generators with free gener-
ation capacity participate in keeping the frequency close to
its nominal value. Similar behavior is observed for the PI-
controller. For α = 0.5, slightly larger frequency deviations
are allowed than for set-point based MPC, such that slower
and less expensive units can be prioritized over the fast and
expensive generators. Note that the frequency deviation never
exceeds the cut-off frequency deviations ±1 Hz. For α = 1,
the generators act similar to the case α = 0.5. The frequency
is however, operated close to a cut-off frequency a significant
part of the time. Since the controlled system is a stochastic
system, EMPC with α = 1 is high risk strategy. By reducing
α, the risk is reduced at the expense of the operating cost.

TABLE II
KEY SIMULATION RESULTS: COST OF OPERATION AND FREQUENCY

DEVIATIONS FOR DIFFERENT EMPC TRADE-OFF SPECIFICATIONS, AND

FOR PI-CONTROL.

Cost of operation min{z∆f,k} max{z∆f,k}

EMPC(0) 15.8 -0.39 0.43
EMPC(0.1) 10.9 -0.45 0.48
EMPC(0.2) 7.20 -0.48 0.61
EMPC(0.3) 4.67 -0.52 0.76
EMPC(0.5) 2.68 -0.76 0.87
EMPC(1) 2.10 -1.01 0.91
PI-control 14.2 -1.19 1.10

Table II provides key data from the illustrated simulations,
and for additional values of the trade-off parameter α. The
costs reported in this table are computed as

π =
∑
k

cT zmpc
g,k+1 + rT

∣∣∣umpc
g,k − u

mpc
g,k−1

∣∣∣ , (25)

The cost (25) is the actual cost of operation. Compared to the
criterion (21b), generator costs can be negative in (25) when
operational reserves are activated in the downward direction.

The cost associated with set-point based MPC is approx-
imately 16 Euro. Over the course of one year, the price
difference between this strategy and EMPC with α = 0.5,
sums to over 1.3 million Euro, which is approximately 3 %
of the revenues generated by SEV in 2012. Although the case
α = 1 results in even lower generation costs, it is disregarded
due to its high risk. A systematic method for trading-off cost
variance and cost expectation may be achieved for α = 1, by
combining the proposed strategy with mean-variance EMPC
[29], [30].

V. CONCLUSIONS

We develop a novel economic model predictive control
scheme for frequency control in a single-area power system.
The scheme is a generalization of set-point based MPC,
that trades off cost minimization and set-point tracking.
Simulations based on a Faroe Islands case study show that
the proposed controller reduces cost of operation by almost
an order of magnitude, while maintaining a high quality
frequency control.
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predictive load frequency control of multi-area interconnected power
system,” International Journal of Electrical Power & Energy Systems,
vol. 62, no. 0, pp. 289–298, 2014.

[17] Twenties, “Providing Flexibility with a Virtual Power Plant,” Tech.
Rep., 2013. [Online]. Available: http://twenties-project.eu/node/18

[18] M. Maasoumy, A. Sanandaji, B. M. Sangiovanni-Vincentelli, and
K. Poolla, “Model Predictive Control of regulation services from
commercial buildings to the smart grid,” in 2014 American Control
Conference (ACC), 2014, pp. 2226–2233.

[19] J. Carpentier, “‘To be or not to be modern’ that is the question for
automatic generation control (point of view of a utility engineer),”
International Journal of Electrical Power & Energy Systems, vol. 7,
no. 2, pp. 81–91, 1985.

[20] A. S. Debs, Modern Power Systems Control and Operation. Springer
US, 1988.

[21] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and
Control, 3rd ed. John Wiley & Sons, 2013.

[22] K. Edlund, T. Mølbak, and J. D. Bendtsen, “Simple models for
model-based portfolio load balancing controller synthesis,” in 6th IFAC
Symposium on Power Plants and Power Systems Control, 2009, pp.
173–178.

[23] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and
Control, ser. EPRI power system engineering series. McGraw-Hill,
1994.

[24] R. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Transactions of the ASME, Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[25] G. Pannocchia and J. B. Rawlings, “Disturbance Models for Offset-
Free Model-Predictive Control,” AIChE Journal, vol. 49, no. 2, pp.
426–437, 2003.

[26] F. Borrelli and M. Morari, “Offset Free Model Predictive Control,” in
2007 46th IEEE Conference on Decision and Control (CDC), 2007,
pp. 1245–1250.

[27] Gurobi Optimization Inc., “Gurobi Optimizer Reference Manual,”
2015. [Online]. Available: http://www.gurobi.com

[28] EIA, “Levelized Cost and Levelized Avoided Cost of New Generation
Resources in the Annual Energy Outlook 2014,” U.S. Energy
Information Administration, Tech. Rep., 2014. [Online]. Available:
http://eia.gov/forecasts/aeo/er/index.cfm

[29] L. E. Sokoler, B. Dammann, H. Madsen, and J. B. Jørgensen, “A
Mean-Variance Criterion for Economic Model Predictive Control of
Stochastic Linear Systems,” in 2014 IEEE 53rd Annual Conference
on Decision and Control (CDC), 2014, pp. 5907–5914.

[30] ——, “A Decomposition Algorithm for Mean-Variance Economic
Model Predictive Control of Stochastic Linear Systems,” in 2014 IEEE
Multi-conference on Systems and Control, 2014, pp. 1086–1093.


