
A classification–based approach to the optimal control
of affine switched systems*

Giorgio Manganini, Luigi Piroddi, and Maria Prandini1

Abstract— This paper deals with the optimal control of
discrete–time switched systems, characterized by a finite set
of operating modes, each one associated with given affine
dynamics. The objective is the design of the switching law so
as to minimize an infinite–horizon expected cost, that penalizes
frequent switchings. The optimal switching law is computed off–
line, which allows an efficient online operation of the control
via a state feedback policy. The latter associates a mode to
each state and, as such, can be viewed as a classifier. In
order to train such classifier–type controller one needs first
to generate a set of training data in the form of optimal state–
mode pairs. In the considered setting, this involves solving a
Mixed Integer Quadratic Programming (MIQP) problem for
each pair. A key feature of the proposed approach is the
use of a classification method that provides guarantees on the
generalization properties of the classifier. The approach is tested
on a multi–room heating control problem.

I. INTRODUCTION

In this paper we consider the optimal control of discrete–
time switched affine systems, which are hybrid systems
where the discrete state identifies the mode of the system
and the continuous state is governed by mode–specific affine
dynamics. The objective is to compute a state–feedback
switching law that minimizes a cost function over an infinite
time horizon.

A general framework for the optimal control of switched
systems was established by [1] in the context of hybrid
systems. For the class of switched affine systems with
no continuous input, [2] showed that the optimal control
formulation leads to a two-point boundary value problem,
and a general solution is difficult to obtain both analyti-
cally and numerically. A state–space discretization technique
was adopted in [3] to solve the Hamilton–Jacobi–Bellman
equations and determine the optimal feedback control law.
One way to reduce the deriving computational complexity
consists in performing optimal control decisions over a
(short) receding horizon, as in Model Predictive Control
(MPC) [4]. Alternatively, [5] dealt with positive switched
systems and used piecewise co–positive Lyapunov functions
to obtain suboptimal switching rules with a guaranteed level
of performance, still retaining a full horizon for the decisions.

Optimal feedback laws are designed for the particular case
where the continuous component has linear dynamics and the
cost function is piecewise-quadratic, under the assumption
that the switching sequence has finite length and that the
mode sequence is fixed, so that only the switching instants
must be optimized [6]. Later, in [7] the approach is extended
to affine dynamics and the optimal control problem is solved

*The authors gratefully acknowledge financial support by the European
Commission project UnCoVerCPS under grant number 643921.

1Giorgio Manganini, Luigi Piroddi, and Maria Prandini are with the Di-
partimento di Elettronica, Informazione e Bioingegneria, Politecnico di Mi-
lano, via Ponzio 34/5, 20133 Milano, Italy. {giorgio.manganini,
luigi.piroddi,maria.prandini}@polimi.it

with both the switching instants and the mode sequence
as decision variables. Finally, in [8] an infinite number of
switchings is allowed.

A similar setting is studied here, albeit circumventing
some of the limitations of the mentioned approaches. In
particular, an infinite horizon problem is analyzed that allows
for infinite switchings and, at the same time, encompasses
switching costs. Combining all these features together ap-
pears to be a challenging problem. For example, [7] considers
switching costs, but only for finite switching sequences.
Switching costs are handled also in [9], using an ad–hoc
heuristic, but only for a finite time horizon control problem.

Additionally, the presented approach removes the require-
ment of the discretization of the state space, which is a
well-known source of computational complexity even for
relatively small scale systems. Also, differently from most
of the works in the literature, we adopt a discrete–time
framework. This can be viewed as a way of implicitly
enforcing a certain minimum dwell time between consecutive
switchings, thus avoiding chattering phenomena.

Similarly to [10], we employ Mixed Integer Quadratic
Programming (MIQP) to determine the optimal control pol-
icy. However, while in [10] MIQP problems are repeatedly
solved on–line to determine the optimal control sequence
at each time instant (only the first control is applied every
time, according to the receding horizon strategy), MIQP is
here used for the off–line computation of the switching law.
When online optimization is not viable, [11], [12] suggest a
multi–parametric programming approach for solving a finite–
horizon hybrid optimal control problem in a state–feedback
form. Notice, however, that the solution proposed in these
works is not applicable here, since it refers to a continuous
control input rather than the mode switching signal.

In order to transfer the computational load off–line, we in-
troduce a classification-based algorithm that (approximately)
computes the optimal feedback policy as a map from the
state space onto the control input space, given by the set of
operating modes for the system. The key idea is to represent
such a policy by means of a (multi–class) classifier: each
operating mode is viewed as a distinct class and states are
instances to be classified. The use of classifiers for repre-
senting control policies has been recently suggested in the
reinforcement learning literature in combination with policy
iteration schemes [13]–[16]. For instance, [13] formulates the
policy improvement step as a classification problem. For each
state in a training set, a state–action pair is generated based
on the estimated value function associated to the current
policy. Then, the updated policy is obtained as a classifier
trained over the given state-action pairs.

Rather than resorting to a policy iteration scheme, we here
perform a direct policy search by first generating a data-set of
optimal state–input pairs, and then training a classifier over

these data to provide an (approximately) optimal closed-loop
control policy. In the case of systems affine in the state and
quadratic cost, the data-set generation reduces to solving a
convex optimization problem per initial state. To address the
classification task, we employ the Guaranteed Error Machine
(GEM) classifier [17], which provides theoretical guarantees
on the probability of classification errors. Moreover, this
error probability can be tuned by the user by adequately
setting some parameters entering the classifier definition.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this paper we consider the class of hybrid systems, com-
monly denoted as switched systems, with affine dynamics:

x(k + 1) = Aσ(k)x(k) + fσ(k), σ(k) ∈ I, (1)

where x(k) ∈ Rn is the continuous state, σ(k) ∈ I =
{1, 2, . . . ,m} is the switching signal that selects the mode of
the system. Each mode i ∈ I identifies a matrix Ai ∈ Rn×n
and a vector fi ∈ Rn characterizing the system dynamics.
The switching signal at time k may depend on the previous
mode of the system, identified by σ(k−1). To model this, we
add the discrete variable q(k) ∈ I that specifies the previous
active mode:

q(k + 1) = σ(k). (2)

Note that (1-2) can be viewed as the equations of a
nonlinear stationary system of the form:

z(k + 1) = F (z(k), σ(k)), (3)

with state z = [xT q]
T and control input σ.

With reference to system (1), a control policy is a rule
that selects which mode to activate at each time instant, so
as to achieve a desired behavior of the controlled system.
The control objective can be formulated, e.g., in terms of a
discounted cost over the time horizon [0, L]:

JL(x(0), q(0)) =

L−1∑
k=0

γkg(x(k), q(k), σ(k))

+ γLgL(x(L), q(L)), (4)

where x(0) is the initial state and q(0) is the initial mode,
γ ∈ (0, 1) is the discount factor, g(x(k), q(k), σ(k)) ∈ R+

is the cost per stage (assumed stationary for simplicity), and
gL(x(L), q(L)) is the terminal cost. In the sequel, the cost
per stage includes a state tracking term and a switching cost:

g(x(k), q(k), σ(k)) =

(x(k)− xref)
T
Q(x(k)− xref) +Hq(k),σ(k), (5)

where xref is some reference set point and Q = QT � 0
is a given positive semi-definite weighting matrix. Parameter
Hi,j , i, j ∈ I, identifies the cost incurred for switching from
mode i to mode j, and satisfies Hi,j ≥ 0 (Hi,j = 0 when
i = j). The desired trade–off between the two objectives can
be enforced by suitably setting Q and Hi,j , i, j ∈ I. Finally,
the terminal cost is set to

gL(x(L), q(L)) = (x(L)− xref)
T
Q(x(L)− xref). (6)

If the time horizon length L grows to infinity, the cost
function becomes:

J∞(x(0), q(0)) =

∞∑
k=0

γkg(x(k), q(k), σ(k)), (7)

and the terminal cost disappears.
The overall cost depends on the sequence σ(0), . . . ,

σ(L− 1) of control input values. A control sequence is
optimal (denoted σ∗) for a given initial state x(0) and mode
q(0) if it minimizes JL(x(0), q(0)). A control policy π is
a (possibly time-varying) map from the state (x, q) to σ. A
control policies can be defined either in open-loop or closed-
loop. Open-loop policies select the control input (σ(k)) based
on the initial state:

σ(k) = πol(x(0), q(0), k),

i.e. without any direct measurement of the effects of past
inputs. On the other hand, closed-loop policies select the
control input based on the knowledge of the current state:

σ(k) = πcl(x(k), q(k), k).

A control policy is optimal (denoted π∗) if it provides the
optimal control sequence for all initial states. In particular,
it must hold that π∗cl(x, q, 0) = π∗ol(x, q, 0) for every (x, q),
whereas for k > 0 the two policies provide the same control
input sequence only in the absence of disturbances and
model uncertainty. A closed-loop policy implementation of
the optimal control sequence is preferable, in order to deal
with possible uncertainties affecting the real system.

In this paper, we focus on the infinite–horizon case, for
which the optimal control design and implementation are
easier. Indeed, since the system is stationary and the cost
function has a time–invariant cost per stage, it turns out
that there exists an optimal closed–loop stationary control
policy, [18]. Denoting such policy as π̄∗cl, it holds that
π̄∗cl(x, q) = π∗cl(x, q, k), ∀k ≥ 0. A consequence of this is
that π̄∗cl(x, q) = π∗ol(x, q, 0). In principle, then, one could
compute the optimal closed–loop policy by calculating the
optimal input at time k = 0 according to the open–loop
policy for all possible (initial) states.

In practice, the calculation of the optimal open–loop policy
is approximated over a finite horizon [0, L]. Furthermore,
only a finite number of initial states can be considered, so that
the desired map must be constructed by generalization over
the whole state space based on a finite number of samples.
Both these sources of approximation can by controlled by the
user, by extending the time horizon length L and exploiting
the generalization error guarantees of the GEM classifier.

III. CLASSIFICATION-BASED TWO-STAGE ALGORITHM

In this section we introduce an algorithm to compute off-
line a closed-loop control policy π̄∗cl that minimizes (7).
The computed optimal policy is then stored in memory and
applied on–line. π̄∗cl is a map from the (hybrid) state to the
(discrete) switching signal. For convenience purposes we
represent it as a collection of functions of the continuous
state component x, indexed by the mode q: {π̄∗cl(·, q) : Rn →
I}q∈I . For a given q ∈ I, the switching policy π̄∗cl(·, q) is a
piece–wise constant function of x.

For each q ∈ I, the algorithm computes the control policy
π̄∗cl(·, q), in two stages:

1) Data–set generation stage: a data-set EqN of (x, σ∗)
pairs is generated, where x is drawn from µx and σ∗
is the optimal switching mode associated to (x, q);

2) Learning stage: a classifier is trained over EqN to
provide (an approximation of) the optimal closed–loop
policy π̄∗cl(·, q).

A pseudo-code of the algorithm is provided in Algorithm 1.

Algorithm 1 Classification-based two-stage algorithm
Input: µx (initial state distribution)

N (size of the training set)
1: for all q ∈ I do
2: EqN ← ∅
3: for i = 1 to N do
4: Draw x(i) ∼ µx
5: σ∗(i) ← DATAGEN(x(i), q)

6: EqN ← E
q
N ∪ {(x(i), σ∗(i))}

7: end for
8: π̄∗cl(·, q)← LEARN(EqN)
9: end for

Output: Policy π̄∗cl

The next two sub–sections explain in detail the two main
stages of the algorithm.

A. Data-set generation: the DATAGEN subroutine
To generate the data–set EqN of training examples associ-

ated to mode q ∈ I, we solve the following optimization
problem for any given initial state x(0) = x0 extracted at
random according to µx:

min
σ(0),...,σ(L−1)

JL(x(0), q(0))

subject to:
x(k + 1) = Aσ(k)x(k) + fσ(k), k = 0, . . . , L− 1

q(k + 1) = σ(k), k = 0, . . . , L− 1

x(0) = x0, q(0) = q

(8)

where JL is defined as in (4). Finally, the pair (x0, σ(0)) is
stored in EqN .

If L is sufficiently large, the finite-horizon cost is a good
approximation of the infinite horizon cost and the value
obtained for the control input at time 0 approximates the
optimal one for the infinite horizon case.

This optimization problem can be efficiently solved via
MIQP [19]. To this end, it is useful to reformulate system (1)
as a Mixed Logical Dynamical (MLD) system [10]. An
MLD systems is described by affine dynamic equations
subject to linear mixed-integer inequalities involving both
continuous and binary variables.

The first step in the reformulation is the introduction of
the binary input variables δi(k) ∈ {0, 1} to model the choice
of the control input at time k. More precisely, we have

δi(k) = 1⇔ σ(k) = i, k = 0, . . . , L− 1, i ∈ I
m∑
i=1

δi(k) = 1, k = 0, . . . , L− 1, (9)

where condition (9) implements the exclusive-or constraint
that the control input can take only one value at any time.

System (1) can now be rewritten as:

x(k + 1) =

m∑
i=1

[Aix(k) + fi] δi(k).

This equation is nonlinear, since it involves products between
states and logical inputs. However, introducing the auxiliary
continuous variables zi(k) ∈ Rn:

zi(k) = [Aix(k) + fi] δi(k), ∀i ∈ I (10)

and setting x(k + 1) =
∑m
i=1 zi(k), one can transform con-

straint (10) into a set of mixed-integer linear inequalities by
using the so-called “big-M” approach [10]. More precisely,
for each i ∈ I we can set:

zi(k) ≤Mδi(k)

zi(k) ≥ mδi(k)

zi(k) ≤ Aix(k) + fi −m(1− δi(k))

zi(k) ≥ Aix(k) + fi −M(1− δi(k))

(11)

where M ∈ Rn and m ∈ Rn are an upper and lower bound
on the state vector x, respectively.

The switching cost in (5) can be reformulated as a
quadratic function of the decision variables, by expressing
the state variable q(k) in a binary form, i.e. by introducing
qδ(k) ∈ {0, 1}m such that qδi (k) = 1 if q(k) = i and 0
otherwise:

Hq(k),σ(k) =


qδ1(k)

...
qδm(k)


T


0 H12 . . . H1m

H21 0 . . . H2m

...
...

. . .
...

Hm1 Hm2 . . . 0



δ1(k)

...
δm(k)


(12)

In view of expressions (10-12) problem (8) is reformulated
as a MIQP, which can be solved via standard solvers like
CPLEX [20].

Remark 3.1: The main diagonal of matrix H in (12)
contains all zero elements and, therefore, leads to a non–
convex quadratic function of the control variables, which
cannot be efficiently solved by a MIQP solver. However, the
cost function can be convexified by adding a correction term
that is constant with respect to the optimization variables
and hence does not change the optimal switching sequence
(details are omitted for brevity).

B. The GEM classification machine: the LEARN procedure
The LEARN procedure consists in training a classifier on

the data gathered as explained in the previous subsection. For
this purpose, we employ the GEM [17] algorithm, in view of
the guarantees it provides on the probability of classification
errors. These guarantees can be used to prescribe a desired
level of the generalization error and determine the number N
of training data to be calculated by the DATAGEN procedure,
or, alternatively, to calculate the error probability associated
to a given size N of the training data–set.

Let x ∈ Rd be a vector of measured attributes and y =
y(x) ∈ Y = {1, . . . ,m} the corresponding (discrete) class
label. A classifier ŷ = ŷ(x) provides an estimate for the class
y of x. It errs on x if y(x) 6= ŷ(x). Differently from most
other classifying machines, the GEM returns an augmented
class set Y ∪{unknown}, that includes an unknown label,
expressing the inability to classify the sample.

Now, let EN = {(x1, y1), . . . , (xN , yN)} be a data-set
of N training samples, where x1, . . . , xN are independently
extracted according to a probability distribution µ and yi =
y(xi). The probability of error (or generalization error) of a
classifier ŷN (·) trained on these data is defined as

PE(ŷN) = µ (ŷN (x) ∈ Y ∧ y(x) 6= ŷN (x)) ,

that is the probability that an output is issued and that the
output is not correct. Given that ŷN (·) is derived based on
the set EN of randomly sampled training data, PE(ŷN) is a
random variable whose distribution depends on the unknown
data generation mechanism (µ, y(·)).

Theorem 1 in [17] provides a formal expression for
the probability distribution FPE(ε) := µN {PE(ŷN) ≤ ε},
where 1− ε, with ε ∈ (0, 1), is the accuracy level:

FPE(ε) ≥
N−1∑
i=k

(
N − 1

i

)
εi(1− ε)N−1−i, (13)

where the right hand side is a Beta(k,N − k) distribution,
that represents the confidence over PE(ŷN) ≤ ε and can be
expressed as

Beta(k,N − k) = 1− δ, δ ∈ (0, 1).

Following [21], we can compute the sample complexity, i.e.
a lower bound on the minimum number of data N that are
needed for expression (13) to hold, as a function of ε, δ, and
k. Given δ ∈ (0, 1), ε ∈ (0, 1), and the nonnegative integer
k, if N satisfies the inequality

N ≥ 1 +
1

ε

(
k − 1 + log

1

1− δ
+
√

2(k − 1) log
1

1− δ

)
,

then, (13) holds. Interestingly, the derived bound for N is
independent of the state space dimension n.

The GEM algorithm takes as input the training data EN
and the tuning parameter k ≤ N−1. It constructs an ordered
sequence of (hyper)ellipsoidal regions R = {R1, . . . ,Rr}
which constitute a (sub)partition of the space of the training
example. Each of these regions Rj has an associated label
`j ∈ Y , such that the union of these regions corresponds to
that part of the input space where the GEM issues an answer,
whereas in the remaining (uncovered) part of the space the
machine returns the label unknown.

More in detail, starting from x1, the algorithm constructs
region R1, that contains x1 and extends until it touches
another datum xj , j 6= 1, such that yj 6= y1. All instances
included into R1 share the same label as x1 and are thus
removed from the training set, while the instances on the
boundary Ω(R1) of the region are marked as “active” points
and added to a set Q. If |Q| ≤ k and the training data-set is
not empty, then the active point farthest from x1 is selected
as the new base instance, and a new region is constructed.
Ensuring that |Q| ≤ k is the key property that guarantees
that (13) holds [17]. For more details on the GEM algorithm
refer to [17].

Remark 3.2: The specific nature of the considered prob-
lem, which deals with affine switching systems, may induce
a special structure in the switching regions. More precisely,
in the absence of switching costs these regions are conical
[7]. This can be exploited to tailor the classification method.

IV. NUMERICAL EXAMPLE

In the following the proposed classification-based control
design methodology is tested on a modified version of a
benchmark multi-room heating control problem described
in [22]. The problem concerns the simultaneous temperature
regulation in n rooms, each room being endowed with a
heater, with the constraint that at most one heater at a time
can be active. A switching control strategy must be designed
to decide at each time step which room should be heated,
depending on the temperature values in all the rooms. With
respect to the original benchmark description, a deterministic
setting is here adopted and an energy–related cost associated
to the on/off switching of the heaters is included.

The n-room heating system can be modeled as a switched
system with continuous state component x = (x1, . . . , xn) ∈
X = Rn representing the (average) temperature in each
room. The switching signal σ ∈ I = {1, . . . , n + 1} has
n + 1 command options, namely turning on the heater of
the ith room (σ = i), i = 1, . . . , n, or turning them all off
(σ = n+ 1).

The average temperature in room i is ruled by the follow-
ing difference equation, obtained by Euler discretization of
the corresponding continuous–time dynamics with constant
time step ∆t:

xi(k + 1) = xi(k) + [bi(xa − xi(k)) + cihi(σ(k)) (14)

+
∑

j=1,...,n;j 6=i

aij(xj(k)− xi(k))]∆t, i = 1, . . . , n,

where xa is the ambient temperature (assumed constant),
and hi(k) is a boolean function equal to 1 when room i is
heated, and 0 otherwise. Parameters aij , bi and ci in (14)
are non-negative constants representing the heat exchange
coefficients between room i and room j (aij), the heat loss
rate of room i to the ambient (bi) and the heat rate supplied
by the heater in room i (ci), all normalized with respect to
the average thermal capacity of room i. The parameters are
set as follows: ∆t = 1/30, xa = 6, bi = 0.25 and ci = 12
for i = 1 . . . n, aij = aji = 0.33, for i = 1, . . . , n − 1,
j = i+ 1.

The control problem can be formulated as in Section II,
where the objective is to track the (constant) reference
state xref , while weighting the cost penalty component
associated with changing the heated room. Accordingly, we
adopt the infinite horizon cost (7), with a discount factor
γ = 0.95. The initial state distribution µx is uniform over
the domain [15.25, 24.25]n. A prediction horizon of length
L = 10 is used for building the training data-set according
to the approach in Section III-A. The control performance
is evaluated over the same look-ahead horizon. The one-step
cost function defined in (5) is employed with Q = In×n and
xi,ref = 19◦ for all rooms, whereas the switching cost Hi,j

represents a tuning parameter.
To evaluate the performance of the policy obtained by the

proposed algorithm (denoted π̄∗GEM in the following), we
compared it with a standard MPC policy (referred as π̄∗MPC).
In the MPC approach, a closed–loop policy is computed by
using a time receding horizon strategy, solving on–line at
every time instant k the optimization problem (8), with the
initial state given by x(k) and q(k), and a time horizon of
k + L. Notice that the data used to train the GEM classifier

are obtained by solving the same optimization problem, so
that the performance of the GEM–based controller can be
put in direct relation with that of the MPC controller, and
the approximation and generalization properties of the former
can be evaluated.

To illustrate the results, we first make reference to the 2-
room case. In this case, N = 3000 training state–control
input pairs have been generated for modes q = 1, 2, 3,
while the confidence and accuracy parameters for the GEM
classifiers have been set to δ = 10−5 and 1 − ε = 0.97,
respectively. No unknown regions resulted after the GEM
training. Figures 1-2 show the system trajectories starting
from the initial state x(0) = [17 17]

T and mode q(0) =
3, under both the control policies π̄∗MPC and π̄∗GEM . In
particular, Figure 1 refers to the case with no switching costs
(Hi,j = 0, ∀i, j ∈ I), while in Figure 2 we assign a high cost
penalty to a switch occurrence (Hi,j = 50, ∀i, j ∈ I, i 6= j).
Notice that in the absence of switching costs the optimal
policy is independent of the current mode. Conversely, its
dependence on the mode increases with the switching cost.

T
em

p
er

a
tu

re
[/
C

]

16

17

18

19

20

Trajectory steps - k
0 5 10 15 20 25 30S

w
it
ch

in
g

si
g
n
a
l
-
<
(k

)

1

2

3

T
em

p
er

a
tu

re
[/
C

]

16

17

18

19

20

Trajectory steps - k
0 5 10 15 20 25 30S

w
it
ch

in
g

si
g
n
a
l
-
<
(k

)

1

2

3

Fig. 1. Continuous state trajectories (red and blue lines represent the
1st and 2nd room, respectively) and switching sequences starting from
x(0) = [17 17]T and q(0) = 3, under policies π̄∗

MPC (top) and π̄∗
GEM

(bottom), in the absence of switching costs.

The policy π̄∗GEM computed by the proposed algorithm
shows a similar behavior with respect to π̄∗MPC , though it
generates a slightly different switching sequence. Not sur-
prisingly, better tracking performances are obtained when the
switching cost is absent (Figure 1), which allows both poli-
cies to alternate the heating in the two rooms. On the other
hand, when the switching cost becomes significant, both
policies have to exercise a trade–off between the conflicting

T
em

p
er

a
tu

re
[/
C

]

16

18

20

22

Trajectory steps - k
0 5 10 15 20 25 30S

w
it
ch

in
g

si
g
n
a
l
-
<
(k

)

1

2

3

T
em

p
er

a
tu

re
[/
C

]

16

18

20

22

Trajectory steps - k
0 5 10 15 20 25 30S

w
it
ch

in
g

si
g
n
a
l
-
<
(k

)

1

2

3

Fig. 2. Continuous state trajectories (red and blue lines represent the
1st and 2nd room, respectively) and switching sequences starting from
x(0) = [17 17]T and q(0) = 3, under policies π̄∗

MPC (top) and π̄∗
GEM

(bottom), in the presence of large switching costs.

goals, and the number of switching occurrences is greatly
reduced. For the reader’s reference, the performance of the
MPC policy is equal to J = 37.0980 and J = 174.5605,
in the two examined conditions respectively, which are
only 0.3% and 0.12% better than the corresponding values
obtained with π̄∗GEM .

The performance loss due to the approximation introduced
by the GEM classifier in the definition of the policy π̄∗GEM
has been further tested in larger case instances. A Monte
Carlo estimate of the expected cost

E
x(0)∼µx

q(0)∼µq

[J∞(x(0), q(0))]

with µq uniform, is evaluated for the n-room scenario, when
n = 1, . . . , 4, for both control policies: the simulations
are performed following each policy for 50 steps, starting
from 100 initial states drawn from the distribution µx, with
initial mode q(0) = q = n + 1, and no switching cost is
considered. N = 15000 training input pairs are generated
for the computation of the policy π̄∗GEM . Figure 3 shows
the relative performance loss of the policy π̄∗GEM with
respect to π̄∗MPC as a function of the accuracy of the GEM
machine. Apparently, this dependence is essentially linear,
showing a graceful degradation of the performance as ε is
increased. Notice also that, while equation (13) provides a
lower bound for the probability that PE(π̄∗GEM) ≤ ε, the
practical application of the GEM classifier typically leads to
better performances.

GEM Accuracy 1 ! 0 [%]
959391898785

R
el

a
ti
v
e

P
er

fo
rm

a
n
ce

L
o
ss

[%
]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

n=1

n=2

n=3

n=4

Fig. 3. Performance loss of policy π̄∗
GEM with respect to π̄∗

MPC , as a
function of the accuracy of the GEM machine.

Finally, based on the same parameter settings, a com-
putational analysis of the proposed algorithm is shown in
Figure 4. Clearly, the π̄∗GEM policy results in an extremely
fast on–line computational time and depends almost linearly
on the problem size, whereas the MPC policy involves a
much higher computational cost in the on–line phase. Indeed,
the complexity of Algorithm (1) resides in the off-line phase,
and depends essentially on the construction of the data–
set of training examples generated for learning the GEM
classifier. We remark that the number of samples N required
by the algorithm in order to calculate the policy π̄∗GEM is
independent of the state dimension and can be tuned by the
user so as to select the level accuracy of the GEM classifier.

n - Problem dimension
1 2 3 4

O
n
-l
in

e
T

im
e

C
o
m

p
le

x
it
y

[s
ec

]

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

:$MPC

:$cl; 0 = 5%

:$cl; 0 = 7%

:$cl; 0 = 9%

:$cl; 0 = 15%

Fig. 4. On–line time complexity for the π̄∗
MPC and π̄∗

GEM policies.

V. CONCLUSIONS

A classification-based approach has been proposed for the
optimal control of discrete-time switched affine systems. The
proposed method operates in two steps. First, a number of
initial states is drawn from a uniform distribution over the
state space, and an (approximately) optimal control action is
associated to each of them. The latter is calculated by solving
a MIQP problem. Then, a GEM classifier is trained on the
obtained data-set of state-control pairs. Precise bounds can
be derived on the generalization capabilities of the classi-
fier, which indirectly affect the control performance. Some

approximation must be accepted, since only approximately
optimal control solutions can be obtained in practice due to
horizon truncation. However, some simulation experiments
on a benchmark problem reveal that the difference with
respect to a standard MPC policy is small.

REFERENCES

[1] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework
for hybrid control: Model and optimal control theory,” Automatic
Control, IEEE Transactions on, vol. 43, no. 1, pp. 31–45, 1998.

[2] R. H. Middleton, P. Colaneri, E. Hernandez-Vargas, and F. Blanchini,
“Continuous-time optimal control for switched positive systems with
application to mitigating viral escape,” in Proceedings of the 8th IFAC
symposium on nonlinear control systems, 2010, pp. 266–271.

[3] A. Rantzer and M. Johansson, “Piecewise linear quadratic optimal
control,” Automatic Control, IEEE Transactions on, vol. 45, no. 4, pp.
629–637, 2000.

[4] E. A. Hernandez-Vargas, P. Colaneri, and R. H. Middleton, “Switching
strategies to mitigate hiv mutation,” Control Systems Technology, IEEE
Transactions on, vol. 22, no. 4, pp. 1623–1628, 2014.

[5] E. Hernandez-Vargas, P. Colaneri, R. Middleton, and F. Blanchini,
“Discrete-time control for switched positive systems with application
to mitigating viral escape,” International Journal of Robust and
Nonlinear Control, vol. 21, no. 10, pp. 1093–1111, 2011.

[6] A. Giua, C. Seatzu, and C. Van Der Mee, “Optimal control of
switched autonomous linear systems,” in Decision and Control, 2001.
Proceedings of the 40th IEEE Conference on, vol. 3. IEEE, 2001,
pp. 2472–2477.

[7] C. Seatzu, D. Corona, A. Giua, and A. Bemporad, “Optimal control
of continuous-time switched affine systems,” Automatic Control, IEEE
Transactions on, vol. 51, no. 5, pp. 726–741, 2006.

[8] D. Corona, A. Giua, and C. Seatzu, “Stabilization of switched systems
via optimal control,” in Proc. 16th IFAC World Congress, 2005.

[9] X. Ding, Y. Wardi, D. Taylor, and M. Egerstedt, “Optimization of
switched-mode systems with switching costs,” in American Control
Conference, 2008. IEEE, 2008, pp. 3965–3970.

[10] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[11] A. Bemporad, F. Borrelli, and M. Morari, “Piecewise linear optimal
controllers for hybrid systems,” in American Control Conference,
vol. 2, 2000, pp. 1190–1194.

[12] F. Borrelli, M. Baotić, A. Bemporad, and M. Morari, “Dynamic
programming for constrained optimal control of discrete-time linear
hybrid systems,” Automatica, vol. 41, no. 10, pp. 1709–1721, 2005.

[13] M. G. Lagoudakis and R. Parr, “Reinforcement learning as classifica-
tion: Leveraging modern classifiers,” in Proc. of the 20th International
Conference on Machine Learning, Washington DC, USA, 2003, pp.
424–431.

[14] I. Rexakis and M. G. Lagoudakis, “Directed exploration of policy
space using support vector classifiers,” in Proc. of the IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL), Paris, France, April 11-15 2011, pp. 112–119.

[15] A. Lazaric, M. Ghavamzadeh, and R. Munos, “Analysis of a
classification-based policy iteration algorithm,” in Proc. of the 27th
Int. Conf. on Machine Learning, Haifa, Israel, 2010.

[16] J. Langford and B. Zadrozny, “Relating reinforcement learning perfor-
mance to classification performance,” in In 22nd Int. Conf. on Machine
Learning (ICML), Bonn, Germany, 2005.

[17] M. C. Campi, “Classification with guaranteed probability of error,”
Machine Learning, vol. 80, no. 1, pp. 63–84, July 2010.

[18] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The
Discrete Time Case. Academic Press, 1978.

[19] R. Fletcher and S. Leyffer, “Numerical experience with lower bounds
for MIQP branch-and-bound,” SIAM J. on Optimization, vol. 8, no. 2,
pp. 604–616, February 1998.

[20] “IBM ILOG CPLEX Optimizer,” 2010. [Online]. Avail-
able: http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/

[21] T. Alamo, R. Tempo, and A. Luque, “On the sample complexity of
randomized approaches to the analysis and design under uncertainty,”
in Proc. of the American Control Conference (ACC), Baltimore (MD),
USA, June 2010, pp. 4671–4676.

[22] A. Fehnker and F. Ivančić, “Benchmarks for hybrid systems verifica-
tions,” in Hybrid Systems: Computation and Control, ser. LNCS 2993,
R. Alur and G. J. Pappas, Eds. Springer Verlag, April 2004, pp. 326–
341.

