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Abstract— This paper examines the effect of quantized com-
munications on the convergence behavior of the primal-dual
algorithm in quadratic network utility maximization problems
with linear equality constraints. In our set-up, it is assumed
that the primal variables are updated by individual agents,
whereas the dual variables are updated by a central entity,
called system, which has access to the parameters quantifying
the system-wide constraints. The notion of differential entropy
power is used to establish a universal lower bound on the rate
of exponential mean square convergence of the primal-dual
algorithm under quantized message passing between agents
and the system. The lower bound is controlled by the average
aggregate data rate under the quantization, the curvature of the
utility functions of agents, the number of agents and the number
of constraints. An adaptive quantization scheme is proposed
under which the primal-dual algorithm converges to the optimal
solution despite quantized communications between agents and
the system. Finally, the rate of exponential convergence of the
primal-dual algorithm under the proposed quantization scheme
is numerically studied.

I. INTRODUCTION

Allocating resources to multiple agents in a large network
usually requires solving a massive optimization problem
with many parameters which are not known at the system
level [1]-[2], e.g., the utility functions of agents are usually
considered as private information of agents, and are only
known by individual agents. In the seminal paper [3], Kelly
et al. proposed the network utility maximization (NUM)
approach for solving resource allocation problem in large
networks. This approach allows the underlying optimization
problem to be solved using various distributed computation
architectures, e.g., primal, dual and primal-dual decomposi-
tions. Each architecture decomposes the original optimization
problem into a set of smaller sub-problems which can
be locally solved by agents by exchanging only a small
number of variables between themselves. The diversity of
decomposition architectures allows the system designer to
select the best possible decomposition method based on the
network architecture and the design criteria.

In each architecture, finding the optimal solution of a
NUM problem requires the exchange of different information
between agents and system, e.g., pricing signals. However,
due to the inherent capacity limitation of communication
channels, the information exchange between network com-
ponents can only be performed in the form of quantized
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message passing which can significantly degrade the per-
formance of distributed multi-agent algorithms. The poten-
tial detrimental impact of quantization has derived intense
research efforts analyzing the convergence of distributed
multi-agent optimization/consensus algorithms in presence of
quantized inter-agent communications.

Literature Survey

Nedić et al. [4] studied the convergence rate of an
averaging-based algorithm for a cooperative multi-agent
convex optimization problem in which agents collectively
minimize the sum of individual objective functions, and the
communication between agents is regulated by an infinite-
level, uniform quantization scheme. Rabbat et al. [5] exam-
ined the convergence rate of an incremental algorithm for
solving a distributed multi-agent convex optimization prob-
lem under a uniform quantization scheme. The authors in [6]
investigated the structure of the optimal quantization schemes
minimizing various measures of distortion in distributed
contraction-based iterative algorithms under quantized inter-
agent communications.

In [7], the authors proposed a distributed dual averaging
algorithm for solving a convex optimization problem, and
studied its convergence under quantized communications. Yi
and Hong in [8] proposed a zoom-in quantization scheme
along with a distributed sub-gradient algorithm for solving
unconstrained convex optimization problems. They showed
that the proposed algorithm converges to the optimal solution
of the optimization problem, and obtained lower bounds on
the minimum number of required quantization levels for
achieving the optimal solution. The authors in [9] studied the
information flow in various distributed resource allocation
algorithms using the concept of entropy power.

Contributions

This paper considers a NUM problem in which a group of
agents collectively seek to maximize sum of their quadratic
objective functions subject to a set of linear equality con-
straints. In many practical applications, e.g., communication
networks, electricity grid and irrigation systems, agents only
have access to their local objective functions, and the global
knowledge of network-wide constraints is not available to
individual agents. Instead, a central entity, hereafter called
system, who has the global knowledge of system-wide con-
straints, is responsible to ensure that the constraints are met at
all time. In this paper, we assume that the system and agents
employ the primal-dual algorithm to obtain the optimal
solution of the NUM problem. In the primal-dual algorithm,



each agent updates its corresponding primal variable using
the local knowledge of its objective function, whereas the
dual variables are updated by the system using the global
knowledge of the constraints.

At each time-step of the primal-dual algorithm, the system
requires the knowledge of primal variables at previous time-
step in order to update the dual variables. Similarly, agents
require the values of dual variables at the previous time-
step to update the primal variables at each time. Since the
system and agents are not necessarily co-located, the values
of primal and dual variables, at each time, are exchanged
between agents and system via communication links. As the
capacity of communication channels is inherently limited,
due to the distance between system and agents, available
transmission power and bandwidth etc, agents and system
are only able to exchange quantized versions of the primal
and dual variables at each time.

The quantized communication between system and agents
immediately triggers the following research questions: (i)
How fast can the primal-dual algorithm converge to the
optimal solution under a given quantization scheme?, (ii)
What is the impact of communication rates between agents
and system on the convergence of primal-dual algorithm?
To address these questions, the current paper uses the in-
formation theoretic notion of differential entropy power to
establish a universal lower bound on the rate of exponential
mean square convergence of the primal-dual algorithm under
a class of quantization schemes called optimum achiev-
ing (OA) quantization schemes. Under an OA quantization
scheme, the primal and dual variables converge to their
corresponding optimal values.

Different from previous results, which are mainly limited
to uniform quantization schemes, the derived lower bound
is independent of quantizer’s structure, and only depends on
the average aggregate data rate between agents and system.
Our result indicates that, given a fixed average aggregate
data rate, the quantized primal-dual algorithm can converge
to the optimal solution at most exponentially fast, and the
rate of exponential mean square convergence is limited
by the curvature of the objective functions of agents, the
average aggregate communication data rate among agents
and system, number of agents and number of constraints
(see Theorem 1 for more details). Also, an OA quantization
scheme is proposed under which the primal-dual algorithm
converges to the optimal solution. We note that the notion of
differential entropy power has been used to study the impact
of data rate constraints on the stability of feedback control
systems, e.g., see [10] and [11].

This paper is organized as follows. Next section describes
the considered NUM problem along with the quantized
primal-dual update rule. Section III states our main results
followed by a detailed discussion of the results. Section IV
presents our numerical results for the convergence behavior
of the primal-dual algorithm under quantized communica-
tions. Section V concludes the paper. All the proofs are
relegated to appendices to enhance the flow of the paper.

II. SYSTEM MODEL

Consider a NUM problem in which a group of agents aim
to cooperatively maximize the aggregate of their individual
utility functions subject to a set of linear equality constraints.
Let Ui

(

xi
)

= ai

2

(

xi
)2

+ cix
i be the utility function of

agent i where xi is the decision variable of agent i, ai < 0
and ci ∈ R. Our motivation for considering quadratic utility
functions has two aspects: (i) Non-linear utility functions
can be approximated up to a second order by quadratic
utility functions, (ii) The analytical tractability of quadratic
optimization problems provides useful insights regarding the
characteristics of their optimal solutions [12].

The system and agents are interested in the solution of
following optimization problem:

maximize
x

M
∑

i

Ui

(

xi
)

Subject to Ax = b

, (1)

where M is the number of agents, b ∈ R
N , N is the number

of constraints, A ∈ R
N×M , and x =

[

x1, · · · , xM
]⊤

. The
condition N < M is imposed on the number of agents
and the number of constraints to ensure that the feasible
set of the optimization problem is non-empty. The objective
function in (1) is concave, and the constraints are linear.
Thus, the optimization problem (1) can be solved using
standard convex optimization techniques.

Let xi
k and λi

k be the primal and dual variables, respec-
tively, under the primal-dual algorithm at time k. Then, the
primal-dual algorithm for the NUM problem (1) can be
written as

xi
k = xi

k−1 + µk−1

(

aix
i
k−1 + ci −A⊤

i λk−1

)

, 1 ≤ i ≤ M

λ
j
k = λ

j
k−1 + µk−1 (Ajxk−1 − bj) 1 ≤ j ≤ N (2)

where µk−1 is the step size of the algorithm at time k−1, bj
is the jth entry of b, λk−1 =

[

λ1
k−1, · · · , λN

k−1

]⊤
and A⊤

i

denotes the i-th row of the matrix A⊤.
In our set-up, each agent only has the knowledge of

its utility function and the column of matrix A which
corresponds to its decision variable, e.g., agent i has access to
the ith column of matrix A. However, a central entity named
system has the full knowledge of the matrix A and vector b.
Thus, the dual variables are updated in each iteration by the
system, whereas the primal variables are updated by agents.
Let yk represent the vector concatenation of xk and λk, i.e.,

yk =

[

xk

λk

]

.

We assume that the vector of initial primal and dual variables,
i.e., y0, is randomly drawn according to the probability
density function py0

(y). This assumption allows us to
analyze the convergence of the primal-dual algorithm using
information theoretic tools, e.g., differential entropy and
differential entropy power. In this paper, we impose the
following assumptions on the step-size µk and py0

(y).

• 0 < µk ≤ mini
1

|ai|
for all k.



• The sequence of step-sizes {µk}k converges to µ⋆ > 0
as k tends to infinity.

• The distribution of initial primal and dual variables has a
finite entropy. That is,

∣

∣−
∫

py0
(y) log

(

py0
(y)
)

dy
∣

∣ <

∞.

A. The Structure of Quantizer

According to the update rule (2), at time k, each agent
requires the knowledge of dual variables at time k − 1 to
update its decision variable. Similarly, the system requires
the knowledge of primal variables at time k − 1 in order to
update the dual variables at time k. Since agents and system
are not necessarily co-located, the values of primal and dual
variables, at each time, are needed to be exchanged via
communication links deployed between agents and system.
However, the capacity of communication links is limited by
the available transmission power, bandwidth, etc. Due to
the capacity limitation of communication channels, agents
and system can only exchange the quantized versions of
primal and dual variables which are representable using finite
number of bits.

Let Qx
i,k

(

xi
k

)

: R 7−→ Ax
i,k represent the quantizer used

by agent i to quantize its decision variable at time k where
Ax

i,k is a finite set representing the range of Qx
i,k

(

xi
k

)

.
Similarly, let Qλ

k (λk) : R
N 7−→ Aλ

k represent the quantizer
used by the system at time k to quantize the dual variables
where Aλ

k is a finite set. The quantities
∣

∣

∣Ax
i,k

∣

∣

∣ and
∣

∣Aλ
k

∣

∣

denote the number of quantization levels used by agent i

and the system, respectively, to quantize their corresponding
variables at time k. A large value of

∣

∣

∣Ax
i,k

∣

∣

∣ indicates that the
agent i transmits its primal variable with a high precision to
the system whereas a small

∣

∣

∣
Ax

i,k

∣

∣

∣
indicates a poor communi-

cation channel between agent i and the system. In the sequel,
Qx

k (xk) denotes the component-wise quantized version of
xk. Also, Qk (yk) is used to represent the quantized version
of yk, i.e.,

Qk (yk) =

[

Qx
k (xk)

Qλ
k (λk)

]

.

We refer to Q = {Qk (·)}∞k=0 as a quantization scheme.
The average aggregate date rate per unit time under the
quantization scheme Q, i.e., RQ, is defined as [13]

RQ = lim sup
k→∞

1

k

k−1
∑

t=0

M
∑

i=1

log
∣

∣Ax
i,t

∣

∣+ log
∣

∣Aλ
t

∣

∣ (3)

The primal-dual algorithm under the quantization scheme
Q can be written as

xi
k = xi

k−1 + µk−1

(

aix
i
k−1 + ci −A⊤

i Q
λ
k−1 (λk−1)

)

,

λ
j
k = λ

j
k−1 + µk−1

(

AjQ
x
k−1 (xk−1)− bj

)

(4)

Let x⋆ =
[

x1⋆, · · · , xM⋆
]⊤

and λ⋆ =
[

λ1⋆, · · · , λN⋆
]⊤

be the optimal values of the primal and dual variables,
respectively. Also, let y⋆ be the vector concatenation of x⋆

and λ⋆. We define ǫk = yk − y⋆ as the difference between
the optimal solution and the primal-dual variables at time k.

Let ‖ǫk‖2 denote the total distance between the values of
primal-dual variables at time k and their optimal values, i.e.,

‖ǫk‖2 =

√

√

√

√

M
∑

i=1

(

xi
k − xi⋆

)2
+

N
∑

j=1

(

λ
j
k − λj⋆

)2

(5)

Then, the average error norm square at time k under the
quantization scheme Q is defined as E

[

‖ǫk‖22
]

. Next, we
define the class of optimum achieving (OA) quantization
schemes.

Definition 1: The quantization scheme Q is called an
optimum achieving (OA) quantization scheme if, under Q,
the primal and dual variables converge to their optimal values
x⋆ and λ⋆. That is, limk→∞ xk = x⋆ and limk→∞ λk = λ⋆.
The Definition 1 implies that, under an OA quantization
scheme, the quantization error does not impede the primal-
dual algorithm from approaching the optimal solution, and
the primal-dual algorithm converges to the optimal solution
of the optimization problem regardless of the quantized
message passing between agents and system.

III. CONVERGENCE ANALYSIS

In this section, we analyze the rate of exponential mean
square convergence of the primal-dual algorithm under quan-
tized communication between the system and agents. To this
end, first, the notion of error decay exponent (EDE) is defined
which captures the speed of exponential convergence of the
primal-dual algorithm to the optimal solution.

Definition 2: Consider the primal-dual update rule (4)
under an OA quantization scheme Q. Then, the error decay
exponent (EDE) of the primal-dual algorithm under Q is
defined as lim infk→∞

1
k log E

[

‖ǫk‖22
]

where ‖ǫk‖2 is the
distance between the vector of primal-dual variables at time
k, i.e., yk, and the vector of optimal solution, i.e., y⋆.
Note that the EDE is a non-positive quantity, and a more
negative EDE implies a faster convergence to the optimal
solution compared with a less negative EDE. In the next
theorem, we establish a universal lower bound on the EDE
of primal-dual algorithm for quadratic NUM problems under
quantized communication between system and agents. The
proof of this theorem is based on the information-theoretic
notion of entropy power, and is presented in Appendix I.

Theorem 1: Consider the primal-dual algorithm under the
OA quantization scheme Q. Let ‖ǫk‖2 be the distance
between the optimal solution and the primal-dual variables
at time k. Then, the EDE of primal-dual algorithm under Q
can be lower bounded as

lim inf
k→∞

1

k
log E

[

‖ǫk‖22
]

≥ 2

N +M

(

M
∑

i=1

log (1 + µ⋆ai)−RQ

)

.

(6)
Proof: Please see Appendix I.

Theorem 1 establishes a universal lower bound on the EDE of
the primal-dual algorithm under quantized message passing
between system and agents. The lower bound is universal



in the sense that it is independent of the structure of the
quantizer. Different from previous studies, which mainly
focused on the uniform quantization schemes, the lower
bound on the EDE in Theorem 1 does not impose any
particular structure on the quantizer, and only depends on the
average aggregate data rate under the quantization scheme Q.
Given an average aggregate data rate, Theorem 1 implies that
the primal-dual algorithm under quantized communications
converges to the optimal solution at most exponentially fast.

The lower bound in Theorem 1 is controlled by the number
of agents, the number of constraints, the average aggregate
data rate under the quantization scheme and the curvature of
the objective functions of agents, i.e., ais. The lower bound
in Theorem 1 decreases linearly with the average aggregate
date rate per unit time, RQ, in (3). Note that, as RQ becomes
large, system and agents have more precise information about
the primal and dual variables, respectively. Therefore, the
primal-dual algorithm is expected to converge faster to the
optimal solution as RQ becomes large since the algorithm is
updated using more accurate information at each time. Recall
that the EDE is a non-positive quantity, and a more negative
EDE implies a faster convergence.

The lower bound on the EDE also increases with the
curvature of the objective functions of agents. Note that, as
ai becomes less negative, the objective function of agent i
becomes flatter which indicates a slower convergence to the
optimal solution.

A. An optimum achieving quantization scheme

In this subsection, we consider the primal-dual algo-
rithm with a constant step-size, and we propose an opti-
mum achieving (OA) quantization scheme which allows the
primal-dual algorithm to converge to the optimal solution.
The step-size is adjusted such that the primal-dual update
rule under prefect communications, i.e., (2) becomes a con-
traction mapping with the contraction constant α ∈ [0, 1).
In the next section, we numerically evaluate the EDE of
the primal-dual algorithm under the proposed quantization
scheme. We refer to this quantization scheme as Qu.

Under Qu, each agent uses R bits to quantize its cor-
responding primal variable, and the system uses R bits to
quantize each dual variable. At time k = 0, agent i selects
the interval Ixi

0
with length d > 0 which contains xi

0. Then, it
partitions Ixi

0
into 2R equal length sub-intervals, and assigns

a representative for each sub-interval. Finally, it transmits
the representative of the sub-interval which contains xi

0 to
the system. Similarly, the system at time k = 0 selects the
interval Iλj

0

containing λ
j
0, and partitions it into 2R smaller

intervals, and broadcasts the representative of the sub-interval
that includes λ

j
0 to agents. The length of Iλj

0

is assumed to
be equal to d.

At time k ≥ 1, agent i and system select the intervals
Ixi

k
and Iλj

k

, respectively. The intervals Ixi
k

and Iλj

k

contain

xi
k and λ

j
k, respectively, and their lengths are equal to αkd.

Each interval is quantized using the quantization level αkd
2R

.
Then, agents and system exchange the quantized versions of
the primal and dual variables.

In the next lemma, we show that the primal-dual algorithm
under Qu converges to the optimal solution.

Lemma 1: The quantization scheme Qu is an OA quanti-
zation scheme. That is, limk→∞ xk = x⋆ and limk→∞ λk =
λ⋆ where x⋆ and λ⋆ are the vectors of optimal primal and
dual variables, respectively.

Proof: Please see Appendix II.

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the convergence
behavior of the primal-dual algorithm under the OA quanti-
zation scheme Qu. We consider a NUM problem in which
5 agents seek to maximize the sum of their utility functions
subject to 3 equality constraints. At each time, agents will
quantize their primal variables using 2 bits. Also, each dual
variable is quantized using 2 bits in each time-step. The
parameter d is set to 1. The vector of initial primal and dual
variables, i.e., y0, is Gaussian distributed with zero mean
and covariance matrix equal to IM+N .

Fig. 1 illustrates the trajectories of the primal and dual
variables under the quantization scheme Qu for a realization
of y0. According to Fig. 1, the primal-dual algorithm under
the quantization scheme Qu converges to the optimal values
of primal and dual variables. The convergence of the primal-
dual algorithm in Fig. 1, regardless of quantized commu-
nication between agents and system, provides a numerical
confirmation for the fact that the quantization scheme Qu is
an OA quantization scheme.

Fig. 2 depicts the log-mean-error-norm-square divided by
k, i.e., 1

k log E
[

‖ǫk‖22
]

, as a function of time index k. For
the considered NUM problem, the universal lower bound
on the EDE is equal to −4.8726. According to Fig. 2,
1
k log E

[

‖ǫk‖22
]

lies above the lower bound provided by
Theorem 1 as k becomes large, a behavior predicted by
Theorem 1.

V. CONCLUSION

In this paper, we have studied the convergence rate of
the primal-dual algorithm in a quadratic network utility
maximization (NUM) problem in which a group of agents
collectively seek to maximize the sum of their individual
utility functions subject to a set of linear equality constraints.
We considered a quantized communication scenario wherein
the system, which is responsible for updating the dual
variables, broadcasts the quantized versions of dual variables
to agents, and each agent transmits the quantized version of
its corresponding primal variable to the system. Using the
notion of differential entropy power, a universal lower bound
on the rate of exponential mean square convergence of the
primal-dual algorithm was established. The lower bound is
controlled by the curvature of the utility functions of agents,
the average aggregate data rate under quantized message
passing, number of agents and number of constraints. An
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adaptive quantization scheme was also proposed which al-
lows the primal-dual algorithm to converge to the optimal
solution of the NUM problem.

APPENDIX I
PROOF OF THEOREM 1

To prove Theorem 1, first, we define the notion of condi-
tional differential entropy power of a random vector. Let z ∈
R

N+M be a random vector. Then, the differential entropy
power of z conditioned on the event A = a, N [z|A = a],
is defined as N [z|A = a] = 1

2πe e
2

M+N
h[z|A=a] where

h [z|A = a] is the conditional differential entropy of z given
A = a. Let EA [N [z|A = a]] denote the average conditional
entropy power of z given A = a. Then, EA [N [z|A = a]]
can be upper bounded as [13]

EA [N [z|A]] ≤ e1/(M+N)−1
E

[

‖z‖22
]

. (7)

Let Dk−1 = {Qn (yn) = qn}k−1
n=0 where qn is a possible

output of the quantization scheme Q at time i. Then using
(7), E

[

‖ǫk‖22
]

can be lower bounded as

E

[

‖ǫk‖22
]

≥ e1−
1

M+N E [N [ǫk| Dk−1]]

(∗)

≥ e1−
1

M+N

2πe
e

2
M+N

E[h[ ǫk|Dk−1]], (8)

where (∗) is obtained using the Jensen inequality. The right
hand side of (8) depends on h [ǫk| Dk−1] which can be
simplified as

h [ǫk| Dk−1] = h [yk − y⋆| Dk−1]

(∗)
= h [yk| Dk−1] , (9)

where (∗) is due to translation invariance property of differ-
ential entropy [14]. Next lemma provides an expression for
h [yn| Dk−1] in terms of h

[

yn−1

∣

∣Dk−1

]

for n ≤ k. Later,
this lemma is used to further expand h [yk| Dk−1].

Lemma 2: For n ≤ k, h [yn| Dk−1] can be expanded as

h [yn| Dk−1] = h
[

yn−1

∣

∣Dk−1

]

+

M
∑

i=1

log (1 + µn−1ai) .

Proof: Let x̃i
n = (1 + µnai)x

i
n and x̃n =

[

x̃i
1, · · · , x̃i

M

]⊤
. Let ỹn be the vector concatenation of x̃n

and λn. Note that h [yn| Dk−1] can be written as

h [yn| Dk−1] = h [xn,λn| Dk−1]

= h [ x̃n−1,λn−1| Dk−1]

= h
[

ỹn−1

∣

∣Dk−1

]

(10)

Note that ỹn−1 can be written as

ỹn−1 = Diag (1 + µn−1a1, · · · , 1 + µn−1aM ,1N )yn−1,

where Diag(z) is a diagonal matrix with the ith diagonal
element equal to zi and 1N is an N dimensional vector of
all ones. Thus,

h
[

ỹn−1

∣

∣Dk−1

]

=

M
∑

i=1

log (1 + µn−1ai) + h
[

yn−1

∣

∣Dk−1

]



where the equality follows from the fact that h [Tz] =
log |det (T )|+ h [z] where T is an invertible matrix.
Using Lemma 2, h [yk| Dk−1] can be written as

h [yk| Dk−1] = h [y0| Dk−1] +

M
∑

j=1

k−1
∑

n=0

log (1 + µnaj) .

(11)

Using (11), E [h [yk| Dk−1]] can be written as

E [h [yk| Dk−1]] =
M
∑

j=1

k−1
∑

n=0

log (1 + µnaj) + E [h [y0| Dk−1]] .

(12)

Next, we use the following lemma from [13] to establish a
lower bound on E [h [yk| Dk−1]].

Lemma 3: The average conditional entropy of y0 given
Dk−1, i.e., E [h [y0| Dk−1]], can be lower bounded as

E [h [y0| Dk−1]] ≥ h [y0]−
k−1
∑

t=0

(

M
∑

i=1

(

log
∣

∣Ax
i,t

∣

∣

)

+ log
∣

∣Aλ
t

∣

∣

)

.

Applying Lemma 3 to (12), we have

E [h [yk| Dk−1]] ≥
M
∑

j=1

k−1
∑

n=0

log (1 + µnaj) + h [y0]

−
k−1
∑

t=0

((

M
∑

i=1

log
∣

∣Ax
i,t

∣

∣

)

+ log
∣

∣Aλ
t

∣

∣

)

, (13)

Using (8), (9), (13) and the fact that py0
(y) has finite

entropy, the EDE can be lower bounded as

lim inf
k−→∞

1

k
log E

[

‖ǫk‖22
]

≥

2

M +N



lim inf
k−→∞

M
∑

j=1

1

k

k−1
∑

n=0

log (1 + µnaj)−RQ



 . (14)

Using the fact that µn converges to µ⋆ as n tends to infinity,
it can be easily shown that

lim inf
k→∞

1

k
log E

[

‖ǫk‖22
]

≥ 2

N +M

(

M
∑

i=1

log (1 + µ⋆ai)−RQ

)

, (15)

which completes the proof.

APPENDIX II
PROOF OF LEMMA 1

The primal-dual update rule under quantization can be
written as

xi
k = xi

k−1 + µ
(

aix
i
k−1 + ci −A⊤

i λk−1

)

+ µA⊤
i δ

λ
k−1

λ
j
k = λ

j
k−1 + µ (Ajxk−1 − bj)− µAjδ

x
k−1 (16)

where δλk−1 = λk−1 − Qλ
k−1 (λk−1) and δxk−1 =

(

xk−1 −Qx
k−1 (xk−1)

)

denote the quantization error vector
for dual and primal variables, respectively, at time k − 1.

Recall that µ is selected such that the primal-dual algorithm
under perfect communications becomes a contraction map-
ping. Using this fact and equation (16), ‖ǫk‖2 for k ≥ 1 can
be upper bounded as

‖ǫk‖2 ≤ α ‖ǫk−1‖2 + µ

∥

∥

∥

∥

[

0 A⊤

−A 0

]∥

∥

∥

∥

2

∥

∥

∥

∥

[

δxk−1

δλk−1

]∥

∥

∥

∥

2

(∗)

≤ α ‖ǫk−1‖2 + µ

∥

∥

∥

∥

[

0 A⊤

−A 0

]∥

∥

∥

∥

2

√
N +M

αk−1d

2R

(17)

where (∗) follows from the fact that the absolute value of
quantization error for primal/dual variables at time k − 1 is
upper bounded by αk−1d

2R
. Using (17), ‖ǫk‖2 can be upper

bounded in terms of ‖ǫ0‖2 as follows

‖ǫk‖2 ≤ αk ‖ǫ0‖2 + µ

∥

∥

∥

∥

[

0 A⊤

−A 0

]∥

∥

∥

∥

2

√
N +M

kαk−1d

2R

(18)

Thus, limk→∞ ‖ǫk‖2 = 0 which implies that the primal and
dual variables under the quantization scheme Qu converge
to their optimal values.
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