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Switching Control for Parameter Identifiability of
Uncertain Systems

Giorgio Battistelli and Pietro Tesi

Abstract— This paper considers the problem of identifying the
parameters of an uncertain linear system by means of feedback
control. The problem is approached by considering time-varying
controllers. It is shown that even when the uncertainty set is
not finite, parameter identifiability can be generically ensured
by switching among a finite number of linear time-invariant
controllers. The results are shown to have several implications,
ranging from fault detection and isolation to adaptive and
supervisory control. Practical aspects of the problem are also
discussed in details.

I. INTRODUCTION

Identifying the parameters of an uncertain system from
input-output data is a problem of long-standing fundamental
interest in control engineering. This problem is often referred
to as the problem ofparameter identifiability[1], [2]. This
paper considers the identifiability problem with respect to
uncertain linear systems where the uncertainty set consists
of a known bounded set possibly containing a continuum of
parameters. For this class of systems, we address the problem
of ensuring the identifiability of the unknown parameters of
the system by means of feedback controllers.

The motivations for studying this problem are immense.
For instance, parameter identifiability of a feedback loop can
be of interest in the context offault detection/isolationfor
systems subjects to failures, in order to make it possible to
promptly detect any departure from the nominal behavior and
to precisely identify the parameter variation [3], [4]. Another
application iscontrol reconfigurationwherein the objective
is that of replacing the active controller (typically designed
in order to ensure robust stability in all the uncertainty
region) with a different one providing enhanced (possibly
optimized) performance [5], [6]. Finally, on-line estimation
of the uncertain parameters under feedback can be exploited
when dealing with systems which naturally exhibit multiple
operating conditions for constructingadaptive controllaws.
In fact, many existing adaptive control techniques rely on the
idea of certainty equivalence, which amounts to applying at
each instant of time the controller designed for the model that
best fits the available data [7], [8].

In this paper, the problem of parameter identifiability is
approached by searching for feedback control laws under
which closed-loop behaviors obtained with different system
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parameters can be distinguished one from another. To this
end, we introduce a notion ofdiscerning control. Parameter
identifiability is then defined precisely in terms of discerning
control.

In principle, parameter identifiability under feedback can
always be ensured by means of aprobing signalinjected into
the plant as an additive perturbation input, superimposed to the
control variable [7], [8]. Nevertheless, in many contexts,such
a solution should be avoided due to the inherent drawback
of leading the feedback loop away from the desired behavior,
thus destroying regulation properties. This is especiallytrue
when the behavior of the feedback loop has to be monitored
continuously as in the contexts of fault/detection isolation and
adaptive control. Then, a natural question arises on whether or
not it is possible to guarantee parameter identifiability directly
by means of a feedback control law, possibly designed also
to satisfy other control objectives (e.g., stability in nominal
operating conditions). An affirmative answer to this question
was given in [9], [10] for the special case of switching linear
systems,i.e., when the uncertain parameters can take on only
a finite number of possible values. Specifically, in [9], [10],
it is shown that, under quite mild assumptions, for switching
linear systems almost all linear time-invariant (LTI) controllers
are discerning.

In general, an analogous result cannot be established in
case of continuously parameterized systems,i.e., when the
uncertainty set is not finite. The reason is inherently tied to the
fact that LTI controllers do not generally provide a sufficient
level of excitation to the loop [7, Chapter 2]. The problem
of loss of identifiability due to feedback can be overcome
by means of time-varying controllers, and one possibility
is given by switching control [11], [12]. In this paper, we
exploit this property to show that parameter identifiability can
in fact be generically ensured by switching among a finite
number of LTI controllers (hereafter called modes), provided
that the number of different controller modes is sufficiently
large. Specifically, an upper bound on the number of controller
modes needed for parameter identifiability is given in terms
of the dimension of the uncertainty set. Moreover, we show
that the result remains true even if we restrict the controller
modes to be of a given fixed order and to satisfy certain
stability requirements. The latter result is perhaps surprising
as it indicates that the seemingly conflicting goals of ensuring
parameter identifiability as well as a satisfactory behavior of
the feedback system (at least under nominal conditions) canbe
simultaneously accomplished by means of switching control.

As a further contribution, we analyze the properties of
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least-squares parameter estimation in connection with theuse
of discerning controllers. Specifically, in order to ensurethe
practical applicability of the estimation technique, we focus on
amulti-modelapproach wherein the estimate is selected among
a finite number of possible values of the parameter vector
(obtained by suitably sampling the uncertainty set). In this
context, a bound on the worst-case parameter estimation error
is derived, which accounts also for the presence of unknown
but bounded disturbances and measurement noises. This latter
result is of special interest in the context ofmulti-model
adaptive switching control(MMASC) of uncertain systems
[9], [13]-[16], of which multi-model least-square parameter
estimation constitutes one of the key elements. In this respect,
it has been shown in [9], [16] that, in the case of a finite
uncertainty set, by employing discerning controllers it ispos-
sible to construct MMASC schemes which enjoy quite strong
stability properties, namely exponential input-to-statestability.
Hence, the results of the paper suggest that similar stability
properties could be achieved also in the case of continuously
parameterized uncertainty. This issue will be the subject of
further research.

The remainder of the paper is organized as follows. In
Section II, we describe the framework under consideration.In
Section III, the main results of the paper are given concerning
the existence and genericity of switching controllers ensuring
parameter identifiability. Section IV analyzes the properties of
multi-model least-squares parameter estimation. Examples are
finally given in Section V.

For the sake of clarity, all the proofs are reported in the
Appendix section.

Notation. Before concluding this section, let us introduce
some notations and basic definitions. Given a vectorv ∈ R

n,
|v| denotes its Euclidean norm. Given a symmetric, positive
semi-definite matrixP , we denote byλmin(P ) and λmax(P )
the minimum and maximum eigenvalues ofP , respectively.
Given a matrix M , M⊤ is its transpose and|M | =
[

λmax(M
⊤M)

]1/2
its spectral norm. Given a measurable time

functionv : R+ → R
n and a time intervalI ⊆ R

+, we denote
theL2 andL∞ norms ofv(·) onI as‖v‖2,I =

√

∫

I
|v(t)|2dt

and ‖v‖∞,I = ess supt∈I |v(t)| respectively. WhenI = R+,
we simply write‖v‖2 and ‖v‖∞. Finally, we letL2(I) and
L∞(I) denote the sets of square integrable and, respectively,
(essentially) bounded time functions onI.

II. FRAMEWORK AND OBJECTIVES

We consider a process described by an uncertain linear
systemP(θ)

{

ẋ = A(θ)x +B(θ)u

y = C(θ)x
(1)

wherex ∈ R
nx is the state,u ∈ R

nu is the input,y ∈ R
ny

is the output, andθ ∈ R
nθ is an unknown parameter vector

belonging to the known bounded setΘ ⊆ R
nθ .

The problem of interest is that of designing a controller
C ensuring global discernibility,i.e., identifiability of the

unknown parameter vectorθ from observations of the plant
input/output data

z = col(u, y) .

wherecol stands for column vector. In [10], the problem was
addressed in the special case when the setΘ is finite and it
was shown that, under mild assumption, global discernibility
can be ensured by means of a LTI controller. When the set
Θ is not finite, a single LTI controller in general cannot
ensure global discernibility by itself. Nevertheless, as will be
shown in the following, it turns out that global discernibility
can be achieved by switching among a finite number of LTI
controllers. Accordingly, let the controller be describedby a
switching linear system

{

ξ̇ = Fσ ξ −Gσ y

u = Hσ ξ −Kσ y
(2)

whereξ ∈ R
nξ is the controller state andσ : R+ 7→ N :=

{1, 2, . . . , N} is the switching signal,i.e. the signal (right
continuous) which identifies the index of the active system
at each instant of time. Hereafter, it will be supposed that the
switching signalσ is generated so as to have a finite number
of discontinuity points in every finite time interval. For any
i ∈ N , Fi, Gi, Hi, andKi are constant matrices of appropriate
dimensions. In the sequel, we shall denote byCi the LTI
system with state-space representation{Fi, Gi, Hi,Ki} and
by Cσ the control law associated with the switching signalσ.

Denote byχ = col(x, ξ) andz = col(u, y) the state and the
output of the closed-loop system(P(θ)/Cσ) resulting from the
interconnection of (1) and (2) when the unknown parameter
takes valueθ and the controller switching signal isσ. The
corresponding dynamics can be therefore expressed as

{

χ̇ = Ψσ(θ)χ
z = Λσ(θ)χ

(3)

where, for anyi ∈ N andθ ∈ Θ,

Ψi(θ) =

[

A(θ) −B(θ)Ki C(θ) B(θ)Hi

−GiC(θ) Fi

]

, (4)

Λi(θ) =

[

−KiC(θ) Hi

C(θ) 0

]

.

Finally, let z(t, t0, x0, ξ0, θ, σ) denote the value at timet of
z when the plant initial state at timet0 is x0, the controller
initial state isξ0, the unknown parameter vector takes valueθ,
and the controller switching signal isσ. The following notions
can be introduced.

Definition 1: Let the process be as in (1) and assume that
u andy are available for measurements. Further, consider two
distinct parameter vectorsθ, θ′ ∈ Θ. A switching controller of
the form (2) is said to be (θ,θ′)-discerning if, for any time-
intervalI := [t0, t0+T ), with T > 0, there exists a switching
signalσ : I → N such that

‖z(·, t0, x0, ξ0, θ, σ) − z(·, t0, x
′
0, ξ

′
0, θ

′, σ)‖2,I 6= 0 (5)

for all nonzero quadruples of vectors(x0, ξ0, x
′
0, ξ

′
0). In ad-

dition, the switching controller (2) is said to beglobally



discerning if it satisfies condition (5) for all pairs(θ, θ′) of
different parameter vectors. �

In words, when the switching controller (2) is (θ,θ′)-
discerning and a discerning switching signalσ is adopted, then
P(θ) andP(θ′) cannot give rise to the same observation data
whenCσ is in the feedback loop (unless the initial conditions
are null). As a consequence, under global discernibility, it is
possible to uniquely identify the unknown parameter vectorθ
by observingz on the intervalI.

III. M AIN RESULTS

In this section, we derive sufficient conditions for a switch-
ing control to be discerning and we show that, under mild
assumptions, almost every switching controller is discerning
provided that the numberN of controller modes is sufficiently
large.

To this end, notice preliminarily that a necessary condition
for the existence of a discerning controller is that all the
pairs (A(θ), C(θ)) are observable. In fact, the presence of
unobservable dynamics would entail the existence of non-zero
trajectories of the closed-loop stateχ corresponding to zero
trajectories of the closed-loop outputz and, hence, for which
it would be impossible to infer the plant mode. Accordingly,
the following assumption is considered.

A1. The pair(A(θ), C(θ)) is observable for allθ ∈ Θ.
Let now ϕi(s, θ) denote the characteristic polynomial of

the closed-loop system(P(θ)/Ci) resulting from the feedback
interconnection of the plantP(θ) with thei-th controller mode
Ci. The following result holds.

Lemma 1:Let assumptionA1 hold and suppose that, for
any pair of distinct parameter vectorsθ, θ′ ∈ Θ, there exist
at least one indexi ∈ N such that the two closed-loop
characteristic polynomialsϕi(s, θ) andϕi(s, θ

′) are coprime.
Then, the following properties are true.

(i) the switching controller (2) is globally discerning;
(ii) condition (5) holds for any switching signalσ such that

each controller modei ∈ N is active, at least, on an
interval Ii ⊂ I of positive measure.

�

Let now n̄ξ denotes the total number of elements of the
controller matrices(Fi, Gi, Hi,Ki) when the controller order
is nξ, and letD(θ, θ′) ⊆ R

n̄ξ be the set of controller matrices1

(Fi, Gi, Hi,Ki) for which the two closed-loop polynomials
ϕi(s, θ) andϕi(s, θ

′) are coprime. Further, for a given number
N of controller modes, letDN ⊆ R

Nn̄ξ be the set of switching
controllers(Fi, Gi, Hi,Ki), i ∈ N satisfying the hypothesis
of Lemma 1 (i.e., such that for any pair of distinct parameter
vectorsθ, θ′ ∈ Θ, there exist at least one indexi ∈ N such
that the two closed-loop characteristic polynomialsϕi(s, θ)
and ϕi(s, θ

′) are coprime). Since, in view of Lemma 1, all
switching controllers belonging toDN are globally discerning,

1Here, with a little abuse of notation, we identify the quadruples
(Fi, Gi, Hi,Ki) with an n̄ξ-dimensional vector containing all the elements
of the matrices(Fi, Gi, Hi,Ki) according to a given order.

we are now interested in studying the properties of the sets
D(θ, θ′) andDN .

To this end, recall that coprimeness of the two polyno-
mials ϕi(s, θ) and ϕi(s, θ

′) is equivalent to the fact that
their Sylvester resultantRi(θ, θ

′) (i.e., the determinant of
the Sylvester matrix associated with the two polynomials) is
different from0. With this respect, we note thatRi(θ, θ

′) de-
pends polynomially on the elements of the controller matrices
(Fi, Gi, Hi,Ki). Hence, when only a single pair of distinct
parameter vectorsθ, θ′ ∈ Θ is taken into account, the set of
controller matrices(Fi, Gi, Hi,Ki) for which Ri(θ, θ

′) = 0,
which is the complement ofD(θ, θ′), is an algebraic set.
Then, as well known, only two situations may occur: either
Ri(θ, θ

′) = 0 is always satisfied; orRi(θ, θ
′) = 0 is satisfied

on a set with zero Lebesgue measure. In this latter case, the set
D(θ, θ′) is generic2 (since it is the complement of a proper
algebraic set). The following lemma, proved in [9], provides
sufficient conditions for such a favorable situation to occur.

Lemma 2: [9] Let assumptionA1 hold and consider two
distinct parameter vectorsθ, θ′ ∈ Θ. Then a controller
(Fi, Gi, Hi,Ki) ensuring coprimeness of the two polynomials
ϕi(s, θ) andϕi(s, θ

′) exists if and only if the following two
conditions hold:

(a) the transfer functions ofP(θ) andP(θ′) are different;
(b) the characteristic polynomials of the uncontrollable parts

of P(θ) andP(θ′) are coprime.

In addition, when conditions (a)-(b) holds, for any given
controller ordernξ the setD(θ, θ′) is generic and of full
measure onRn̄ξ . �

Building on the above lemmas, under suitable regularity
assumptions for the functionsA(θ), B(θ), C(θ), it is possible
to derive conditions for the existence of a global discerning
switching controller on the whole uncertainty setΘ. In partic-
ular, by exploiting the results of [17], the following theorem
can be stated.

Theorem 1:Let the uncertainty setΘ be contained in an
analytic manifoldM ⊂ R

nθ of dimensionM and let the
elements of the system matricesA(θ), B(θ), C(θ) be analytic
functions of θ on M. Further, let assumptionA1 and con-
ditions (a)-(b) of Lemma 2 hold onM. Then, provided that
N ≥ 2M + 1, the setDN is generic and of full measure on
R

N n̄ξ . �

A few remarks are in order. First of all, notice that Theorem
1 provides a bound on the numberN of controller modes
that may be needed in order to ensure identifiability of the
unknown parameterθ in Θ. Such a bound is consistent with
the results of [9], [10] where it is shown that when the set
Θ is finite, i.e., it is a0-dimensional manifold, one single
LTI controller is generically discerning. As discussed in [17],
the boundN ≥ 2M + 1 for parameter distinguishability

2Recall that a subsetX of a topological space is generic when it is open
and dense: for anyx ∈ X , then there exists a neighborhood ofx contained
in X ; for any x /∈ X , then every neighborhood ofx contains an element of
X .



is tight for general maps (in the sense that whenN <
2M +1 one can find counterexamples). However, for specific
cases, fewer controller modes can be sufficient. For instance,
when θ is a scalar parameter, one can consider a single LTI
controller(Fi, Gi, Hi,Ki) and plot the root locus of the closed
loop polynomialϕi(s, θ) as a function ofθ. Then, global
discernibility is guaranteed provided that such a root locus
never cross itself.

Notice finally that the set of analytic functions consideredin
the statement of Theorem 1 is quite general as it captures many
function classes of interest (e.g., polynomials, trigonometric
functions, exponentials, and also rational functions as long as
away from singularities).

A. Accounting for additional control objectives

In the foregoing analysis, only the global discernibility
objective has been taken into account. However generally
speaking, a control law should typically satisfy other control
objectives, the most fundamental one being stability. With
this respect, suppose that we want the switching controllerto
ensure closed-loop stability in a given subsetΘ̄ of Θ together
with global discernibility. For instance,̄Θ can represent the
neighborhood of the nominal operating condition and the
switching controller should be designed so as to ensure: a
satisfactory behavior in nominal conditions as well as the
possibility of promptly identifying any departure from the
nominal behavior (e.g, for fault-detection and isolation or for
control reconfiguration purposes). An extreme case is when
Θ̄ = Θ so that we want to design a robust and globally dis-
cerning switching controller ensuring stability for any possible
operating condition (of course this may be possible or not
depending on the of size of the uncertainty setΘ).

As well known, a sufficient condition to ensure stability
under switching is the existence of a common Lyapunov
function. For example, if we consider a quadratic parameter-
dependent Lyapunov functionv(χ) = χ⊤Π(θ)χ, then in order
for the closed-loop system(P(θ), Cσ) to be stable for any
θ ∈ Θ̄ it is sufficient that there existsΠ(θ) = Π(θ)⊤ such that

Π(θ) ≻ 0 , (6)

Ψi(θ)
⊤Π(θ) + Π(θ)Ψi(θ) ≺ 0 , (7)

for any i ∈ N and for any θ ∈ Θ̄. When the setΘ
is compact, by means of simple continuity arguments, it is
immediate to show that, for any given smoothΠ(θ), the set
of controller matrices(Fi, Gi, Hi,Ki) satisfying (7) is an
open subset ofRn̄ξ . Then, recalling that, by definition, any
non-empty open set contains a closed-ball of positive radius,
the following result on the existence of global discerning
controllers ensuring also stability can be readily stated.

Theorem 2:Let the same hypotheses of Theorem 1 hold.
Further, let the set̄Θ be compact and suppose that there exists
at least one controller(Fi, Gi, Hi,Ki) for which conditions
(6) and (7) are satisfied with the Lyapunov matrixΠ(θ)
depending continuously onθ. Then, wheneverN ≥ 2M + 1,
the set of switching controllers(Fi, Gi, Hi,Ki), i ∈ N that
jointly satisfies (6) and (7) and ensures global discernibility is

non-negligible, in the sense that it contains a ball of positive
radius inRN n̄ξ . �

IV. M ULTI -MODEL LEAST-SQUARES PARAMETER

ESTIMATION

In this section, we discuss how the unknown parameter
vectorθ can be estimated from the closed-loop dataz on an
interval I = [t0, t0 + T ] and we show that, when the data
result from application of a discerning switching controller,
the resulting estimate enjoys some nice properties even in the
presence of unknown disturbances and measurement noises.

To this end, recall that, when the unknown parameter vector
takes valueθ, the evolution ofz on the intervalI takes the
form z(t, t0, x0, ξ0, θ, σ). Then the setSσ(θ) of all possible
closed-loop data on the intervalI associated withθ and with
the switching signalσ can be written as

Sσ(θ) =

{

ẑ ∈ L2(I) : ẑ(·) = z(·, t0, x̂0, ξ̂0, θ, σ) on I

for somex̂0 ∈ R
nx , ξ̂0 ∈ R

nξ

}

.

Hence a natural approach for estimating the plant unknown
parameters is theleast-squaresone, which amounts to select-
ing the parameter vectorθ for which the distance between the
observed close-loop dataz on the intervalI and the setSσ(θ)
is minimal. Accordingly, the optimal least-squares estimate θ̂◦

can be obtained as

θ̂◦ ∈ argmin
θ̂∈Θ

δσ(z, θ̂) ; (8)

where

δσ(z, θ̂) = min
x̂0∈Rnx , ξ̂0∈R

nξ

∥

∥

∥
z(·)− z(·, t0, x̂0, ξ̂0, θ̂, σ)

∥

∥

∥

2,I
.

(9)
Concerning the computation of the distance (9), for any

possible feedback loop(P(θ), Cσ), let Φσ(t, t0, θ) denote its
state transition matrix and letWσ(θ) be its observability
Gramian on the intervalI, i.e.,

Wσ(θ) =

∫

I

Φσ(t, t0, θ)
⊤Λσ(t)(θ)

⊤Λσ(t)(θ)Φσ(t, t0, θ)dt .

Notice that, for any globally discerning switching controllaw,
the observability GramianWσ(θ) turns out to be positive
definite for anyθ ∈ Θ (otherwise there would be zero output
trajectories corresponding to non-zero state trajectories and
parameter identification would not be possible). Hence, in this
case, the minimization in (9) yields

δσ(z, θ̂) =

(
∫

I

∣

∣

∣

∣

z(t)− Λσ(t)(θ̂)Φσ(t, t0, θ̂)
(

Wσ(θ̂)
)−1

×

∫

I

Φσ(τ, t0, θ̂)
⊤ Λσ(τ)(θ̂)

⊤z(τ) dτ

∣

∣

∣

∣

2

dt

)1/2

.

For further considerations on how this quantity can be com-
puted in practice the interested reader is referred to Appendix
A of [16], where a similar problem is addressed.

From Definition 1, it is immediately clear that when a
globally discerning switching control law is adopted, for any



non null z the δσ(z, θ̂) is zero if and only ifθ̂ coincides with
θ, the true parameter vector.

Proposition 1: Let the switching controller (2) be globally
discerning and a discerning switching signalσ be adopted on
the observation intervalI. Further, let the observed dataz be
generated by the closed-loop system (3) from initial condition
χ0 = (x0, ξ0) 6= 0. Then,θ̂◦ = θ. �

While the above proposition illustrates the theoretical ef-
fectiveness of the leas-squares estimation criterion in ideal
conditions, in practice computation of the minimum in (8)
can be a quite challenging task when the setΘ is not finite.
In this case, a standard approach is themulti-model one
which amounts to considering only a finite number, say L,
of possible parameter values by constructing the finite set
ΘL = {θℓ, ℓ = 1, . . . , L} ⊆ Θ. Typically, ΘL is obtained
by sampling the setΘ with a given guaranteed densityε, so
that for anyθ ∈ Θ there exists at least oneθℓ ∈ ΘL such that
|θ − θℓ| ≤ ǫ. When such a condition is satisfied, we say that
ΘL is ǫ-densein Θ. Accordingly, the followingmulti-model
least squares criterioncan be used to estimate the unknown
parameter vectorθ

θ̂L ∈ arg min
θ̂∈ΘL

δσ(z, θ̂) (10)

as an alternative to (8).
Remark 1:Guidelines on how to choose anǫ-densefinite

covering forΘ can be found, for instance, in [18]-[20]. �

A. Properties of multi-model least-squares parameter estima-
tion

When analyzing of the properties of an estimation criterion,
either optimal as in (8) or approximate as in (10), it is
important to take into account also the effects of process
disturbances and measurement noises. With this respect, in
the following analysis we suppose that the plant state and
measurement equations are affected by additive disturbances
d andn, respectively,i.e.,

P(θ) :

{

ẋ = A(θ)x +B(θ)u + d
y = C(θ)x + n

(11)

with d ∈ R
nx andn ∈ R

ny . Then, it is an easy matter to verify
that a state space representation of the closed-loop system
(P(θ)/Cσ) takes the form

{

χ̇ = Ψσ(θ)χ+ Ξσ(θ) v
z = Λσ(θ)χ+ Γσ v

(12)

wherev = (d, n) and

Ξi(θ) =

[

I B(θ)Ki

0 Gi

]

, Γi =

[

0 Ki

0 I

]

,

for any i ∈ N and θ ∈ Θ. Further, thanks to linearity, the
closed-loop dataz can be decomposed as

z = z(n) + z(f) (13)

where z(f) is the forced response andz(n)(t) is the natural
response which can be written as

z(n)(t) = z(t, t0, x0, ξ0, θ, σ)

with z(t, t0, x0, ξ0, θ, σ) the same function of the previous
sections. Notice also that the forced responsez(f) can be
bounded in terms of the disturbance amplitude as follows.

Proposition 2: Let the setΘ be compact and let the ele-
ments ofA(θ), B(θ), andC(θ) depend continuously onθ.
Then, for anyI = [t0, t0 + T ], there exists a positive realγ
such that

‖z(f)‖2,I ≤ γ ‖v‖∞,I . (14)

�

Notice now that, by virtue of the triangular inequality, we
have

δσ(z
(n), θ̂)− ‖z(f)‖2,I ≤ δσ(z, θ̂) ≤ δσ(z

(n), θ̂) + ‖z(f)‖2,I
(15)

for any θ̂ ∈ Θ. Hence, the properties of the least-squares esti-
mateθ̂L can be investigated by deriving bounds onδσ(z

(n), θ̂).
In this respect, the following result is relevant.

Proposition 3: Consider the same assumptions as in Propo-
sition 1. Then, for anŷθ ∈ Θ,

[δσ(z
(n), θ̂)]2

=

[

χ0

−Vσ(θ, θ̂)χ0

]⊤

Wσ(θ, θ̂)

[

χ0

−Vσ(θ, θ̂)χ0

]

where

Uσ(θ, θ̂) =

∫

I

Φσ(τ, t0, θ̂)
⊤ Λσ(τ)(θ̂)

⊤

×Λσ(τ)(θ)Φσ(τ, t0, θ) dτ (16)

Vσ(θ, θ̂) =
(

Wσ(θ̂)
)−1

Uσ(θ, θ̂) (17)

Wσ(θ, θ̂) =

[

Wσ(θ) Uσ(θ, θ̂)
⊤

Uσ(θ, θ̂) Wσ(θ̂)

]

. (18)

�

For any pair of parameter vectorsθ, θ̂ ∈ Θ, the joint observ-
ability Gramian Wσ(θ, θ̂) provides information concerning
the degree of distinguishability between the two closed-loop
systems(P(θ), Cσ) and (P(θ̂), Cσ). In fact, whenever the
switching control lawCσ is globally discerning, the matrix
Wσ(θ, θ̂) is singular if and only ifθ = θ̂ (this is a straightfor-
ward consequence of Proposition 1). Then, we can derive the
following result.

Lemma 3:Let the same assumptions as in Proposition 1
hold. Further, let the setΘ be compact and let the elements of
A(θ), B(θ), andC(θ) depend continuously onθ. Moreover,
let the switching controller (2) be globally discerning anda
discerning switching signalσ be adopted on the observation
interval I. Then, there exist two classK functions3 α(·) and
β(·) such that

α(|θ − θ̂|) |χ0| ≤ δσ(z
(n), θ̂) ≤ β(|θ − θ̂|) |χ0| (19)

3Recall that a functionϕ : R+ → R
+ belongs to classK if it is continuous,

strictly increasing, andϕ(0) = 0.



for any θ̂ ∈ Θ. �

The importance of Lemma 3 is that it allows to bound the
distanceδσ(z(n), θ̂), pertaining to the noise-free dynamics, in
terms of the initial stateχ0 and of the distance between the true
parameter vectorθ and the candidate estimatêθ. In particular,
the left-most inequality in (19) ensures thatδσ(z

(n), θ̂) cannot
be small when the discrepancyθ − θ̂ is large, whereas the
right-most inequality ensures thatδσ(z(n), θ̂) nicely degrades
to 0 as the estimatêθ approaches the true valueθ. With respect
to the latter observation, from (19) it follows that whenΘL is
ǫ-dense inΘ there always exists a parameter vectorθℓ ∈ ΘL

such thatδσ(z(n), θℓ) ≤ β(ǫ) |χ0|. By exploiting inequalities
(15) and (19), the main result of this section can finally be
stated.

Theorem 3:Let the same assumptions as in Lemma 3 hold.
Further, letΘL beǫ-dense inΘ. Then, the estimatêθL obtained
as in (10) is such that

|θ − θ̂L| ≤ α−1

(

β(ε) +
2 γ ‖v‖∞,I

|χ0|

)

(20)

whereα−1(·) is the inverse ofα(·). �

Concerning the upper bound on the estimation error pro-
vided by inequality (20), it can be seen that the termβ(ε)
(which decreases the denser the samplingΘL is) accounts
for the fact that only a finite number of models is considered,
while the term2 γ ‖v‖∞,I/|χ0| can be seen as a sort of noise-
to-signal ratio, and indeed goes to0 as the disturbance‖v‖∞,I

goes to0.

V. A N EXAMPLE

In the following, a simple example is provided in order to
illustrate how identifiability of an uncertain parameter vector
can be achieved my means of switching control. To this end,
consider an LTI plant with system matrices

A(θ) =

[

0 1
0 −a

]

, B(θ) =

[

0
b

]

, C(θ) = [1 0] ,

with θ = (a, b), and let the switching controller be a purely
proportional one

u = −Kσ y .

Since, the plant transfer matrix isP (s, θ) = b/[s (s + a)],
each closed-loop characteristic polynomial takes the form
ϕi(s, θ) = s2 + a s+ bKi .

A. One uncertain parameter

Suppose first, for illustration purpose, that only the
gain b is uncertain whereasa is perfectly known, i.e.,
Θ = {(a, b) : a = a0, b ∈ [b1, b2]}. Notice that assumptionA1
holds whenevera0 6= 0. Hence, in this case, we can exploit
Lemma 1 and consider, for any pairb, b′ the two polynomials

ϕi(s, θ) = s2 + a0 s+ bKi ,

ϕi(s, θ
′) = s2 + a0 s+ b′ Ki .

As it can be easily verified, the Sylvester resultant of such
polynomials is

Ri(θ, θ
′) = K2

i (b− b′)2.

Then, it can be seen that ifKi 6= 0, the resultant is different
from 0 wheneverb and b′ are different. Hence, in this case,
a single proportional controller with non-null gain is globally
discerning and there is no need for considering a switching
controller in thatD1 = {K1 6= 0}. Similar considerations
hold whena is uncertain andb is perfectly known.

B. Two uncertain parameters

Suppose now that botha and b are uncertain, i.e.,
Θ = {(a, b) : a ∈ [a1, a2], b ∈ [b1, b2]}. Again, assumptionA1
holds provided that0 /∈ [a1, a2]. Straightforward calculations
allow to see that, in this case, the resultant of the two
polynomials

ϕi(s, θ) = s2 + a s+ bKi ,

ϕi(s, θ
′) = s2 + a′ s+ b′ Ki

is

Ri(θ, θ
′) = K2

i (b − b′)2 −Ki(b a
′ − a b′)(a− a′).

Hence, a single controller is not sufficient for global discerni-
bility as by choosing

(b− b′)2 = ε, = Ki ε (21)

one hasRi(θ, θ
′) = 0. In fact, sinceε can be arbitrarily small,

it is always possible to finda, b, a′, b′ so as to satisfy (21)
regardless of the amplitude of the uncertainty setΘ. Then
D1 = ∅.
On the contrary, it can be seen that a switching controller with
two modes,N = 2, is generically globally discerning. To see
this, notice that
[

R1(θ, θ
′)

R2(θ, θ
′)

]

=

[

K2
1 −K1

K2
2 −K2

] [

(b− b′)2

(b a′ − a b′)(a− a′)

]

and

det

[

K2
1 −K1

K2
2 −K2

]

= K1K2(K2 −K1).

If we chooseK1 andK2 such thatK1 6= K2, K1 6= 0, and
K2 6= 0 the above determinant turns out to be different from0.
As a consequence, in this case, the two resultantsR1(θ, θ

′) and
R2(θ, θ

′) can simultaneously vanish if and only if(b−b′)2 = 0
and (b a′ − a b′)(a − a′) = 0 which is equivalent toa = a′

and b = b′. Hence, we have thatD2 = {(K1,K2) : K1 6=
K2, K1 6= 0, K2 6= 0} which is generic and of full measure
in R

2.

VI. CONCLUSIONS

In this paper, we have addressed the problem of identifying
the parameters of an uncertain linear system by means of
switching control. It was shown that even when the uncertainty
set is not finite, parameter identifiability can be generically
ensured by switching among a finite number of linear time-
invariant controllers. In particular, the results show that an



upper bound on the number of controller modes needed for
parameter identifiability can be given in terms of the dimension
of the uncertainty set. The results also indicate that the seem-
ingly conflicting goals of ensuring parameter identifiability as
well as a satisfactory behavior of the feedback system can be
simultaneously accomplished by means of switching control.

Several practical aspects have also been discussed. In
particular, we have analyzed the properties of least-squares
parameter estimation in connection with the use of discerning
controllers, providing bounds on the worst-case parameter
estimation error in the presence of: i) finite covering of the
uncertainty set; and ii) bounded disturbances affecting the
process dynamics as well as measurement noises.

The results lend themselves to be extended in various
directions. Most notably, these results find a very natural
application in the context of switching control for uncertain
systems. In this respect, we envision that the analysis tools
introduced in this paper should lead to the development of
novel control reconfiguration algorithms capable of achieving
input-to-state stability for uncertain systems even when the
uncertainty set is described by a continuum.

APPENDIX

Proof of Lemma 1:Consider two distinct parameter vectors
θ, θ′ ∈ Θ and consider an indexi for which ϕi(s, θ) and
ϕi(s, θ

′) are coprime. Let the controllerCi be active on an
interval Ii = [t, t̄] ⊂ I. Consider now a nonzero quadruples
of vectors(x0, ξ0, x

′
0, ξ

′
0) representing possible initial states of

the two feedback loops(P(θ)/Cσ) and(P(θ′)/Cσ) at timet0.
Let (x, ξ, x′, ξ′) be the corresponding states that are reached
at time t, i.e., at the beginning of the time intervalIi, under
the switching lawσ. Suppose now the switching signalσ is
chosen so as to satisfy a dwell-time condition,i.e., in such a
way that there exists a lower boundτdwell on the time interval
between subsequent variations of the controller index. Then,
it is immediate to see that, under such a switching law, when
(x0, ξ0, x

′
0, ξ

′
0) 6= 0 then also(x, ξ, x′, ξ′) 6= 0. In fact, such

a state is reached after switching a finite number of times
between autonomous linear systems, i.e., the feedback loops,
and it is known that an autonomous linear system cannot reach
the zero state in finite time starting from a non-zero initial
state. Notice now that, under assumptionA1, coprimeness of
the polynomialsϕi(s, θ) andϕi(s, θ

′) implies observability of
the parallel system















[

χ̇
χ̇′

]

=

[

Ψi(θ) 0
0 Ψi(θ)

] [

χ
χ′

]

z̃ = [Λi(θ) − Λi(θ)]

[

χ
χ′

]

(see for instance Proposition 1 of [9]). Then, if we initialize
such a system as(χ(t), χ′(t)) = (x, ξ, x′, ξ′) 6= 0 at time
t, we have thatz̃ is different from 0 a.e. onIi = [t, t̄],
where “a.e.” stands for “almost everywhere”,i.e. everywhere
except on a set of zero Lebesgue measure. This, in turn, im-
plies thatz(t, t, x, ξ, θ, i) 6= z(t, t, x′, ξ′, θ′, i), or equivalently,
z(t, t0, x0, ξ0, θ, σ) 6= z(t, t0, x

′
0, ξ

′
0, θ

′, i), a.e. onIi = [t, t̄].

Then, by choosing a switching signalσ which satisfies a dwell-
time condition and is such that each controller modei is active,
at least, on an intervalIi ⊂ I of positive measure, the same
line reasoning can be repeated for any pairθ, θ′ ∈ Θ with
θ 6= θ′, thus concluding the proof. �

Proof of Theorem 1:Notice first that the resultantRi(θ, θ
′)

of the two polynomialsϕi(θ) and ϕi(θ
′) is a polyno-

mial (and hence analytic) function of the elements of
the matrices(A(θ), B(θ), C(θ)), (A(θ′), B(θ′), C(θ′)), and
(Fi, Gi, Hi,Ki). This, in turn, implies thatRi(θ, θ

′) is an
analytic function ofθ andθ′ (since the composition of analytic
functions is analytic). Notice now that, under the stated
hypotheses, Lemma 2 ensures that, for any pairθ, θ′ ∈ M
with θ 6= θ′, it is possible to find at least one set of matrices
(Fi, Gi, Hi,Ki) such thatϕi(θ) andϕi(θ

′) are coprime and,
hence,Ri(θ, θ

′) 6= 0. Recall, finally, that the setDN corre-
sponds to the set of switching controllers(Fi, Gi, Hi,Ki)i ∈
N for which the vector functioncol (Ri(θ, θ

′), i ∈ N ) is
different from 0 for any pairθ, θ′ ∈ M with θ 6= θ′. Then,
proceeding as in the proof of Theorem 2 of [17], we can
conclude thatDN is generic and of full measure onRNn̄ξ

wheneverN ≥ 2M + 1. �

Proof of Theorem 2:Let (Fi, Gi, Hi,Ki) be a controller for
which conditions (6) and (7) are satisfied withΠ(θ) continuous
in θ. Further, consider a closed ballB(ε) in the controller
parameter spaceRn̄ξ centered in(Fi, Gi, Hi,Ki) and with
radiusε and let

β(ε) =

max
(F,G,H,K)∈B(ε)

max
θ∈Θ̄

λmax

{

Ψi(θ)
⊤Π(θ) + Π(θ)Ψi(θ)

}

.

Note that, in view of the compactness of̄Θ and
of the continuity of Ψ(θ) and Π(θ), we have that
maxθ∈Θ̄ λmax

{

Ψi(θ)
⊤Π(θ) + Π(θ)Ψi(θ)

}

= β(0) < 0.
Moreover, under the considered hypotheses, it is easy to show
that β(ε) depends continuously onε (in this respect, notice
that Ψi(θ) is an affine function of the controller matrices
(Fi, Gi, Hi,Ki)). Hence, this implies the existence ofε > 0
such thatβ(ε) < 0, i.e., such that all the controllers in
B(ε) satisfies (7) with the same Lyapunov matrixΠ(θ). As
a consequence, the setG ⊂ R

n̄ξ of all controllers satisfying
(7) with the Lyapunov matrixΠ(θ) turns out to be open, and
GN will be open as well. Finally, whenN ≥ 2M + 1, the
setDN is generic and of full measure onRN n̄ξ and, hence,
GN ∩DN is non-negligible. �

Proof of Proposition 1: This is a straightforward con-
sequence of the fact that, when̂θ 6= θ, we cannot have
z(t) = z(t, t0, x̂0, ξ̂0, θ̂, σ) a.e. on I, since the observed
closed-loop data are generated asz(t) = z(t, t0, x0, ξ0, θ, σ)
with (x0, ξ0) 6= 0 and the control lawCσ is supposed to
be discerning. Hence,δσ(z, θ̂) > 0 wheneverθ̂ 6= θ, and
δσ(z, θ) = 0 since by hypothesisz ∈ Sσ(θ). �

Proof of Proposition 2:Recalling that the forced response
z(f) of the switching linear system(P(θ)/Cσ) can be written



as

z(f)(t) = Λσ(t)(θ)

∫ t

t0

Φσ(τ, t0, θ) Ξσ(τ)(θ) v(τ) dτ

+ Γσ(t) v(t) ,

it is an easy matter to see that

|z(f)(t)| ≤
∣

∣Λσ(t)(θ)
∣

∣

∫ t

t0

∣

∣Φσ(τ, t0, θ) Ξσ(τ)(θ)
∣

∣ dτ ‖v‖∞,I

+
∣

∣Γσ(t)

∣

∣ |v(t)| .

From the latter inequality, the bound in (14) can be readily
obtained since, by hypothesis, the switching signalσ contains
only a finite number of discontinuity points inI. �

Proof of Proposition 3:It follows from standard calculations
by replacingz(n)(t) with Λσ(t)(θ)Φσ(t, t0, θ) in the expres-
sion for the distanceδσ(z(n), θ̂). �

Proof of Lemma 3:In view of Proposition 3, we have that

δσ(z
(n), θ̂) ≤ β1(θ, θ̂)|χ0|

with

β2
1(θ, θ̂) =

λmax

{

[

I

−Vσ(θ, θ̂)

]⊤

Wσ(θ, θ̂)

[

I

−Vσ(θ, θ̂)

]

}

.

Notice thatβ1(θ, θ̂) depends continuously onθ and θ̂ and, in
addition,β1(θ, θ̂) = 0 if and only if θ = θ̂ since the switching
law is supposed to be discerning. Then, the classK function
β(ρ) can be taken equal tomaxθ,θ̂∈Θ, |θ−θ̂|≤ρ, β1(θ, θ). As for
the lower bound, notice that Proposition 3 implies also that
[

δσ(z
(n), θ̂)

]2

≥ λmin

{

Wσ(θ, θ̂)
}

(|χ0|
2 + |Vσ(θ, θ̂)χ0|

2)

≥ λmin

{

Wσ(θ, θ̂)
}

|χ0|
2 .

Sinceλmin

{

Wσ(θ, θ̂)
}

depends continuously onθ, θ̂ and is

equal to0 if and only if θ = θ̂ (again thanks to the discerni-
bility of the switching law), then a classK functionα(|θ− θ̂|)

can be found that satisfies the inequalityλmin

{

Wσ(θ, θ̂)
}

≥

α2(|θ − θ̂|) for any θ, θ̂ ∈ Θ. In particular,α(|θ − θ̂|) can be
constructed as in the proof of Theorem 2 of [21] to which the
reader is referred for additional details. �

Proof of Theorem 3:SinceΘL is ǫ-dense inΘ, there exists
at least onêθ∗ ∈ ΘL such that|θ − θ̂∗| ≤ ǫ. For such aθ̂∗,
one has

δσ(z, θ̂
∗) ≤ δσ(z

(n), θ̂∗) + ‖z(f)‖2,I

≤ β(|θ − θ̂∗|)|χ0|+ ‖z(f)‖2,I

≤ β(ǫ)|χ0|+ ‖z(f)‖2,I .

Since the estimatêθL is optimal inΘL, one has also

δσ(z, θ̂L) ≤ δσ(z, θ̂
∗) ≤ β(ǫ)|χ0|+ ‖z(f)‖2,I .

Further, by exploiting the lower bound in Proposition 3, we
can write

δσ(z, θ̂L) ≥ δσ(z
(n), θ̂L)− ‖z(f)‖2,I

≥ α(|θ − θ̂L|) |χ0| − ‖z(f)‖2,I .

Combining the two latter inequalities, we obtain

α(|θ − θ̂L|) |χ0| ≤ β(ǫ)|χ0|+ 2 ‖z(f)‖2,I

which can be written as (20), Proposition 2 and the fact that
any classK function is invertible. �
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