
Assessing the effect of unknown widespread perturbations in complex
systems using the ν-gap

Alberto Carignano*, Jin Junyang, Alex Webb, Jorge Gonçalves

Abstract— Pinpointing the exact locations of perturbations
can help to detect and correct faults in large-scale systems,
such as power grids (lost of transmission lines), internet (loss
of servers) and biological systems (diseases). This paper outlines
a mathematical framework to study the effect of perturbations
on large-scale systems, with particular emphasis to biological
applications. In particular, it focuses on wide-spread pertur-
bations that target unknown components of the system. These
problems are usually studied with genome-wide assays, which
are becoming increasingly popular and accessible. However,
analysis of the data sets produced by this technology remains
challenging: genome-wide experiments are often inherently
noisy, with a small number of measurements, and a low
sampling rate. The paper first develops a simple yet powerful
network inference tool based on LTIs. We compare this tool with
the current state of the art. Then, as its major contribution,
the paper develops a method for network differentiation, where
it detects the effects of perturbations in large scale-systems.
The method is based on the ν-gap, a control engineering tool
that measures the distance between linear models. A major
difference between this work and others, is that we look at
changes in dynamics in links, as opposed to the standard
differential expression analysis that focuses on changes in node
concentrations. Through an illustrative model, the paper shows
how perturbations impact certain links in the network, which
can then be captured by differences between LTIs with the
ν-gap.

I. INTRODUCTION

One difficult, yet fundamental problem in biology is to
assess the effect of unknown widespread perturbations in
complex systems. For instance, a certain drug treatment
might result in a particular measurable phenotype, but the
exact dynamics involved are often unknown. Knowing pre-
cisely the pathways affected by the treatment would be a big
step toward improving the effect of the drug, or eliminating
potential side effects. However, this is not a trivial problem:
a drug can have multiple targets and its mechanism of
action is an inherently noisy process (the distribution of
the drug, for instance, is probably not uniform across the
organism). This problem becomes even more complicated if
the structure of the network is unknown. Cellular components
are connected through very complex regulatory mechanisms,
often including mutual regulation.
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The topic of network inference has been central for com-
putational system biology. Since the first application of
Bayesian networks on gene expression data ([8]), several
network inference methods have been suggested, along with
procedures to assess their accuracy ([16], [5], [23]). A recent
work has implemented a comparison of the most commonly-
used network inference methods using both simulated and
real data from the Arabidopsis circadian clock ([1]). Methods
were assessed according to a scoring system (AUROC) that
evaluates the number of false positives and correct answers
as a smooth function of the acceptance threshold. The
methods considered in the paper all infer causal networks,
and include most of the well-known methodologies, such
as Graphical Gaussian Models (GGM, [21], [7]), Sparse
Regression (Lasso [22] and Elastic Net [24]), Time-varying
Sparse Regression (Tesla [2]), Hierarchical Bayesian Re-
gression models (HBR, [1]), Non-Homogeneous Hierarchical
Bayesian models ([11]), Automatic Relevance Determina-
tion in the context of Sparse Bayesian Regression (ARD-
SBR, [20]), Bayesian Spline Autoregression (BSA, [17]),
State Space Models (SSM, [3]), Gaussian processes (GP,
[4]), Mutual information methods (ARACNE, [16]), Mix-
ture Bayesian network models (MBN, [14]), and Gaussian
Bayesian networks (BGe, [9]).
Data were simulated using the computational model pro-
posed by the Millar’s group (Millar2010, [19]), in both
deterministic and stochastic settings. AUROC scores were
measured for each method and for each data set, and an
ANOVA index measured the general performance. According
to the study, MBN and ARACNE show a significantly low
performance, while all the other methods perform in a similar
AUROC score range. The method that performs best is HBR,
followed closely by BGe.
Here we propose a new methodology for network inference
that proves to be especially useful for poorly-sampled data
corrupted with noise (as those produced by a microarray
experiment). The method uses Linear Time Invariant (LTI)
models to represent biological regulation: gene A regulates
gene B if a linear model could be estimated and validated
using the two genes as an input-output pair. The use of LTIs
to explain biological regulations has been shown previously
([6], [12]), but the application to network inference for
genome-wide data sets is novel. LTIs models have several
advantages over nonlinear models. First of all, they have been
extensively studied in the field of control theory and signal
processing. In particular, LTIs have a frequency description
with an easy visual interpretation, which can be used to
infer their stability and performance. Moreover, a linear
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description incorporates in x(t) hidden variables, biological
steps that are not part of the input/output pair but are
necessary to describe the dynamics. The number of hidden
variables is useful to formulate hypothesis on the nature of
the biological process (for instance if the regulation is at
the transcriptional or the translational level). Finally, LTIs
unlike nonlinear models, have a fixed structure that prevents
the user to bias the results towards specific interpretations.
Under mild hypothesis on the input, there is only one optimal
linear model that could explain the data, and there are
qualitative and quantitative ways of assessing the goodness
of the performance.
A perturbation of a biological regulation can either affect
the way the regulation works, or inhibit it. Inhibition cor-
responds to a change in topology: the network does not
preserve its structure. This should be fairly visible assuming
the networks are correctly estimated. On the other hand,
regulation changes are harder to capture as the network
structure should not, in principle, change. We will show how
LTIs are appropriate descriptions to capture the effect of
perturbations. This can be achieved using a tool called ν-
gap ([10]). In particular, a model-example will be used to
describe how our method performs in practice

II. NETWORK INFERENCE USING LINEAR TIME
INVARIANT MODELS

In this section we outline the LTI network inference
method, and test it on a chosen simulated model. Focus will
be on data with low sampling time and affected by noise,
in order to reproduce common experimental conditions of
biological system.

A. Methodology

An LTI model has the form:
dx

dt
(t) = Ax(t) +Bu(t) +Ke(t)

y(t) = Cx(t) +Du(t) + e(t) (1)

where x(t) represents the internal dynamics, and e(t) rep-
resents the inherent white noise of the system and measure-
ments. This concept can be generalized to higher dimensions
(x ∈ Rn) by considering the parameters in 1 as matrices with
appropriate dimensions. LTIs are often seen in the equivalent,
frequency-domain version:

Y (s) = G(s)U(s) (2)

where G = C(sI − A)−1B + D and U(s) and Y (s)
are the Laplace transform of the original input/output pair.
Estimating an LTI model consists of identifying the matrices
A, B, C, D, and K, and the initial conditions x(0) in 1. Sev-
eral methods have been implemented that could identify the
parameters of system 1, for instance the Matlab® algorithm
’pem’.
LTI models have been shown to be capable of describing
biological systems ([6], [12]), and are less prone to over-
fitting than most nonlinear methods. Moreover, their compu-
tational cost is known to be light. These characteristics make

them a suitable choice to study large data sets. In particular,
given a data set S containing a set of measurements as
time series, we are interested to infer the underlying system
that have generated them. Our method is divided in two
steps. In the first step, LTI models of different orders are
estimated for all the possible input-output pairs from data
set D: the most appropriate order is then selected, and each
model is characterized by a measure of fitness between the
simulated and the real data. In the second step, the noise
in the system is estimated and a threshold on the fitness
is set based on the noise level. All the models estimated
in step 1 that are below the threshold are now discarded.
The remaining models define the topology of the inferred
network. Essentially, the first step estimates a fully-connected
graph: every node is connected with all the others (no prior
information is assumed). By applying a threshold, the second
step selects the models that are most likely to correctly
represent biological interactions, reducing the initial fully-
connected graph to a more realistic one.
In the context of poorly-sampled noisy data set, we opted
for the following specifications

• To identify the appropriate model order for the data,
we used the small sample (second-order bias correction)
version of the Akaike Information Criteria (AICc, [13]).
Given a set of models for comparison, the one with the
lowest AICc values is the preferred choice;

• We use a performance index f to compute the fitness
between simulated and experimental data that is calcu-
lated according to the formula:

f = 100

1−

N∑
k=1

(yk − ŷk)2

N∑
k=1

(yk − y)2

 (3)

where y is the average value of the experimental data, yk
is the k-th data point, and ŷk is the k-th simulated data
point (in order to avoid divisions by zero, a different
formula has to be used to estimate the fitness of a
constant output);

• To assess which threshold is most appropriate for our
particular biological system, we apply the method to
a known network and we associate to each estimated
LTI, the corresponding fitness value. We then consider
increasing values of thresholds, and discard models
with fitness below the threshold. The optimal threshold
corresponds to the network with the highest number of
correct answers.

B. Comparison with the state of the art on a plant circadian
clock model

To test our methodology we chose a known mathematical
model of a biological system: the model proposed by the
Millar’s group in 2006 ([15]) of the circadian clock of the
plant model organism A. thaliana. The model has light
as its only input and five main nodes, and it takes into
account three stages for each gene (mRNA level, protein
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TABLE I
PERCENTAGE OF CORRECTLY IDENTIFIED NETWORKS: COMPARISON BETWEEN THE LTI METHOD AND HBR. THE DATA PRESENTED IN THE TABLE

SHOWS THE NUMBER OF REGULATIONS (’1’S) AND LACK OF REGULATIONS (’0’S) CORRECTLY IDENTIFIED AS PERCENTAGE OF THE

TOTAL±STANDARD DEVIATION (5 REPEATS FOR STOCHASTIC CASES). CELLS ARE DESCRIBED AS ’HBR RESULT/LTIS RESULT’.

Noise standard dev. Millar 2006 Millar 2010 Millar 2012
Correct ’1’s Correct ’0’s Correct ’1’s Correct ’0’s Correct ’1’s Correct ’0’s

No noise −/75 −/75 −/44 −/85 −/33 −/84
0.01 noise 8± 0/45± 7 100± 0/70± 5 50± 4/38± 0 59± 4/86± 3 18± 1/36± 2 85± 0/74± 2

0.03 noise 7± 4/60± 6 95± 7/62± 5 49± 4/38± 0 62± 10/85± 0 17± 3/37± 0 86± 3/73± 1

0.05 noise 5± 5/63± 0 97± 6/55± 5 56± 11/58± 11 56± 12/72± 5 17± 7/37± 0 85± 5/66± 4

0.07 noise 3± 5/73± 6 95± 7/43± 11 53± 11/63± 0 61± 16/62± 0 18± 3/37± 0 88± 3/60± 1

0.1 noise 5± 5/80± 7 97± 6/20± 7 50± 9/63± 0 65± 9/62± 0 10± 7/40± 2 88± 3/60± 0

level in the cytosol, and protein level in the nucleus). In
addition, it has several nonlinear components (Hill’s func-
tions), which makes it the perfect test-case for our method.
We add process noise to each differential equation and run a
stochastic simulation of the model using the standard Euler-
Maruyama method. We considered the following signal-to-
noise standard deviation: [0, 0.01, 0.03, 0.05, 0.07, 0.1]. To
obtain data for network inference, we simulated the model
for 600 hours in 24 hour light/dark cycles to remove all
possible transients. Then we changed the light conditions to
constant light for another 96 hours. To reproduce standard
whole-genome experiments (like, for instance, microarrays),
characterized by low-sampled measurements, we took the
simulated mRNA expression levels in the last 48 hours of
constant light, and consider only the values with a 4-hour
sampling frequency (12 data points for each of the five time
series).
We then applied our method and estimated the optimal
threshold for the deterministic case (standard deviation = 0).
Models were estimated according to 1, imposing K = 0 as
no process noise was present. Optimality is defined in terms
of number of connections correctly identified (percentage of
interactions plus percentage of lack of interactions correctly
estimated). We then identify networks for the stochastic
cases, applying the optimal thresholds computed for the
deterministic case. Since process noise was present in these
cases, we let the parameter K free in the optimization.
The results are shown in Table I. To assess the quality of
our method, we carried out a comparison with the current
state-of-the-art in network inference. We presented in the
introduction the work of ([1]): their analysis highlights that
hierarchical Bayesian regression models (HBR) seem to
perform best compared to most of the known methods. Hence
we chose HBR for benchmarking.
We implemented the algorithm in Matlab® following the out-
line given in the paper, and we set the hyperparameters of the
gamma distribution of the ’signal-to-noise’ ratio parameter
δg , to α = 2 and β = 0.2, according to the specification
suggested by the authors. The hyperparameter for the noise
variance prior ν was set to 0.005, as described in the paper.
We compared the performances of the two methods using
the simulated data of three known models of the circadian
clock with increasing level of complexity: the previously

introduced Millar 2006 model, and the Millar 2010 ([19]),
and Millar 2012 ([18]) models. Each model was simulated
using Matlab® in both a deterministic and a stochastic
manner: noise was added in each differential equation,
with signal-to-noise standard deviation varying in the set
[0, 0.01, 0.03, 0.05, 0.07, 0.1]. For each value of the variance,
we simulated the models five times in order to prevent
bias over a particular realization. Hence, we ended up with
3 + 3× 5× 5 = 78 different data sets for our comparison.
For a fair comparison, we first identified the optimal thresh-
old for the HBR method using the datasets with 0.01 signal-
to-noise. Hence, we obtained three different thresholds that
allow HBR to adapt to the different structures of the networks
(as we did for our method). Since HBR working assumption
is that there has to be noise in the system, the deterministic
data was not used. Following the protocol in the paper ([1]),
we run HBR using 20000 iterations and then averaged the
second half of the output sampled graphs (the first half is
ignored as ’burn-in phase’): the averaged graph is the inferred
network. The inferred network output is a matrix where entry
(i, j) contains the probability that gene i regulates gene j. The
threshold is the minimum accepted probability for regulation.
We performed a comparison between the two methods on
the simplest model first, the Millar 2006 mode. We run
HBR 10 times using the same settings, and compared the
resulting graphs. The variance between each entry of the 10
averaged graphs was very small (below 0.05): we concluded
that the algorithm converged. Finally, we let the threshold
vary between 0 and 1 with increments of 0.01, compared the
correspondent estimated graphs with the real one and found
the optimal threshold according to the same metric used for
our method. Networks were then derived for the stochastic
cases using HBR and the derived optimal threshold (results
shown in Table I). By adding the number of correct answers
in the Millar 2006 column in Table I (’0’s+’1’s), one could
observe that our method outperforms HBR for all but the 0.1
noise case. This is not surprising as the noisier the system,
the less likely the optimal thresholds will hold.
To test whether these results were independent from the data
set we used for training, we applied both methods to the re-
maining 52 data sets. The results are summarized in Table I,
and strongly suggest that our method is better in determining
the real network for this specific low-sampled and noisy data.
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In particular, we noticed that while HBR optimizes towards a
fully-disconnected networks for both Millar 2006 and Millar
2012, our method is better at balancing the number of correct
’0’s and ’1’s in all cases. Hence, the corresponding networks
will be more likely to provide useful insights on the real
structure of the network.
The results for both methods are fairly consistent over
different noise variance, as it could be observed by looking at
both mean and standard deviation. This suggests robustness
to noise, and possible trend independence on the optimal
threshold. The two methods operate on similar time scales:
the analysis time is polynomial on the number of nodes in
the graph Õ(n2).
One significant difference with respect to Bayesian methods
is that the identified models contain dynamical information
on the nature of the regulation. As such, we can distinguish
between positive and negative regulation, and we can make
predictions for different experimental conditions. Moreover,
models can be compared to study dynamical differences: this
feature will be exploited in the next section.

III. ASSESSING BIOLOGICAL ALTERATION USING THE
ν-GAP

This section outlines a method to assess the effect of
widespread perturbations in complex systems. The method
relies on the machinery that we introduced in the previous
sections.

A. Methodology

Assuming that we have two data sets of measurements,
one taken in normal and one in ’perturbed’ conditions, the
method follows these three steps, as shown in Fig.1:

• A network is estimated for the control data set;
• A network is estimated for the perturbed data set;
• A comparison between the two networks highlights how

the perturbations affect the system.
Using the mathematical formalism introduced in the previous
section, the problem of assessing regulation changes is
equivalent to comparing 2 models: one that is estimated
using measurements taken in normal conditions (control data
set), and one estimated using measurements taken in the
experimental conditions (Perturbed data set). The natural
mathematical tools for this comparison are functions called
’metric’ that define and measure the distance between two
objects inside their space. While several metrics exist, we
decided to use the ν-gap ([10]), a tool developed in the
control engineering community. The ν-gap has been designed
to address the stability properties of the closed loop system,
defined using the same controller for both plants, based only
on the open loop transfer function. Let P be a model that
explains the regulation between gene A and gene B in control
conditions in a certain biological system. The genes are
known to be involved in a feedback loop, represented by
C. The system is then affected by a biological perturbation,
and a novel model P1 is estimated using data collected after
the perturbation takes place. The ν-gap measured between
P and P1 returns a value between 0 and 1 that compare

the two systems from the controllability point of view. In
particular it sets a lower bound for the difference in norm
between the two closed loop transfer functions [P,C] and
[P1, C], where C is the controller. Ideally, in a biological
context this property can be used to assess how perturbing
a single regulation can affect the whole feedback system.
This is ideal in studying biological systems, where genes
regulate each other through multiple interlocked feedback
loops. In the next section we will use a toy network to
define an empirical map between magnitude of perturbation
and values of the ν-gap that will be used as benchmark for
future analysis.

B. Effect of alterations on a toy network

To test the performance of the ν-gap analysis, we used it
to study the effect of known perturbations on a toy network.
We opted for a toy network because parameter perturbations
on the circadian clock models introduced previously, often
lead to non-linearities that cannot be described using LTIs.
Moreover, we wanted to investigate the potential of the ν-
gap approach in a more general setting, to avoid being biased
towards specific network patterns.
We designed the toy network as follows:

• It follows a circular structure: each node regulates only
one other, and is regulated by one other node only. We
opted for this simple structure in order to guarantee
stability to perturbations of the nominal parameters.
Moreover, its regularity allows us to study the effect of
perturbation on the neighboring nodes independently of

Fig. 1. Schematic of the proposed method for measuring alterations
in biological systems. The figure summaries the strategy established in
this chapter to capture alterations in biological systems: (1) Biological data
are collected using a whole genome technique, like microarrays. Data are
collected for the ’nominal system’ and for the ’perturbed system’ of interest;
(2) Using LTI models, a network is inferred for both nominal and perturbed
conditions data set. Causal regulations are represented by directional arrows;
(3) The two estimated networks are compared and only the common nodes
between the two are considered: the ν-gap network measures change in
regulation activity (changes are represented with red arrows, no change is
represented with a black arrow. The value of the ν-gap is next to each
arrow). In this example, gene A is therefore a candidate for future analysis.

3196



Fig. 2. Toy network study The linear and nonlinear networks are both
defined as a 4-node circle network with one external sinusoidal input on
one of the node (in the figure, the input is drawn on node A, although the
node is chosen arbitrarily during the simulation). For the purpose of our
analysis, we alter either the parameter Kd, or the exponent n of one of the
regulations. In the figure, the regulation that is perturbed is always B→C,
although this is randomly selected in our simulations.

the target regulation. For simplicity, we set the number
of nodes to 4;

• Each node regulates the following one according to a
nonlinear differential equation:

dx

dt
(t) = −Cx(t) +Kd

u(t)

1 + u(t)

For instance, if node 1 regulates node 2, then node
1 is represented by u(t), and node 2 by x(t). The
non-linearity was chosen to be a Hill’s function (with
parameters Kd drawn from a uniform distribution to
prevent bias towards certain parameter values, and a
Hill coefficient n = 1), since this is used to represent
most biological regulations.

Being the network stable, we excited it using a sinusoid of
period 24 (to simulate a circadian period as in the Millar’s
models) applied as external input to one randomly chosen
node. The network was simulated for 100 unit times, with
a sampling time of 1 time unit. The data set was then used
for network inference as outlined in the previous section.
The optimal thresholds were identified to maximize the
previously-introduced cost function. We will call the inferred
network nominal network hereafter.
We simulated the model twice: the first time using its
nominal values, and the second time we selected one of
the parameters and perturbed (increased or decreased) it
randomly from 0% up to 100% its nominal value (granted
this would lead to a stable system: perturbations that violate
this conditions were discarded). We call perturbation type
1 perturbations of the parameter Kd, and perturbation type
2 those of the parameter n. The process is summarized in
Fig.2. We run 20 simulations for each parameter perturbation
(Kd, and n), and for each one estimated the nominal and the
perturbed network from the simulated data using the same
thresholds. Finally, we compared the two resulting networks
using the ν-gap. To facilitate the interpretation of the results,
we split the results of the ν-gap analysis in four classes: the
gap measured on the target node/regulation, and the gap mea-
sured on its first, second and third neighborhood (nodes at

Fig. 3. ν-gap analysis on a toy model with nonlinear dynamics: the
coefficient Kd was perturbed from 25% to 100% its nominal value.

distance 1, 2 and 3 from the target node). This split analysis
aims to test if the ν-gap can accurately predict the regulation
that was perturbed, or if it is unable to distinguish between
the affected regulation and its neighboring ones. Notice that
the ν-gap has been measured only in the neighborhood of
the frequencies excited by the input (in this case, the period
of the input sinusoid): outside the frequencies of excitation,
the estimated models lose reliability as they are not derived
from data. A summary of the results (averaged over the 100
different runs) according to the two perturbation types is
presented in Fig.3 and 4 respectively. For perturbations of
Kd, the ν-gap is in average above 0.2 for the target node, and
this holds in the case of the Hill coefficient for perturbations
above 50%. Interestingly, the effect of perturbations on
neighboring nodes is generally lower according to the ν-gap,
even when the original perturbation is big (for perturbation
up to 100% the nominal value, the maximum variation is
0.185 for the first neighborhood, with the only exception of
0.23 for a 100% perturbation of Kd). Hence, this analysis
suggests that values above around 0.2 could be used to infer
the main target of the perturbation. Perturbing the parameter
Kd as well as the exponent n of the Hill’s equation leads
to similar results: the increase of the ν-gap is proportional

Fig. 4. ν-gap analysis on a toy model with nonlinear dynamics: n, the
exponent of the Hill function in the nonlinear network, was perturbed from
25% to 100% its nominal value. Perturbations at 100% corresponded to
a non-linearity that could not be identified using LTIs, so no values of the
ν-gap could be estimated for the target node.
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to some degree to the amount of perturbation (although a
precise mapping is not feasible). This analysis shows that
the ν-gap is capable of capturing the effects of network
perturbation. However, it’s worth noticing that our method
is not capable of inferring the target regulation when the
perturbed system becomes too nonlinear for LTIs to infer
it. This suggests that connections that are not estimated
in the perturbed case (increase in nonlinear dynamic) are
potentially interesting, and should not be discarded from
further considerations.

IV. CONCLUSIONS

We outlined a methodology to analyze the effect of
unknown wide-spread perturbations on unknown biological
networks. The method requires as only input a data set that
contains the measurements of all the signals involved in the
control and in the experimental conditions.
In summary, the method follows three steps:

• The data is analyzed and all the signals that cannot be
used for dynamical modeling are filtered out;

• Two networks are inferred from the filtered data: one
from the control data, and one from the experimental
conditions data;

• The 2 networks are compared using the ν-gap, and a
subset of regulations is returned as candidate target of
the perturbation.

In particular, this approach was developed to analyze
genome-wide experimental measurements. Consequently, it
is fast, accurate, and requires little prior knowledge of the
system. Moreover, it has been tested on data sets with
low sampling rate and low signal-to-noise ratio in order to
reproduce real experimental conditions. The method here
proposed should now be tested on real data. Preliminary
results on the circadian clock of A. Thaliana (unpublished
data) and experimental validation suggest that the method
can correctly identify targets of drug-induced wide-spread
perturbations.
Although the methodology, as presented here, has been tuned
to analyze circadian data, it has the potential to analyze any
biological data set as long as the system is near linear regime.
Furthermore, this technique does not impose any limitations
on the nature of the experimental conditions.
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