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Switching Control for Parameter Identifiability of
Uncertain Systems

Giorgio Battistelli and Pietro Tesi

Abstract— This paper considers the problem of identifying the parameters can be distinguished one from another. To this
parameters of an uncertain linear system by means of feedbic end, we introduce a notion afiscerning contral Parameter

control. The problem is approached by considering time-vaying  jqentifiability is then defined precisely in terms of disdem
controllers. It is shown that even when the uncertainty setd control

not finite, parameter identifiability can be generically ensired o ] o
by switching among a finite number of linear time-invariant In principle, parameter identifiability under feedback can
controllers. The results are shown to have several implicans, always be ensured by means op@bing signalinjected into
ranging from fault detection and isolation to adaptive and the plant as an additive perturbation input, superimpos it
Sgpems%ry cgntr;:l. Practical aspects of the problem are 80  4niro| variable [7], [8]. Nevertheless, in many contesisch
Iscussed In detalls. a solution should be avoided due to the inherent drawback
. INTRODUCTION of leading the feedback loop away from the desired behavior,
. . thus destroying regulation properties. This is especitalig
in Iii’:&?'g? dt:tz IF; a;amritbel;smo;fellcr)lnu?sciglt]tg;rr: Sfﬁsntg? mgr?tWhen the behavior of the feedback loop has to be monitored
inp P _prob ‘ong ng @ontinuously as in the contexts of fault/detection isolatand
interest in control engineering. This problem is often refd . : .
. e .~ adaptive control. Then, a natural question arises on whethe

to as the problem oparameter identifiability[1], [2]. This

. . o k not it is possible to guarantee parameter identifiabilitgch
paper considers the identifiability problem with respect tg}/ meags of a feegback cont?ol law, possibly desit;ene()j/ also

uncertain linear systems where the uncertainty set csn3|tsq satisfy other control objective®.g, stability in nominal
of a known bounded set possibly containing a continuum ?eo

) erating conditions). An affirmative answer to this questi
parameters. For this class of systems, we address the prob 9 ) g

. : e as given in [9], [10] for the special case of switching linea
of ensuring the identifiability of the unknown parameters ov%’ give (91, [10] P g
systemsj.e., when the uncertain parameters can take on only
the system by means of feedback controllers.

The motivations for studying this problem are immensa finite number of possible values. Specifically, in [9], [10]

For instance, parameter identifiability of a feedback loap c?[ 's shown that, under gite mild assumptions, for switghin

i . L ) linear systems almost all linear time-invariant (LTI) canlers
be of interest in the context dhult detection/isolatiorfor y (LT

: ) . . : ri\re discerning.
systems subjects to failures, in order to make it possible O general, an analogous result cannot be established in

prompt!y detgct any departure from thg npminal behavior a'agse of continuously parameterized systeires, when the
to precisely identify the parameter variation [3], [4]. Aher uncertainty set is not finite. The reason is inherently tethe

gpplication iscor_1tr0| reconf_igurationwherein t_he objec'Five fact that LTI controllers do not generally provide a suffitie
Is that of replacing the active controller (typically desigl level of excitation to the loop [7, Chapter 2]. The problem

n prder _to ensure robust stab|l|.ty. in-all the uncertm_ntxf loss of identifiability due to feedback can be overcome
region) with a different one providing enhanced (pos&blgy means of time-varying controllers, and one possibility
optimized) performance [5], [6]. Finally, on-line estirat ;

) is given by switching control [11], [12]. In this paper, we
of the uncertain parameters under feedback can be exploi (E? oo . .
when dealing with systems which naturally exhibit multipIi& loit this property to show that parameter identifiapian

) " . : S fact be generically ensured by switching among a finite
operating conditions for constructirgdaptive controllaws. g y y g 9

In fact st daoti trol techni v fo@ tnumber of LTI controllers (hereafter called modes), predd
f 1act, many existing adaptive control techniques rely that the number of different controller modes is sufficigntl

idea of certainty equivalencewhich amounts to applying at large. Specifically, an upper bound on the number of cortroll

g:g? f'i?ssﬁgt g;g&;hsaigm;o”g designed for the modsd tn’nodes needed for parameter identifiability is given in terms
[71, 18] .of the dimension of the uncertainty set. Moreover, we show

In this paper, the prpblem of parameter identifiability i at the result remains true even if we restrict the corgroll
approached by searching for feedback control laws under

hich closed-| behavi btained with diff A ¢ odes to be of a given fixed order and to satisfy certain
which closed-loop behaviors obtained wi iherent sys estability requirements. The latter result is perhaps ssirpy
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least-squares parameter estimation in connection witlhusee unknown parameter vectdr from observations of the plant
of discerning controllers. Specifically, in order to ensthe input/output data
practical applicability of the estimation technique, wede on
amulti-modelapproach wherein the estimate is selected among
a finite number of possible values of the parameter vecteherecol stands for column vector. In [10], the problem was
(obtained by suitably sampling the uncertainty set). Irs thaddressed in the special case when the&sés finite and it
context, a bound on the worst-case parameter estimation ewas shown that, under mild assumption, global discertybili
is derived, which accounts also for the presence of unknowan be ensured by means of a LTI controller. When the set
but bounded disturbances and measurement noises. Tleis l&t is not finite, a single LTI controller in general cannot
result is of special interest in the context ofulti-model ensure global discernibility by itself. Nevertheless, ab e
adaptive switching contro(MMASC) of uncertain systems shown in the following, it turns out that global discernityil
[9], [13]-[16], of which multi-model least-square paramet can be achieved by switching among a finite number of LTI
estimation constitutes one of the key elements. In thisetsp controllers. Accordingly, let the controller be describdeyl a
it has been shown in [9], [16] that, in the case of a finitewitching linear system
uncertainty set, by employing discerning controllers ip@s- i—F a
sible to construct MMASC schemes which enjoy quite strong { = Fel—Goy (2)
stability properties, namely exponential input-to-stttbility. u=H;§— Koy
Hence,_the results of the paper suggest that similar .stgabn‘u,\,hereg € R is the controller state and : Ry + A :=
properties could be achieved also in the case of continyoush o . N} is the switching signalj.e. the signal (right
parameterized uncertainty. This issue will be the subjéct gontinuous) which identifies the index of the active system
further research. at each instant of time. Hereafter, it will be supposed that t
The remainder of the paper is organized as follows. Witching signals is generated so as to have a finite number
Section II, we describe the framework under consideration. of discontinuity points in every finite time interval. Foryan
Section lll, the main results of the paper are given conogrmi; c A/, £, G;, H;, andK; are constant matrices of appropriate
the existence and genericity of switching controllers @nsu gimensions. In the sequel, we shall denote Gythe LTI
parameter identifiability. Section IV analyzes the prosrof system with state-space representat{dn, G;, H,, K;} and
multi-model least-squares parameter estimation. Examae hy ¢, the control law associated with the switching signal

z = col(u, y) .

finally given in Section V. . Denote byy = col(z, &) andz = col(u, y) the state and the
For the sake of clarity, all the proofs are reported in thgutput of the closed-loop syste{®(6)/C, ) resulting from the
Appendix section. interconnection of[{1) and(2) when the unknown parameter

Notation. Before concluding this section, let us introducgakes value# and the controller switching signal is. The
some notations and basic definitions. Given a veotarR"”, Corresponding dynamics can be therefore expressed as

|v| denotes its Euclidean norm. Given a symmetric, positive )

semi-definite matrixP, we denote by i, (P) and Ayax(P) {X =¥y (0) x 3)
the minimum and maximum eigenvalues Bf respectively. 2= Ao (0)x

Given a matrix M, M' is its transpose andM| = where, for anyie NV andf € ©,

[)\max(MTM)] Y2 ts spectral norm. Given a measurable time A(0) — B(0) K; C(0) B(0) H;
functionv : R* — R™ and a time interval C R, we denote i(0) = [ ~G;C(0) F, ] )
the £, and L., norms ofv(-) onZ as|jv|j2z = 1/ [ [v(t)]?dt _K;C(0) H,

and ||v]|oo,z = €ss sup.7|v(t)| respectively. WherX = RT, i0) = [ Cc(6) 0 ] :

we simply write ||v]|2 and ||v]|«. Finally, we let£2(Z) and . .
L..(T) denote the sets of square integrable and, respectiveFlilr,]a”y’ let z(t, to, 20, &, 6, o) denote the value at time of

(essentially) bounded time functions @n z°when the plant initial state at timg is xo, the controller
) initial state is¢y, the unknown parameter vector takes vaiue
Il. FRAMEWORK AND OBJECTIVES and the controller switching signal éis The following notions
. . .. can be introduced.
We consider a process described by an uncertain liné& 2€ " .
P y Definition 1: Let the process be as inl (1) and assume that

systemP(0) u andy are available for measurements. Further, consider two
i=A)x+ BO)u distinct parameter vectors 8’ € ©. A switching controller of
y=C0)z (1)  the form [2) is said to bed(¢’)-discerningif, for any time-
intervalZ := [to, to+71'), with T' > 0, there exists a switching

wherez € R™= is the stateu € R™ is the input,y € R™ signalo : Z — A such that

is the output, and € R™ is an unknown parameter vector o

belonging to the known bounded s@tC R™. 12(+ o, 0, &0, 8, 0) = 2(:, to, 29,0, 0", )l 2 # 0 (3)
The problem of interest is that of designing a controlldior all nonzero quadruples of vecto(so, &, z(, &) In ad-

C ensuring global discernibilityj.e., identifiability of the dition, the switching controller[{2) is said to bglobally



discerningif it satisfies condition[{(5) for all pairg6, ') of we are now interested in studying the properties of the sets
different parameter vectors. m D(6,0) andDy.
To this end, recall that coprimeness of the two polyno-

In words, when the switching controllef](2) i9,4')- . . .
: . : : o _— mials ¢;(s,0) and ¢;(s,0) is equivalent to the fact that
discerning and a discerning switching sigaak adopted, then g‘eir Sylvester resultantz;(0,8') (i.e. the determinant of

P(6) and’P(#") cannot give rise to the same observation daﬁ . N . . .
L — L e Sylvester matrix associated with the two polynomiads) i
when(, is in the feedback loop (unless the initial condition ifferent from 0. With this respect, we note th (6, ¢') de-

are null). As a consequence, under global discernibilitys i . .
possible to uniquely identify the unknown parameter veﬁtorpends polynomially on the elements of .the controller ”.‘a?'C
by observingz on the intervalr. (F;,G;, H;, K;). Hence, wh_en only a single pair of distinct
parameter vector§, §’ € © is taken into account, the set of
[1l. M AIN RESULTS controller matriceg F;, G,, H;, K;) for which R;(6,0") = 0,

In this section, we derive sufficient conditions for a switchwhich is the complement oD(¢,6"), is an algebraic set.
ing control to be discerning and we show that, under milnen as well known, only two situations may oceur: either
assumptions, almost every switching controller is discgyn £i(6,6') = 0 is always satisfied; oR;(6,6') = 0 is satisfied
provided that the numbe¥ of controller modes is sufficiently ON @ Set with zero Lebesgue measure. In this latter casesthe s
large. D(9,9') is genericl (since it is the complement of a proper

To this end, notice preliminarily that a necessary conditic?/9€braic set). The following lemma, proved in [9], prowsde
for the existence of a discerning controller is that all theufficient conditions for such a favorable situation to accu

pairs (A(f),C(¢)) are observable. In fact, the presence of | emma 2:[9] Let assumptionAl hold and consider two
unobservable dynamics would entail the existence of n@0-zgjistinct parameter vectord,¢’ € ©. Then a controller
trajectories of the closed-loop statecorresponding to zero (F;,G;, H;, K;) ensuring coprimeness of the two polynomials

trajectories of the closed-loop outputand, hence, for which ©i(s,0) and p;(s,#') exists if and only if the following two
it would be impossible to infer the plant mode. Accordinglygonditions hold:

the fO"OW'”Q assumption '_S considered. (a) the transfer functions dP(9) and P(6’) are different;

Al. The pair(A(6), C(¢)) is observable for alb < ©. (b) the characteristic polynomials of the uncontrollabéets
Let now ¢;(s,d) denote the characteristic polynomial of  of P(0) andP(¢’) are coprime.

the closed-loop systerfP(¢) /C;) resulting from the feedback |, 4qgition, when conditions (a)-(b) holds, for any given

interconnection of the plar® () with thei-th controller mode ., troller orderne the setD(6,6') is generic and of full

C;. The following result holds. measure o™ -

Lemma 1:Let assumptiorAl hold and suppose that, for Building on the above lemmas, under suitable regularity
any pair of distinct parameter vectofisd’ € O, there exist assumptions for the functions$(#), B(#), C(0), it is possible
at least one index < N such that the two closed-loopto derive conditions for the existence of a global discegnin
characteristic polynomialg; (s, ) and;(s,6’) are coprime. switching controller on the whole uncertainty €2tIn partic-
Then, the following properties are true. ular, by exploiting the results of [17], the following theon

(i) the switching controller[{2) is globally discerning; can be stated.

(ii) condition (8) holds for any switching signal such that  Theorem 1:Let the uncertainty se® be contained in an
each controller modé € N is active, at least, on an gpajytic manifold M c R™ of dimensionM and let the
interval Z; C 7 of positive measure. elements of the system matricds6), B(9), C(9) be analytic

= functions of§ on M. Further, let assumptioAl and con-

Let now 7i¢ denotes the total number of elements of thditions (a)-(b) of Lemmal2 hold or. Then, provided that

controller matrices F;, G;, H;, K;) when the controller order NNZﬁ 2M +1, the setDy is generic and of full measure on

is ng, and letD(6, 0’) C R™¢ be the set of controller matrids R - "

(Fi, Gy, Hi, K;) for which the two closed-loop polynomials A few remarks are in order. First of all, notice that Theorem
vi(s,0) andyp; (s, 0") are coprime. Further, for a given numbefll provides a bound on the numbaf of controller modes
N of controller modes, leDy C R be the set of switching that may be needed in order to ensure identifiability of the
controllers (F;, G;, H;, K;),i € N satisfying the hypothesis unknown parametef in ©. Such a bound is consistent with
of Lemmall {.e, such that for any pair of distinct parametethe results of [9], [10] where it is shown that when the set
vectorsd, 0’ € ©, there exist at least one indéxc N such © is finite, i.e., it is a0-dimensional manifold, one single
that the two closed-loop characteristic polynomigigs,f) LTI controller is generically discerning. As discussed I7],
and ¢;(s,¢') are coprime). Since, in view of Lemnid 1, althe boundN > 2M + 1 for parameter distinguishability

switching controllers belonging tB are globally discerning,

?Recall that a subset of a topological space is generic when it is open
IHere, with a little abuse of notation, we identify the quades and dense: for any: € X, then there exists a neighborhood sfcontained
(F;, Gy, Hy, K;) with an ng-dimensional vector containing all the elementsn X’; for any z ¢ X, then every neighborhood af contains an element of
of the matrices( F;, G, H;, K;) according to a given order.



is tight for general maps (in the sense that wh&®n < non-negligible, in the sense that it contains a ball of psit
2 M + 1 one can find counterexamples). However, for specifiadius inR* <, ]
cases, fewer controller modes can be sufficient. For instanc
when 6 is a scalar parameter, one can consider a single LTI
controller(F;, G;, H;, K;) and plot the root locus of the closed . ) ]
loop polynomial p;(s,#) as a function off. Then, global In this section, we discuss how the unknown parameter
discernibility is guaranteed provided that such a root $oclyectorf can be estimated from the closed-loop datan an
never cross itself. interval Z = [tg,to + T and we show that, when the data
Notice finally that the set of analytic functions consideired "esult from application of a discerning switching conteo|l

the statement of Theoreh 1 is quite general as it captureg m# resulting estimate enjoys some nice properties eveimein t
function classes of interese.g, polynomials, trigonometric Presence of unknown disturbances and measurement noises.

IV. MULTI-MODEL LEAST-SQUARES PARAMETER
ESTIMATION

away from singularities). takes valuef, the evolution ofz on the intervalZ takes_the
) N o form z(¢, o, z0,&0,0,0). Then the setS,(6) of all possible
A. Accounting for additional control objectives closed-loop data on the intervalassociated witl and with

In the foregoing analysis, only the global discernibilitthe switching signab can be written as
objective has been taken into account. However generally .
speaking, a control law should typically satisfy other coht S, (0) = {z € La(Z) : () = 2(-, to, %0, &0, 0,0) ON T
objectives, the most fundamental one being stability. With
this respect, suppose that we want the switching contradler for somez, € R"=, éo c R™ }
ensure closed-loop stability in a given sub&ebf © together
with global discernibility. For instance® can represent the Hence a natural approach for estimating the plant unknown
neighborhood of the nominal operating condition and thgarameters is thieast-square®ne, which amounts to select-
switching controller should be designed so as to ensureing the parameter vectdrfor which the distance between the
satisfactory behavior in nominal conditions as well as thebserved close-loop dataon the intervalZ and the se&, ()
possibility of promptly identifying any departure from theis minimal. Accordingly, the optimal least-squares est@ga
nominal behavior (e.g, for fault-detection and isolatiorfar can be obtained as
control reconfiguration purposes). An extreme case is when Ao ) -
© = O so that we want to design a robust and globally dis- 0" € arg ggg 00 (2,0); 8)
cerning switching controller ensuring stability for anysgible
operating condition (of course this may be possible or not R
depending on the of size of the uncertainty €9t 0s(2,0) = min
As well known, a sufficient condition to ensure stability Zo€R™s, LHER™S ")

under switching is the existence of a common LyapunOVConcerning the computation of the distange (9), for any

function. For example, if we consider a quadratic paramet%r : :
: T . ossible feedback loofP(9),C,), let ®,(t,t9,6) denote its
dependent Lyapunov functiar(y) = x " II(9), then in order state transition matrix and letV,(0) be its observability

for the closed-loop systen(iP(f),C,) to be stable for any ~ . the interval. |
¢ € © it is sufficient that there existd(¢) = I1(6) T such that ramian on te intervet, 1.€.

() > 0, ©6) WU(G):/Z<I>a(t,to,G)TAU(t)(G)TAU(t)(G)Q,(t,to,G)dt.

W;(0) TTI() + T1(0)W,(6) < 0, (7)  Notice that, for any globally discerning switching contralv,
for any i € N and for anyd € ©. When the set® the observability GramiariV,,(6) turns out to be positive

is compact, by means of simple continuity arguments, it f€finite for anyt € © (otherwise there would be zero output
immediate to show that, for any given smodilid), the set trajectories corresponding to non-zero state trajectosied

ere

2(-) — Z('ath@07éo’é’U)H2I

of controller matrices(F;, G;, H;, K;) satisfying [T) is an Parameter i(je_nti.fica_tion.would not be possible). Hencehis t
open subset oR™. Then, recalling that, by definition, anycase, the minimization iri{9) yields
non-empty open set contains a closed-ball of positive sgdiu A A A A\ 1
the following result on the existence of global discerning %7\% )= (/I 2(t) = Ao (0)Po (¢, 10, 0) (Wa(g))
controllers ensuring also stability can be readily stated. 9 1/2

Theorem 2:Let the same hypotheses of TheorEm 1 hold. / ®, (T, to,é)T AU(.,-)(é)TZ(T) dr dt> .
Further, let the se® be compact and suppose that there exists z
at least one controlle(F;, G;, H;, K;) for which conditions For further considerations on how this quantity can be com-
(®) and [T) are satisfied with the Lyapunov matiik#) puted in practice the interested reader is referred to Agigen
depending continuously ofi Then, wheneveN > 2 M +1, A of [16], where a similar problem is addressed.
the set of switching controller§F;, G;, H;, K;),i € N that From Definition 1, it is immediately clear that when a
jointly satisfies[(6) and{7) and ensures global disceritybig  globally discerning switching control law is adopted, farya



non null z the §,(z, 6) is zero if and only ifd coincides with where z(") is the forced response and")(t) is the natural
0, the true parameter vector. response which can be written as

Proposition 1: Let the switching controllef{2) be globally 20 (t) = z(t, to, o, &0, 0, 0)
discerning and a discerning switching sigenabe adopted on

L with z(t, tg, 20, &0, 0,0) the same function of the previous
the observation interval. Further, let the observed databe 2(t,to, 70, &0, 0, 0) P

S °’* sections. Notice also that the forced respon$§é can be
generated by the cIosed:Loop systém (3) from initial cdodlit 1, 1,6 in terms of the disturbance amplitude as follows.
Xo = (0, &) # 0. Then,0® = 6. " Proposition 2: Let the set® be compact and let the ele-
While the above proposition illustrates the theoretical ements of A(¢), B(¢), and C(#) depend continuously ofl.
fectiveness of the leas-squares estimation criterion @alid Then, for anyZ = [to,to + T, there exists a positive real
conditions, in practice computation of the minimum [ (8puch that '
can be a quite challenging task when the ®eis not finite. 1202z < 7 [|v]loc,z - (14)
In this case, a standard approach is thelti-model one
which amounts to considering only a finite number, say L
of possible parameter values by constructing the finite
©r = {0, ¢ = 1,...,L} C O. Typically, ©, is obtained R . .
by sampling the se® with a given guaranteed density so 00 (2™,0) = [|2]l2.7 < 65(2,0) < 6,(2™,0) +[|2]|2 2
that for anyd € © there exists at least orfe € ©;, such that . (15)
|0 — 6,] < . When such a condition is satisfied, we say thd@r any 6 € ©. Hence, the properties of the least-squares esti-
O is e-densein ©. Accordingly, the followingmulti-model Mated;, can be investigated by deriving boundsdytz"), 6).
least squares criteriortan be used to estimate the unknowH" this respect, the following result is relevant.

]
' Notice now that, by virtue of the triangular inequality, we

parameter vectof Proposition 3: Consider the same assumptions as in Propo-
A A sition[d. Then, for any € ©,
0, € arg min d,(z,0 10 n) A
L € arg join (2, 6) A0 g5, (20,42
-
as an alternative t418). — [ X0 ] W, (0,0) { X0 ]
Remark 1:Guidelines on how to choose anrdensefinite —Vo(0,0)x0 —V5(0,0)x0
covering for® can be found, for instance, in [18]-[20]. m where
) N T N T
A. Properties of multi-model least-squares parametemessti Us(0,0) = /Z‘I’U(T7 to,0) " Ao(r)(0)
tion X A g (r)(0) ®, (7, 0, 0) dT (16)
When analyzing of the properties of an estimation criterion . .\ 1 N
either optimal as in[{8) or approximate as in](10), it is Vo(0,0) = (WU(H)) Us(0,9) 17)
important to take into account also the effects of process . W-(6 U-(6.6)7
disturbances and measurement noises. With this respect, in Wo(0,0) = U, (6 é) Wa(é) : (18)

the following analysis we suppose that the plant state and .
measurement equations are affected by additive distuesanc For any pair of parameter vectats € ©, thejoint observ-

d andn, respectivelyj.e. ability Gramian WU(G,é) provides information concerning

P(O) i = A@®)z+B0O)u+d 1) the degree of distinguishability between the two closeaplo

Ny = COz+n systems(P(),C,) and (P(9),C,). In fact, whenever the

switching control lawC, is globally discerning, the matrix

with d € R™= andn € R™v. Then, it is an easy matter to verify |, (¢, §) is singular if and only if§ = § (this is a straightfor-
that a state space representation of the closed-loop systeard consequence of Propositioh 1). Then, we can derive the

(P(0)/C,) takes the form following result.
{ X = Y, (0)x+Z,(0)v (12) Lemma 3:Let the same assumptions as in Proposifibn 1
z = A (O)x+T,v hold. Further, let the seéd be compact and let the elements of
A(6), B(#), andC(#) depend continuously of. Moreover,
wherev = (d,n) and let the switching controlle{2) be globally discerning aad
I B K, 0 K, discerning switching signad be adopted on the observation
Ei(0) = { 0 G, ’ } , Ti= { 0 Il ] ; interval Z. Then, there exist two clas§ function§ «(-) and

B(-) such that
for anyi € N and@# € ©. Further, thanks to linearity, the 7 n) A A
closed)ilz)op data can be decomposed as y a(]0 —0)) [xo| < d,(2™,8) < (|0 — 8]) |xol (19)

¢ 3Recall that a functionp : RT — R+ belongs to clask if it is continuous,
z=2Mm 4 (13) strictly increasing, ang>(0) = 0.



for anyd € ©. m As it can be easily verified, the Sylvester resultant of such

The importance of Lemmia 3 is that it allows to bound thgolynommls 'S

distances, (2("), §), pertaining to the noise-free dynamics, in Ri(6,0) = K} (b—0)2
terms of the initial state o and of the distance between the tru
parameter vectof and the candidate estimaieln particular,
the left-most inequality in{19) ensures thigt(z(™, §) cannot
be small when the discrepandy— 6 is large, whereas the
right-most inequality ensures thag (z(™), é) nicely degrades
to 0 as the estimaté approaches the true valéeWith respect
to the latter observation, fror ({19) it follows that whén, is
e-dense inO there always exists a parameter vedlpe ©;,  B. Two uncertain parameters
such thats, (=™, 6,) < S(e) |xo|. By exploiting inequalities Suppose now that bothu and b are uncertain,i.e,
(I5) and [(I), the main result of this section can finally bg _ {(a,b) : a € [ar, as],b € [b1, b2} Again, assumptioAl
stated. holds provided that ¢ [a1, as]. Straightforward calculations
Theorem 3:Let the same assumptions as in Lenita 3 holallow to see that, in this case, the resultant of the two
Further, let®;, bee-dense irD. Then, the estimaté, obtained Polynomials
as in [20) is such that

q‘hen, it can be seen that ; # 0, the resultant is different
from 0 wheneverb and b’ are different. Hence, in this case,
a single proportional controller with non-null gain is gédly
discerning and there is no need for considering a switching
controller in thatD; = {K; # 0}. Similar considerations
hold whena is uncertain and is perfectly known.

0i(5,0) =5 +as+bK;,

N . N o 2 1 a3
0 —0] <a? (ﬁ(g) + %) (20) i(s,0)=s"+d s+ VK,
Xo is

wherea~!(-) is the inverse of(-). n Ri(6,6)) = K2 (b
Concerning the upper bound on the estimation error pro- e !
vided by inequality [[20), it can be seen that the tefi@@) Hence, a single controller is not sufficient for global disie

(which decreases the denser the samplihg is) accounts bility as by choosing

for the fact that only a finite number of models is considered, -t =c, =Kie 1)
while the term2 v ||v||w,z/|x0| can be seen as a sort of noise- ’ !
to-signal ratio, and indeed goes(i@s the disturbancg| .,z one hask;(#,0") = 0. In fact, since= can be arbitrarily small,
goes to0. it is always possible to findi,b,a’, b’ so as to satisfy[(21)

regardless of the amplitude of the uncertainty €etThen
V. AN EXAMPLE Dy = 0.

In the following, a simple example is provided in order t§&" the contrary, it can be seen that a switching controllén wi
illustrate how identifiability of an uncertain parametectae WO modes,N = 2, is generically globally discerning. To see

can be achieved my means of switching control. To this erfffiS; notice that

V)~ K;(ba —ab)(a—d).

consider an LTI plant with system matrices Ri(0,0) ] [ K} —-K; (b—10')?

01 0 Ry(60,0") | — | K2 —K» (ba' —al')(a—a)

A(G) = _ ; B(G) = ; 0(9) = [1 O] ’ and
0 a b K2 K
det | % ' | = Ki Ko(Kz — Ky).
with 6 = (a,b), and let the switching controller be a purely ¢ { K; —K } 1 KoK )
proportional one If we chooseK; and K> such thatK; # K, K; # 0, and
u=-—Rsy. Ky # 0 the above determinant turns out to be different fi@m

As a consequence, in this case, the two resultBn(s, 6) and

(6,6") can simultaneously vanish if and only(iff—5")? = 0

d(ba’ —ab’)(a —a’) = 0 which is equivalent taz = o’

andb = ¥'. Hence, we have thab, = {(K1,K2) : K; #

Ko, K1 # 0, K5 # 0} which is generic and of full measure

in R2.

Suppose first, for illustration purpose, that only the

gain b is uncertain whereas: is perfectly known, i.e., VI. CONCLUSIONS

© = {(a,b) : a = ap, b € [by, ba]}. Notice that assumptioAl In this paper, we have addressed the problem of identifying

holds whenevern # 0. Hence, in this case, we can exploithe parameters of an uncertain linear system by means of

Lemma 1 and consider, for any pairb’ the two polynomials switching control. It was shown that even when the uncetain

set is not finite, parameter identifiability can be genelycal

@i(s,0) = s> +aps+bK;, ensured by switching among a finite number of linear time-
©i(s,0") = S+ars+ b K;. invariant controllers. In particular, the results showttlaa

Since, the plant transfer matrix iB(s,0) = b/[s (s + a)], R
each closed-loop characteristic polynomial takes the forgﬁ
0i(s,0) =s>+as+bK;.

A. One uncertain parameter



upper bound on the number of controller modes needed foinen, by choosing a switching sigralvhich satisfies a dwell-
parameter identifiability can be given in terms of the dimi@ms time condition and is such that each controller mogeactive,
of the uncertainty set. The results also indicate that tleense at least, on an interval; C Z of positive measure, the same
ingly conflicting goals of ensuring parameter identifigiilis line reasoning can be repeated for any paif’ € © with
well as a satisfactory behavior of the feedback system can e ¢, thus concluding the proof. ]
simultaneously accomplished by means of switching control proof of Theorem 1Notice first that the resultari; (6, ¢')
Several practical aspects have also been discussed.qinthe two polynomials¢;(0) and ¢;(#’) is a polyno-
particular, we have analyzed the properties of least-&juamial (and hence analytic) function of the elements of
parameter estimation in connection with the use of discernithe matrices(A(6), B(9),C(0)), (A(#'), B(¢),C(#)), and
controllers, providing bounds on the worst-case parametgr, G, H,, K;). This, in turn, implies thatR;(6,6’) is an
estimation error in the presence of: i) finite covering of thgnalytic function o and¢’ (since the composition of analytic
uncertainty set; and ii) bounded disturbances affectirg thunctions is analytic). Notice now that, under the stated
process dynamics as well as measurement noises. hypotheses, Lemma 2 ensures that, for any paif € M
The results lend themselves to be extended in varioysth ¢ £ ¢/, it is possible to find at least one set of matrices
directions. Most notably, these results find a very naturgl; G, H;, K;) such thaty;(d) andy,(#’) are coprime and,
application in the context of switching control for uncénmta hence,R;(0,0') # 0. Recall, finally, that the seDy corre-
systems. In this respect, we envision that the analysisstoghonds to the set of switching controlldis;, G;, H;, K; )i €
introduced in this paper should lead to the development g&f for which the vector functioncol (Ri(0,0"),ie N) is
novel control reconfiguration algorithms capable of acinigv different from 0 for any pair6, ¢’ € M with 6 # ¢'. Then,
input-to-state Stability for uncertain systems even whiae tproceeding as in the proof of Theorem 2 of [17]' we can
uncertainty set is described by a continuum. conclude thatDy is generic and of full measure dR™"<
APPENDIX wheneverN > 2 M + 1. n

. - Proof of Theorem 2tet (F;, G;, H;, K;) be a controller for
Proof of Lemma 1Consider two distinct parameter vector%vhich conditionsl{B) and{7) are satisfied willf6) continuous
6,0' € © and consider an index for which ¢;(s,6) and

, . . in 0. Further, consider a closed bali(¢) in the controller
@i(s,0") are coprime. Let the controlle?; be active on an arameter spac&"< centered in(F}, Gy, Hy, K;) and with
interval Z; = [t,¢] C Z. Consider now a nonzero quadrupleg b e

of vectors(xg, &, x(, &) representing possible initial states mrad|u55 and let
the two feedback loop&P(6)/C,) and(P(8')/C,) at timeto.

Let (z,¢,2/,¢") be the corresponding states that are reached () =

at timet, i.e,, at the beginning of the time intervd}, under
the switching lawo. Suppose now the switching signalis
chosen so as to satisfy a dwell-time conditiae,, in such a _
way that there exists a lower boungl,., on the time interval Note that, in view of the compactness o® and
between subsequent variations of the controller indexnTh&f the continuity of W(f) and II(9), we have that

it is immediate to see that, under such a switching law, wh&#Xsco Amax { ¥:(0) "T1(0) + II(0)T;(0)} = B(0) < 0.
(20, &0, ), &) # 0 then also(z, &, 2/, ') # 0. In fact, such Moreover, under the con5|dered hypptheges, itis easy o sho
a state is reached after switching a finite number of timéaat 5(c) depends continuously on (in this respect, notice
between autonomous linear systems, i.e., the feedbacls,lodpat ¥:(¢) is an affine function of the controller matrices
and it is known that an autonomous linear system cannot reaéh, Gi, Hi, Ki)). Hence, this implies the existence of> 0

the zero state in finite time starting from a non-zero initiguch thatg(e) < 0, i.e, such that all the controllers in
state. Notice now that, under assumptidh, coprimeness of B(¢) satisfies [(7) with the same Lyapunov matiix6). As
the polynomialsp; (s, ) andy; (s, 8') implies observability of @ consequence, the sgtC R™< of all controllers satisfying

Amax {0 (0) TTI(0) + T1(0)T;(0)) .
(F.GH R)eB(e) 9e6. {W(0) 'TI(O) + THO)T:(6) }

the parallel system (@) with the Lyapunov matriXI(6) turns out to be open, and
. GN will be open as well. Finally, whedv > 2M + 1, the

[ X/ } — [ v;(6) 0 } [ X/ } setDy is generic and of full measure dk" "¢ and, hence,
X 0 Wy(6) X GN N Dy is non-negligible. .

z = [Ai(6) —Ai(9)][ X ] Proof of Proposition 1:This is a straightforward con-

X sequence of the fact that, wheh # 6, we cannot have

(see for instance Proposition 1 of [9]). Then, if we initgli 2(t) = =z(t to,%0,&0,0,0) a.e. onZ, since the observed
such a system aéx(t),x'(t)) = (z,¢,2/,€') # 0 at time closed-loop data are generatedz4$) = z(¢, to, 2o, {0, 0, 0)

t, we have thatz is different from 0 a.e. onZ; = [t,{], With (z0,&) # 0 and the control lawC, is supposed to
where “a.e” stands for “almost everywheré®. everywhere be discerning. Hencej,(z,0) > 0 wheneverf # ¢, and
except on a set of zero Lebesgue measure. This, in turn, ifa{z,¢) = 0 since by hypothesis € S, (0). m

plies thatz(t,2,z,£,0,1) # 2(t,1, g’,é’,@’,i), or equivalently,  Proof of Proposition 2:Recalling that the forced response
2(t, to, w0, 0,0, 0) # 2(t,to, xh, &5, 0,4), a.e. onZ; = [t,#]. 2" of the switching linear syster(P(6)/C,) can be written



as

Further, by exploiting the lower bound in Proposition 3, we

. can write

20(t) = Aoy (0) | Po(T,t0,0) Ep(ry (0) v(7) dr
to
+

Loy v(t),

it is an easy matter to see that

t

20(0)] < Ao 6)] / 1@ (7, 0, 0) Zo ) (0)] dr [[0]]oorz
0
Lo To0)] -

From the latter inequality, the bound i {14) can be readily
obtained since, by hypothesis, the switching signabntains [y
only a finite number of discontinuity points . ]
Proof of Proposition 3it follows from standard calculations
by replacingz™)(t) with A, (0) ®,(t,to,0) in the expres-
sion for the distancé, (=™, d). .
Proof of Lemma 3in view of Proposition 3, we have that

[2]

(3]

N . (4]
55(",6) < B1(6.)Ixol o
with (6]
ﬂ%(ov é) = 7
I ! . I

max N o 9, 9 ~ [8]
[ vt | 00| il | B
Notice that3; (0, 6) depends continuously ahandd and, in ol

addition, 31 (0, 0) = 0 if and only if § = 6 since the switching
(11]

law is supposed to be discerning. Then, the clasiinction
B(p) can be taken equal taax, 5 0—d|<p, P1(0; 0). Asfor 1
the lower bound, notice that Proposition 3 implies also that

(3. 00,0)] 2 M {1 0.0)} (ol? + 1V 0,000y ™

> Amin {W,,(e,é)} o2 [14]

Since Amin {Wg(e,é)} depends continuously ofy 6 and is [15]
equal to0 if and only if 6 = 6 (again thanks to the discerni-
bility of the switching law), then a clask functiona(|0 —6)|)
can be found that satisfies the inequality;,, {WU(G, é)} >
a2(|0 — 4)) for any 0,0 € ©. In particular,a(]§ — 6]) can be
constructed as in the proof of Theorem 2 of [21] to which the
reader is referred for additional details. (18]
Proof of Theorem 3Since®;, is e-dense in®, there exists

at least ong* € O, such that|d — 6*| < e. For such &*,
one has

[16]

[17]

(19]

d5(2,0%)

IN

85 (z™,0%) + 12|22
B(10 = 0*)Ixo| + 1122,z
B(e)lxol + 122,z -

[20]

VANVAN

Since the estimatéL is optimal in®y, one has also [21]

30 (2,01) < 65(2,6") < B(e)Ixol + [|127]|2,z -

o(2™,01) — |2O|2.2
(|0 = 0z]) Ixol — 12D 2.z.

50(21 9L)

AVARLY,

Combining the two latter inequalities, we obtain

(|6 = 0L]) [xol < B(e)|xol +2|27|2,z

which can be written ag (20), Proposition 2 and the fact that
any classK function is invertible. ]
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