
ar
X

iv
:1

50
3.

04
75

3v
1

 [
cs

.D
S]

 1
3

M
ar

 2
01

5

Minimum Equivalent Precedence Relation Systems

Kin Cheong Sou

September 22, 2021

Abstract

In this paper two related simplification problems for systems of lin-
ear inequalities describing precedence relation systems are considered.
Given a precedence relation system, the first problem seeks a mini-
mum subset of the precedence relations (i.e., inequalities) which has
the same solution set as that of the original system. The second prob-
lem is the same as the first one except that the “subset restriction”
in the first problem is removed. This paper establishes that the first
problem is NP-hard. However, a sufficient condition is provided under
which the first problem is solvable in polynomial-time. In addition,
a decomposition of the first problem into independent tractable and
intractable subproblems is derived. The second problem is shown to
be solvable in polynomial-time, with a full parameterization of all so-
lutions described. The results in this paper generalize those in [Moyles
and Thompson 1969, Aho, Garey, and Ullman 1972] for the minimum
equivalent graph problem and transitive reduction problem, which are
applicable to unweighted directed graphs.

1 Introduction

1.1 Statement of problem

In this paper we consider precedence relation systems with n variables of
the form:

xi − xj ≤ cij , (i, j) ∈ E, (1)

where cij ∈ R and E ⊆ {1, . . . , n} × {1, . . . , n} are given, and x1, x2, . . . , xn
are the variables. E is the index set of all precedence relations in (1). Let
c(E) ∈ R

|E| be the vector edge weights such that if the kth element of E is
(i, j), then ck = cij . Also, let V = {1, 2, . . . , n} denote the set of variable
indices. Then, system (1) is described by the triple (V,E, c(E)).

1

http://arxiv.org/abs/1503.04753v1

This paper considers two related problems regarding the simplification
of precedence relation systems.

The first problem – maximum index set of redundant relations
problem: we seek amaximum (cardinality) index set of redundant relations,
with the definition of an index set of redundant relations given by:

Definition 1 (Index set of redundant relations). Let (V,E, c(E)) be a prece-
dence relation system, then R ⊆ E is called an index set of redundant
relations of (V,E, c(E)) if

x ∈ R
n satisfies (V,E, c(E)) ⇐⇒ x satisfies (V, (E \R), c(E \R)). (2)

In this paper, two precedence relation systems are equivalent (with sym-
bol ≡) if they have the same solution set. Therefore, condition (2) can be
stated as (V, (E \ R), c(E \ R)) ≡ (V,E, c(E)). In its minimization form,
the first problem can be posed as finding a minimum (cardinality) subset
E′ ⊆ E (i.e., E′ = E \R) such that (V,E′, c(E′)) ≡ (V,E, c(E)).

The second problem – equivalent reduction problem: we seek an
equivalent reduction of a given precedence relation system (V,E, c(E)) as
follows:

Definition 2 (Equivalent reduction). Let (V,E, c(E)) be a precedence re-
lation system. A precedence relation system (V,E′, c′(E′)) with E′ ⊆ V ×V
and c′(E′) ∈ R

|E′| is an equivalent reduction of (V,E, c(E)) if it satisfies the
following two conditions:

2.a x ∈ R
n satisfies (V,E, c(E)) ⇐⇒ x satisfies (V,E′, c′(E′)),

2.b with respect to property 2.a, E′ has the minimum cardinality.

The maximum index set of redundant relations problem (i.e., the first
problem) is a restriction of the equivalent reduction problem (i.e., the second
problem). In the search of the minimum equivalent system of precedence
relations for the first problem (in its minimization version) we are restricted
to a subset of (1), whereas in the second problem there is no such restriction.
In addition, according to definition the values in c′ in the second problem
need not be the same as c as in the first problem. The distinction between
the two problems considered in this paper is analogous to the distinction
between minimum equivalent graph in [1] and transitive reduction in [2], in
the setting of unweighted directed graph simplification.

2

1.2 Main contributions and previous works

The main contributions of this paper are as follows:

1. We derive a sufficient condition under which the maximum index set of
redundant relations problem has a unique solution and is polynomial-
time solvable. In addition, we show that in general the maximum
index set of redundant relations problem is NP-hard.

2. We show that the maximum index set of redundant relations problem
can be decomposed into a finite number of independent subproblems,
one of which being polynomial-time solvable and the rest NP-hard.

3. Based on the decomposition, we provide a parameterization of all so-
lutions to the maximum index set of redundant relations problem.

4. We provide a complete parameterization of all solutions to the equiv-
alent reduction problem. The parameterization suggests a procedure
that can find any solution to this problem in polynomial time.

In essence, the results in this paper are generalizations of those in [1,2].
The generalization is in the sense that the results in [1,2] pertain unweighted
directed graphs, while the results in this paper pertain weighted directed
graphs (the relation between weighted directed graphs and precedence in-
equality systems will be explained in the sequel). When cij = 0 for all
(i, j) ∈ E, it can be shown that (2) is equivalent to the condition that un-
weighted directed graph (V,E), with V and E being the node set and edge
set respectively, has the same reachability as (V,E \ R). That is, there is
a walk from i ∈ V to j ∈ V in (V,E) if and only if there is a walk from
i to j in (V,E \ R). Thus, the minimum equivalent graph problem for un-
weighted directed graphs [1] can be reduced to the maximum index set of
redundant relations problem with cij = 0 for all (i, j) ∈ E. An implication
of the reduction is that the results in this paper can be specialized to obtain
those in [1]. In addition, we establish that even in the generalized setup the
complexity and decomposition results in this paper are analogous to those
in [1]. However, the results in this paper and in [1] are not exactly the same
– there is a difference in the equivalence classes (in the node set) defining the
decompositions. Similarly, an instance of the transitive reduction problem
(studied in [2]) for unweighted directed graph (V,E) can be solved as an
instance of equivalent reduction problem with (V,E, c(E)) with cij = 0 for
all (i, j) ∈ E. In addition, the complexity result and the parameterization
of the set of all equivalent reductions provided in this paper are analogous
to those of [2].

3

In comparison with methods to simplify general sets of linear equalities
and inequalities (e.g., [3,4]), this paper proposes more specialized and time-
efficient algorithms for the more restrictive setting of precedence relation
inequalities in (1).

1.3 Application motivations

The precedence relation system in (1) arises in applications such as ma-
chine scheduling (e.g., [5–9]), chemical process planning (e.g., [10]), smart
grid (e.g., [11, 12]), parallel computing (e.g., [13]) and flexible manufacture
systems (e.g., [14]). In particular, in [8, 9] constraints in (1) are referred
to as positive and negative time-lag constraints and generalized precedence
constraints, respectively. Scheduling problems with (1) are analyzed in [8,9]
and the subsequent literature.

It will be shown, for instance, that the equivalent reduction problem
can be solved in O(|V |3) time. Hence, algorithms that require more than
O(|V |3) time for problems involving precedence constraints in (1) can poten-
tially benefit from the simplification results in this paper. For example, [15]
considered a nonconvex resource allocation problem where the decision vari-
ables xi’s are the start times of tasks to be scheduled. In addition, xi’s are
precedence-constrained as in (1). It was shown in [15] that the computation
effort for solving the resource allocation problem using dynamic program-
ming increases exponentially with the cardinality of the minimum feedback
vertex set of the undirected version of graph (V,E). By solving the prece-
dence relation system simplification problems in this paper, and replacing
(V,E) with an equivalent (V,E′) with |E′| < |E|, it is possible to reduce the
computation effort for solving the resource allocation problem in [15].

In [16] Coffman and Graham derive an algorithm to solve a machine
scheduling problem with a special case of (1), where xi is interpreted as
the start time of task i in a n-task scheduling problem and cij = −pi with
pi being the given processing time for task i. The algorithm in [16] needs
to remove all redundant constraints in the specialized version of (1). This
can be achieved by applying transitive reduction in [2] to an appropriately
constructed unweighted directed acyclic graph. However, in [8, 9] machine
scheduling problems with (1) in its full generality are considered. We are
not aware of any solution algorithm for the generalized machine scheduling
problem that is similar to the one by Coffman and Graham in [16] using
transitive reduction. However, it seems plausible that if a Coffman-Graham-
like algorithm is to be developed for the general machine scheduling problem,
the simplification results presented in this paper for (1) in its full generality

4

would be needed.

1.4 Organization

The rest of the paper is organized as follows: Section 2 defines the precedence
graph associated with (1) and lists some results that are useful in the sequel.
Section 2 also establishes the equivalence between the algebraic notion of in-
dex set of redundant relations with a precedence graph-based concept to be
defined as redundant edge set. Then, Section 3 develops the complexity and
decomposition results for the problem of finding the maximum redundant
edge set. After that, Section 4 is dedicated to the problem of equivalent
reduction. It characterizes the set of all equivalent reductions of any prece-
dence relation system, and establishes that any equivalent reduction can be
found in polynomial-time. Section 5 concludes the paper.

2 Graph interpretation of the main problems

Section 2.1 defines precedence graph and establishes some properties nec-
essary for the subsequent analyses. Then, Section 2.2 describes a reformu-
lation of the maximum index set of redundant relations problem into an
equivalent graph-based problem involving the precedence graph of (1). The
graph-based formulation will be studied in detail in Section 3.

2.1 Precedence graph description and supplementary results

In this paper, we make extensive use of precedence graph to describe a prece-
dence relation system. In fact, we use these two concepts interchangeably. A
precedence graph (V,E, c(E)) is an edge weighted directed graph with node
set, edge set and vector of edge weights being V , E and c(E) respectively.
In addition, a precedence graph corresponds to a precedence relation system
sharing the same triple (V,E, c(E)). The correspondence is as follows:

precedence graph precedence relation system

V node set index set of variables

E edge set index set of inequalities

cij for (i, j) ∈ E edge weight xi − xj ≤ cij

The following standard graph notions are defined in order to make the
subsequent discussions more precise. A walk from u ∈ V and v ∈ V is

5

defined as (u = i0, i1, . . . , im = v) where (ik, ik+1) ∈ E for k = 0, . . . ,m− 1
and the traversed nodes i0, . . . , im are not necessarily distinct. A closed walk
is a walk (i0, i1, . . . , im) with the additional requirement that i0 = im. A
(simple) path from u to v is a walk with the additional requirement that all
traversed nodes are distinct. A cycle is a closed walk where i0 = im and all
other traversed nodes are distinct. The weight of a walk (e.g., path, cycle) is
the sum of the weights of all traversed edges, with the edge weight added as
many times as an edge is traversed. This paper allows degenerate path (u)
for u ∈ V (i.e., a single node), and the weight associated with (u) is zero.

The following symbols will be used throughout the paper. For any two
nodes u and v, the symbol puv is used to denote a path from u to v. The
weight of a path puv is denoted cpuv . Similarly, the symbol wuv is used to
denote a walk from u to v with the corresponding walk weight denoted cwuv .
The symbol u v is used to substitute the phrase “from u to v”. The
symbol u→ v is used to denote an edge from u to v.

Because of the associated precedence inequalities, a precedence graph
has the following property:

Lemma 1. Let G = (V,E, c(E)) be a precedence graph. If the corresponding
precedence inequality system has at least one solution, then the weights of
all closed walks (e.g., cycles) in G are nonnegative.

Proof. Let (i0, i1, . . . , im) with i0 = im denote a closed walk in G. By
the statement assumption, there exists x ∈ R

n satisfying the inequalities
corresponding to the edges in the closed walk:

xi0 − xi1 ≤ ci0i1
xi1 − xi2 ≤ ci1i2

...
xim−1 − xim ≤ cim−1im .

(3)

Summing up all inequalities, with the fact that i0 = im, leads to the desired
inequality that 0 ≤ ci0i1 + ci1i2 + . . . + cim−1im .

Certain assumptions on the graphs considered in this paper are made:

• We call a precedence graph feasible if its corresponding precedence
relation system has at least one solution. In this paper, all except one
precedence graphs are assumed to be feasible (the only exception is
in the last part of the proof of Theorem 4). This is due to the fact
that all given precedence graphs can be assumed to be feasible, and

6

there is no need to consider derived precedence graphs that are not
feasible except in the only exception mentioned above. Hence, if there
is no mentioning of the feasibility of a precedence graph, Lemma 1 is
assumed to be applicable to this graph.

• It is assumed that in all graphs there is at most one (directed) edge
from one node to another. In other words, no parallel edges are al-
lowed. This assumption is obvious for precedence graphs: if for any
pair (i, j) multiple precedence relations hold with xi − xj ≤ ckij for

k = 1, 2, . . . ,m, then xi − xj ≤ mink{c
k
ij} summarizes the same rela-

tions. Since all other graphs (e.g., those in statement assumptions) in
fact represent precedence graphs, the no-parallel-edge assumption is
imposed on these graphs as well.

• It is assumed that there is no self-loop of the form (i, i) in all graphs.
Again, this assumption is obvious for precedence graphs: if the prece-
dence graph is feasible then a self-loop means xi − xi = 0 ≤ cii.
This inequality on cii can be removed without affecting the rest of
the precedence relation system. It will also be obvious that for the
only exception precedence graph whose feasibility cannot be taken for
granted, there is no need to include self-loop in it.

In summary, the following are the standing assumptions of this paper:

Assumption 1.

1.a With only one exception in the proof of Theorem 4, all precedence
graphs are feasible.

1.b With only one exception in the proof of Theorem 4, no precedence
graph contains any negative weight closed walks.

1.c There is no parallel edges between nodes in any graph.

1.d There is no self-loop in any graph.

Remark 1. If a graph contains a negative weight cycle then it contains
a negative weight closed walk. Conversely, if a graph contains a negative
weight closed walk, then it must contain a negative weight cycle because a
closed walk can be decomposed into a finite number of cycles, with the walk
weight being the sum of the weights of the cycles (see Appendix A for fur-
ther details). Therefore, Assumption 1.b is in fact equivalent to the assump-
tion that the no precedence graph contains any negative weight cycles. In

7

addition, the no-negative-weight-cycle and no-negative-weight-closed-walk
assumptions will be used interchangeably in this paper for convenience.

The following statement is important in the subsequent developments.
For instance, the statement establishes the equivalence between the alge-
braic conditions in (2) and a graph theoretic condition in the corresponding
precedence graph. A similar algebraic/graph equivalence can be established
for the case of Definition 2.a, with the aid of this same statement.

Lemma 2. Let G = (V,E, c(E)) be a precedence graph, and its correspond-
ing precedence inequality system be

xi − xj ≤ cij , (i, j) ∈ E. (4)

Let u, v ∈ V , u 6= v, buv ∈ R be given. Then the following two conditions
are equivalent:

2.a Whenever x ∈ R
n satisfies (4), x satisfies the inequality xu−xv ≤ buv.

2.b There exists a path puv, u v in G such that the weight of puv,
denoted cpuv , satisfies cpuv ≤ buv.

Proof. Since u 6= v, we can define auv ∈ R
n such that

auv(k) =

1 k = u
−1 k = v
0 otherwise

.

With (standing) Assumption 1.d, if (i, j) ∈ E then i 6= j. Hence, for each
(i, j) ∈ E we can define the vector aij ∈ R

n such that

aij(k) =

1 k = i
−1 k = j
0 otherwise

That is, aij defines the column of the incidence matrix of G for edge (i, j).
With aij, the inequality xi − xj ≤ cij can be written as aij

Tx ≤ cij . Fur-
thermore, let JP denote the optimal objective value of the following linear
program

JP := max
x∈Rn

auv
Tx

subject to aij
Tx ≤ cij , ∀(i, j) ∈ E.

(5)

8

Then, condition 2.a holds if and only if JP ≤ buv. The linear programming
dual of (5) and its optimal objective value can be written as

JD := min
yij∈R

∑

(i,j)∈E

yijcij

subject to
∑

(i,j)∈E

yijaij = auv

yij ≥ 0, ∀(i, j) ∈ E.

(6)

Due to Assumption 1.a, (4) has at least one solution. Hence, the feasible set
of (5) is nonempty. Thus, by linear programming duality (e.g., [17]) it holds
that JD = JP with the convention that JD =∞ whenever (6) is infeasible.
Hence,

condition 2.a holds ⇐⇒ JP ≤ buv ⇐⇒ JD ≤ buv. (7)

Note that auv contains only −1, 1 or 0. In addition, aij for (i, j) ∈ E
in the constraint of (6) are columns of an incidence matrix (of G), which is
totally unimodular (e.g., [18]). Thus, a standard combinatorial optimization
argument (e.g., [18]) implies that the relations in (7) can be extended to

condition 2.a holds ⇐⇒ JP ≤ buv ⇐⇒ JD ≤ buv ⇐⇒ JB ≤ buv, (8)

where JB is the optimal objective value of the following 0− 1 binary linear
integer problem

JB := min
yij∈R

∑

(i,j)∈E

yijcij

subject to
∑

(i,j)∈E

yijaij = auv

yij ∈ {0, 1}, ∀(i, j) ∈ E.

(9)

That is, (9) is almost the same as (6) except that the decision variables in
(9) are restricted to 0 or 1. Next, we establish that JB ≤ buv is equivalent
to condition 2.b. That is,

JB ≤ buv ⇐⇒ ∃ path puv : u v in G such that cpuv ≤ buv. (10)

One side of the implication is easy to establish: if there is a path puv : u v
in G such that cpuv ≤ buv, then by assigning yij = 1 if and only if (i, j) is part
of the path we obtain a feasible solution of (9) with objective value being
cpuv ≤ buv. Hence, JB ≤ buv. Conversely, if JB ≤ buv then the following
procedure can be employed to retrieve a walk puv : u v in G such that
cpuv ≤ buv:

9

• Initialize W ← ∅, and Y ← {(i, j) ∈ E | y⋆ij = 1} with y⋆ being an
optimal solution to (9)

• While Y 6= ∅, do

1. If (u, s) ∈ Y for some s then set (i, j)← (u, s), otherwise set (i, j)
as an arbitrary edge in Y

2. Y ← Y \ {(i, j)}

3. w← (i, j)

4. While (j, t) ∈ Y for some t, do

(a) Y ← Y \ {(j, t)}

(b) w← w + t (meaning that w is appended in the end by t)

(c) j ← t

5. End (of second while)

6. W ←W ∪ {w}

• End (of first while)

To analyze the procedure the following nonnegative degree counters are
needed: d+(i) is the out-degree at node i in the graph (V, Y), where Y
is being updated in the procedure. Similarly, d−(i) is the in-degree at node
i. Initially, the degree counters satisfy

d+(u) = d−(u) + 1, d+(v) = d−(v)− 1, d+(i) = d−(i), i 6= u, v, (11)

because for each k ∈ {1, 2, . . . , n} the constraint in (9) can be written as

∑

(i,j)∈E

y⋆ijaij(k) =
∑

j|(k,j)∈E

y⋆kj −
∑

j|(j,k)∈E

y⋆jk = auv(k) =

1 k = u
−1 k = v
0 k 6= u, v

.

Now we first analyze some general properties of the procedure. Notice
that the procedure should terminates in finite number of passes of the first
while-loop because within each pass at least one edge is removed from Y and
Y is finite. Also, with a similar argument we can establish that the second
while-loop terminates for each pass of the first while-loop. At the end of a
pass of the first while-loop, a walk w = (i = i0, i1, . . . , im) is retrieved. There
can be two possibilities with im: either (I) im = i0 (i.e., w is a closed walk)
or (II) im 6= i0. Let d

+
fore(i) and d−fore(i) denote, respectively, the out-degree

and in-degree at node i before the pass of the first while-loop. Similarly,

10

let d+aft(i) and d−aft(i) denote the analogous degrees after the pass of the first
while-loop. Then, for case (I) with i0 = im the degree adjustments (after a
pass of the first while-loop) are as follows:

d+aft(iq) = d+fore(iq)− rq, ∀ q ∈ {0, 1, . . . ,m},

d−aft(iq) = d−fore(iq)− rq, ∀ q ∈ {0, 1, . . . ,m},

d+aft(im) = 0.

(12)

In (12), rq are some nonnegative numbers satisfying d+aft(iq) ≥ 0 and d−aft(iq) ≥
0. In other words, the difference between the out-degree and in-degree for
each node remains the same in case (I) (when w is a closed walk). For case
(II) with i0 6= im the degree adjustments are as follows:

d+aft(i0) = d+fore(i0)− r0,

d−aft(i0) = d−fore(i0)− r0 + 1,

d+aft(iq) = d+fore(iq)− rq, ∀ q ∈ {1, 2, . . . ,m− 1},

d−aft(iq) = d−fore(iq)− rq, ∀ q ∈ {1, 2, . . . ,m− 1},

d+aft(im) = d+fore(im)− rm + 1,

d−aft(im) = d−fore(im)− rm,

d+aft(im) = 0.

(13)

From (13), the in-degree counter of the end node im must satisfy

d−aft(im) = d−fore(im)− d+fore(im)− 1. (14)

Now we analyze the first pass of the first while-loop. With JB ≤ buv
assumed (hence feasibility), the constraint in (9) requires that (u, s) ∈ Y for
some s. Hence, i0 = u for the walk w in the first pass. In addition, w cannot
be a closed walk because (11) (with degree counters interpreted as those
before the pass) and (12) together imply that d−aft(u) = d−fore(u)− d+fore(u) =
−1 which is impossible. Hence, case (II) must hold. Then, (11) (with degree
counters interpreted as those before the pass) and (14) together imply that

im = v, d−aft(v) = 0, (15)

since all other choices of im would result in negative in-degree after the pass.
Therefore, w is in fact a walk from u to v, which is denoted as wuv and stored
in W in step 6. Furthermore, (13) and (15) together suggest that after the

11

first pass of the first while-loop the degree counters (in particular those of
u) are updated to

d+(g) = d−(g), ∀ g ∈ V, d+(v) = d−(v) = 0. (16)

In summary, v is no longer incident to any edge in Y and the out-degree
and in-degree for each node become equal (including the case of u), when
the first pass of the first while-loop is finished.

Next, we analyze the subsequent passes of the first while-loop. (16) (with
degree counters interpreted as those before the second pass) and (14) implies
that if the walk in the second pass is not a closed walk then v must be the
end node of this walk. Therefore, the walk from the second pass must be a
close walk denoted w2 because (16) specifies that v is no longer incident to
any edge in Y at this stage. In addition, by (12) the in/out degree difference
for each node remains zero after the second pass. This pattern continues for
all subsequent passes, generating closed walks w3, . . . , wN until Y becomes
an empty set. Upon termination of the first while-loop, W contains wuv

(i.e., the walk from u to v) and closed walks w2, w3, . . . , wN . In addition, it
can be seen that

cwuv + cw2 + cw3 + . . .+ cwN
= JB ≤ buv.

This suggests that cwuv ≤ buv since Assumption 1.b states that cwq ≥ 0 for
q = 2, 3, . . . , N . The walk wuv may not be a path from u to v. However, as
explained in Appendix A wuv can be further decomposed into a path puv :
u v and a finite number of cycles, which have nonnegative weights because
of Assumption 1.b (this argument will in fact be formalized in Lemma 3 to
be described). Hence, puv ≤ wuv ≤ buv. In conclusion, when JB ≤ buv, we
can indeed obtain a path puv : u v with weight puv ≤ buv. This establishes
(10). Finally, combining (8) and (10) yields the desired statement that

condition 2.a holds ⇐⇒ JB ≤ buv ⇐⇒ condition 2.b holds.

2.2 Graph representation of maximum index set of redun-

dant relations problem

For the analysis in the sequel, the notion of index set of redundant relations
defined in (2) will be reinterpreted as an equivalent and graph based con-
cept of redundant edge set to be defined in Definition 3. Consequently, the
problem of finding the maximum index set of redundant relations in (1) can

12

be reformulated as the problem of finding the maximum redundant edge set
in the corresponding precedence graph. A consequence of the reformulation,
as will be clear, is that the algebraic problem of finding the maximum index
set of redundant relations can be solved using readily available graph-based
algorithms (e.g., Floyd-Warshall shortest path algorithm).

Definition 3 (Redundant edge set). For an edge weighted directed graph
G = (V,E, c(E)), an edge subset R ⊆ E is called a redundant edge set of G
if either R = ∅ or when R 6= ∅, it holds that

for every (u, v) ∈ R with weight cuv, there exists a path puv

in (V,E \R, c(E \R)) from u to v such that cpuv ≤ cuv.
(17)

Remark 2. For an edge weighted directed graph without negative weight
cycles (e.g., a precedence graph), the definition of redundant edge set can
be relaxed. Specifically, the existence of a path puv in condition (17) can be
replaced with the existence of a walk wuv from u to v in (V,E \R, c(E \R))
such that cwuv ≤ cuv. The relaxation is justified by the following statement.

Lemma 3. Let G = (V,E, c(E)) be an edge weighted directed graph without
negative weight cycles (e.g., a precedence graph). For any two nodes u, v ∈ V
with u 6= v. If wuv : (u = i0, i1, . . . , im = v) is a walk such that cwuv ≤ cuv.
Then there exists a path puv : (ik(1), ik(2), . . . , ik(q)) where k(1), k(2), . . . , k(q)
is a subsequent of 0, 1, . . . ,m such that k(1) = 0 and k(q) = m. In addition,
the weight of puv, denoted cpuv , satisfies cpuv ≤ cwuv ≤ cuv.

Proof. According to Appendix A, the walk wuv can be decomposed into
a path puv of the form described in the statement and a finite number of
cycles. In addition, the weight of the walk wuv is the sum of the weight of
the path puv and those of the cycles (if any). Since the weight of all cycles
are nonnegative as assumed in the statement, it holds that cpuv ≤ cwuv .

Now we establish the equivalence between the notions of index set of
redundant relations and redundant edge set.

Lemma 4. Let G = (V,E, c(E)) denote a precedence relation system and
its precedence graph. Then R ⊆ E is an index set of redundant relations of
G (Definition 1) if and only if it is a redundant edge set of G (Definition 3).

Proof. The statement holds trivially if R = ∅. Therefore, the rest of the
proof assumes that R 6= ∅. By Definition 1, R is an index set of redundant

13

relations if and only if

x ∈ R
n satisfies xu − xv ≤ cuv, ∀(u, v) ∈ (E \R)

=⇒ xu − xv ≤ cuv, ∀(u, v) ∈ R.
(18)

(V,E \ R, c(E \ R)), being a subgraph of G, is a precedence graph (with
Assumption 1 satisfied). By applying Lemma 2 with (V,E \R, c(E \R)) for
buv = cuv for each (u, v) ∈ R, the condition in (18) is equivalent to

for each (u, v) ∈ R there exists a path puv : u v

in (V,E \R, c(E \R)) such that cpuv ≤ cuv.

This is the same as the condition that R is a redundant edge set, according
to Definition 3.

In view of Lemma 4, the problem of finding the maximum index set of
redundant relations in (1) can be posed as the problem of finding the max-
imum (cardinality) redundant edge set in the precedence graph associated
with (1), with the definition of redundant edge set given in (17).

3 Maximum redundant edge set problem

This section presents the results on the maximum redundant edge set prob-
lem. In Section 3.1 we will establish that the maximum redundant edge set
problem is polynomial-time solvable if the precedence graph does not have
any zero-weight cycle. On the other hand, we will show that in general the
problem is NP-hard. Section 3.2 specifies that the maximum redundant edge
set problem can be decomposed into several subproblems: one subproblem
is polynomial-time solvable and the other subproblems are NP-hard. Sec-
tion 3.3 discusses some computation issues pertaining the decomposition
result in Section 3.2.

3.1 Complexity of maximum redundant edge set problem

This subsection answers the following basic and complexity related questions
regarding the maximum redundant edge set problem.

1. When is there a nonempty redundant edge set?

2. If there exists at least one redundant edge set, when is the maximum
redundant edge set unique and how to compute it?

14

3. When is it computationally intractable to solve the maximum redun-
dant edge set problem?

The answer to the first question lies in the following concept:

Definition 4 (Redundant edge). For an edge weighted directed graph G =
(V,E, c(E)), an edge (i, j) ∈ E is called a redundant edge of G if the single-
ton {(i, j)} is a redundant edge set of G (defined in (17)).

Remark 3. In general, an arbitrary set of redundant edges need not be a
redundant edge set defined in (17) in Definition 4, because the “replacement
path” of one redundant edge might contain another redundant edge.

Lemma 5. Let G = (V,E, c(E)) be an edge weighted directed graph. Then,
there exists a nonempty redundant edge set in G if and only if there exists
a redundant edge in G.

Proof. The sufficiency part is due to the fact that a redundant edge leads
to a single-member redundant edge set. For the necessity part, note that
by definition in (17) any subset of a redundant edge set is also a redundant
edge set. Hence, nonexistence of redundant edge implies nonexistence of
single-member and in general any redundant edge sets.

The answer to the second question is provided by the following state-
ment (Lemma 6) and its corollary (Theorem 1), whose preliminary version
appeared in [19]:

Lemma 6. Let G = (V,E, c(E)) be an edge weighted directed graph. Assume
that all cycles in G have positive weights. Then, if R and R′ are redundant
edge sets of G satisfying (17), R ∪R′ is also a redundant edge set of G.

Proof. To verify that R ∪ R′ is indeed a redundant edge set, it is sufficient
to verify that for each (u, v) ∈ R ∪R′ with weight cuv , it holds that

∃ a path puv in (V,E \ (R ∪R′), c(E \ (R ∪R′))) from u to v

such that cpuv ≤ cuv.
(19)

In the subsequent parts of the proof, the following shorthand is used: the sen-
tence “a walk w is in Ê ⊆ E” means that w is in the subgraph (V, Ê, c(Ê)).
Without loss of generality, assume that (u, v) ∈ R (otherwise we exchange
the roles of R and R′). Then by (17) there exists a walk (which is in fact a
path) w1 : u v in E \ R such that cw1 ≤ cuv. If w1 is also in E \R′ then
w1 is in E \ (R ∪R′), and hence (u, v) satisfies (19). If, on the other hand,

15

w1 involves edges belonging to R′, then by (17) each of these edges can be
replaced by a corresponding path in E \ R′. Also by (17), the weights of
the replacement paths are no more than the weights of the corresponding
edges. This results in another walk w2 : u v in E \ R′, with possible
edges in R. The walk w2 has strictly more nodes (and edges) than w1, and
cw2 ≤ cw1 . If w2 is in E \R then (u, v) satisfies (19), as argued above. Oth-
erwise, the process of finding replacement walks w3, w4, . . . with increasing
number of nodes and nonincreasing weights would continue. Next, we show
by contradiction that the replacement-walk-finding process would terminate
in a finite number of iterations. It is noted that any walk from u to v (with
u 6= v) can be decomposed into one path from u to v and a finite number
of cycles (see Appendix A for a proof). In addition, in a finite graph the
numbers of possible paths and cycles are finite. Therefore, by the pigeon-
hole principle, if the replacement-walk-finding process does not terminate at
some iteration it will generate a walk w̃ traversing a cycle, and one of the
previously constructed walks, denoted ŵ, is exactly the same as w̃ except
that the cycle is not traversed. The construction of the walks specifies that
cw̃ ≤ cŵ, and this implies that the cycle has nonpositive weight. This contra-
dicts the assumption that all cycles in G have positive weights. Therefore,
the replacement-walk-finding process terminates in a finite number of itera-
tions. Consequently, a walk w⋆ in E \ (R ∪R′) from u to v with cw⋆ ≤ cuv
is resulted. Then, by Lemma 3 the desired path puv can be constructed
from w⋆ to satisfy (19). Applying the same proof to all members of R ∪R′

completes the proof.

Theorem 1. Let G = (V,E, c(E)) be an edge weighted directed graph. As-
sume that all cycles in G have positive weights. Then the maximum redun-
dant edge set is unique. In addition, if there is a redundant edge, then the
maximum redundant edge set is the set of all redundant edges, which can be
computed in O(|V |3) time.

Before the proof is given, the procedure to compute all redundant edges
when G does not have zero or negative weight cycle is described first.

Algorithm 1 (Finding all redundant edges in graph G = (V,E, c(E)) with-
out zero or negative weight cycles).

1. Solve the all-pair shortest path problem for all source/destination pairs
in G. Let dij denote the shortest path distance from i to j.

2. An edge (i, j) ∈ E is declared a redundant edge if and only if

min
(i,k)∈E, k 6=i, k 6=j

{
cik + dkj

}
≤ cij . (20)

16

Lemma 7. When G = (V,E, c(E)) does not have any zero or negative
weight cycles, Algorithm 1 correctly computes all redundant edges in O(|V |3)
time.

Proof. According to Definition 4, edge (i, j) is a redundant edge if and only
if there exists a path pij : i j in G such that (i, j) is not part of pij and
cpij ≤ cij . If (20) does not hold, then except possibly (i, j) there is no path
in G from i to j with weight less than or equal to cij . Hence, (i, j) cannot
be a redundant edge. On the other hand, if (20) holds, then there exists a
walk wikj : i → k j such that cwikj

≤ cij . If (i, j) is part of wikj then
the walk is of the form i → k i → j j, and its weight is cwikj

> cij
because the closed walks i → k i and j j can be decomposed into
sequences of cycles and the cycles in G are positively weighted as assumed
in the statement. This is a contradiction because cwikj

≤ cij and cwikj
> cij

cannot be both true. Hence, (i, j) is not part of wikj. From Lemma 3 the
desired path pij : i → k j can be found to certify that (i, j) is indeed a
redundant edge.

Next we argue for the computation requirement. Since G does not have
any negative weight cycle. The all-pair shortest path problem can be solved
using, for instance, the Floyd-Warshall algorithm in O(|V |3) time (e.g., [20]).
The third step requires O(|E||V |) = O(|V |3) computation cost.

Remark 4. In Lemma 7 the assumption of no zero or negative weight cycles
cannot be removed. See Figure 1 for a consequence of when the assumption
is not satisfied.

!" #"

!"

$%"

&"

!

&

%"

Figure 1: A 3-node example of a graph with a zero weight cycle (1, 3, 1).
In this example, c12 = 3, c13 = −4 and d32 = 7. In (20) for edge (1, 2),
c13 + d32 = 3 ≤ c12. However, (1, 2) is not a redundant edge.

Proof of Theorem 1. Suppose R and R′ are two different different maximum
redundant edge sets. Then, |R ∪ R′| > |R|. Further, by Lemma 6 R ∪ R′

is a redundant edge set which has more edges than R, contradicting the
assumption that R is a maximum redundant edge set. Thus, the maximum
redundant edge set is unique. It is denoted as R⋆.

17

Next, let U denote the set of all redundant edges. Under the additional
assumption that U 6= ∅, Lemma 5 specifies that R⋆ 6= ∅. Then, each (u, v) ∈
R⋆ is a redundant edge because the singleton {(u, v)} ⊆ R⋆ is a redundant
edge set. Therefore, R⋆ ⊆ U . On the other hand, Lemma 6 states that U ,
which is the union of single-member redundant edge sets, is also a redundant
edge set. Thus, U ⊆ R⋆. Finally, the claim about O(|V |3) computation time
follows from Lemma 7.

The positive weight cycle assumption in Lemma 6 is necessary. The
presence of zero or negative weight cycles can indeed results in situations
where the union of two redundant edge sets is not a redundant edge set,
and as a result the maximum redundant edge set is not unique. For a
counterexample, consider the graph in Figure 2.

!" #"

$"

%
"

%
"

%
"

%
"

Figure 2: A 3-node example of a graph with zero weight cycles. There are
two different maximum redundant edge sets, namely {(1, 2)} and {(1, 3)}.
However, the union {(1, 2), (1, 3)} is not a redundant edge set according to
(17). The cycle (2, 3, 2) has zero weight.

In fact, the general maximum redundant edge set problem (without the
assumption in Lemma 6) is NP-hard. This can be shown by a reduction
from the NP-hard minimum equivalent graph problem studied in [1]. The
proof also establishes the connection that the maximum redundant edge set
problem is a generalization of the minimum equivalent graph problem.

Theorem 2. Let G be an edge weighted directed graph. The problem of
finding the maximum redundant edge set of G is NP-hard.

Proof. First, the minimum equivalent graph problem in [1] is summarized,
in the context of our discussion. Consider a directed graph (V,E), and let
R̂ ⊆ E. We mention that (V,E) and (V,E \ R̂) have the same reachability if
the following condition is satisfied: there is a walk (hence a path) from i ∈ V
to j ∈ V in (V,E) if and only if there is a walk from i to j in (V,E \ R̂).
Then, an instance of the minimum equivalent graph problem (associated

18

with (V,E)) seeks the maximum cardinality R⋆ ⊆ E such that (V,E) and
(V,E \R⋆) have the same reachability.

Next, we show that every instance of the minimum equivalent graph
problem can be reduced into an instance of the maximum redundant edge
set problem. To begin, we claim that

(V,E) and (V,E \ R̂) have the same reachability. (21a)

⇐⇒ ∀(i, j) ∈ R̂, there exists a walk from i to j in (V,E \ R̂). (21b)

Since a walk in (V,E \ R̂) is a walk in (V,E), condition (21a) is the same as
the condition that

∃ walk wij : i j in (V,E) =⇒ ∃ walk wr
ij : i j in (V,E \ R̂). (22)

If (21b) holds, then in (22) for every edge (u, v) ∈ R̂ that is part of wij there
is a walk wr

uv : u v in (V,E \ R̂). Hence, (22) holds. On the other hand,
suppose (21b) does not hold, and let (s, t) ∈ R̂ be an edge such that there is
no walk from s to t in (V,E \ R̂). Then, with i = s, j = t and wij = (s, t) as
a counterexample it can be seen that (22) does not hold. Therefore, (21a),
(21b) and (22) are all equivalent. Further, we define (V,E, c0(E)) where
c0ij = 0 for all (i, j) ∈ E (in fact, the following argument would hold as long

as c0ij = α for α ≤ 0). Since any walk in (V,E) is a zero weight walk in

(V,E, c0(E)) and vice versa, it can be seen that (21b) is equivalent to the
condition that R̂ is a redundant edge set in (V,E, c0(E)). This suggests that
an instance of minimum equivalent graph problem with (V,E) is equivalent
to the instance of maximum redundant edge set problem with (V,E, c0(E)),
with the two problem instances having the same optimal solutions.

To complete the complexity argument, note that by definition of c0(E),
(V,E) contains a cycle if and only if (V,E, c0(E)) contains a zero weight
cycle. Thus, if there would be a polynomial time algorithm which can solve
all instances of the maximum redundant edge set problem including those
with zero or negative weight cycles, then the minimum equivalent graph
problem could be solved in polynomial time as well. However, since in
general the minimum equivalent graph problem is NP-hard (e.g., [21]), we
establish that in general the maximum redundant edge set problem is NP-
hard as well.

In summary, if G is a precedence graph then by standing Assumption 1.b
G does not have any negative weight cycles. If in addition G does not have
any zero-weight cycles, then Theorem 1 states that the maximum redundant

19

edge set of G is unique, and it is the set of all redundant edges (if the set
is nonempty). In addition, finding all redundant edges using Algorithm 1
requires O(|V |3) time. On the other hand, in the more general case where
G is allowed to have zero-weight cycles, the example in Figure 2 indicates
that the maximum redundant edge set need not be unique. In addition,
Theorem 2 states that the maximum redundant edge set problem is NP-
hard in general.

It turns out that the maximum redundant edge set problem can always be
decomposed into a finite number of decoupled subproblems, one of which is
solvable in polynomial time and all other are NP-hard. This decomposition,
which will be detailed in Section 3.2, is analogous to that in [1] for the
minimum equivalent graph problem for unweighted directed graphs.

3.2 Decomposition of maximum redundant edge set problem

In this subsection, we first introduce an equivalence class partitioning of
the node set of a precedence graph, and define an auxiliary graph induced
by the equivalence class partitioning called condensation. Next, we present
some properties of the equivalence classes and the condensation. After that,
we establish the fact that the maximum redundant edge set problem can be
decomposed into K + 1 independent subproblems, where K is the number
of equivalence classes. The main result will be summarized in Theorem 3.

In any edge weighted directed graph, we define an equivalence relation
on the node set as follows:

Definition 5 (Equivalence relation ∼). Let G = (V,E, c(E)) denote an
edge weighted directed graph. For any pair i ∈ V , j ∈ V , we denote i ∼ j if
either (a) i = j, or (b) there exists a zero-weight closed walk in G traversing
both i and j.

Remark 5. To verify that ∼ is indeed an equivalence relation, it suffices
to note that if i ∼ j and j ∼ k then there exist two zero-weight closed
walks i j i and j k j. Consequently, a zero-weight closed walk
i j k j i exists, and this implies that i ∼ k.

The relation ∼ defines equivalence classes in the node set. For conve-
nience, we will define some notations associated with the equivalence classes.
However, before these notations are defined, the notion of the minimum walk
weight should be defined first.

Definition 6 (Minimum walk weight). Let G = (V,E, c(E)) be an edge
weighted directed graph without negative weight closed walks. For i ∈ V ,

20

j ∈ V , define dij to be the minimum weight of the walk among all walks in
G which goes from i to j. Note that dii = 0 for all i ∈ V , and this is attained
by the single-node path (i) since G does not have any negative weight closed
walks.

Definition 7 (Equivalence classes induced by equivalence relation ∼). Let
G = (V,E, c(E)) denote an edge weighted directed graph without negative
weight closed walks. Let relation ∼ be defined in Definition 5. In addition,
let dij , the minimum walk weight in G, be defined in Definition 6. We define
the following:

7.a K denotes the number of equivalence classes in V defined by relation
∼.

7.b For k ∈ {1, 2, . . . ,K}, [vk] ⊆ V denotes the equivalence class contain-
ing vk, where vk is the (arbitrarily) designated representing node for
equivalence class containing vk.

7.c For k ∈ {1, 2, . . . ,K}, we denote

• Ek := {(i, j) ∈ E | i ∈ [vk], j ∈ [vk]}. That is, Ek denotes the set
of edges connecting two nodes inside an equivalence class [vk].

• Let Er
k ⊆ Ek be defined as

Er
k := {(i, j) ∈ Ek | cij > dij}. (23)

That is, Er
k ⊆ Ek is a subset of Ek where each member edge has

an edge weight strictly greater than the corresponding minimum
walk weight. As it will become apparent in the sequel, edges in
Er

k are redundant (i.e., can always be included in any maximum
redundant edge set). This motivates the use of superscript “r” in
(23).

• Let Ec
k ⊆ Ek be defined as

Ec
k := {(i, j) ∈ Ek | cij = dij}. (24)

That is, Ec
k = Ek \ E

r
k since cij ≥ dij for all (i, j) ∈ E. This

motivates the superscript “c”, since Ec
k is the complement of Er

k.

7.d For i ∈ {1, 2, . . . ,K}, j ∈ {1, 2, . . . ,K}, i 6= j we denote

• Eij := {(u, v) ∈ E | u ∈ [vi], v ∈ [vj]}. That is, Eij denotes
the set of edges from a node in [vi] to another node in [vj] with
[vi] 6= [vj] (because of the assumption that i 6= j).

21

• Let Ec
ij ⊆ Eij be defined as

Ec
ij := {(u, v) ∈ Eij | (u, v) ∈ argmin

(s,t)∈Eij

dvis + cst + dtvj}. (25)

While in (25) the definition of Ec
ij assumes a designation of the

representing nodes vi and vj , it turns out that Ec
ij is in fact

independent of the choice of the designation. This will be argued
in Remark 8.

• For Eij 6= ∅ (hence Ec
ij 6= ∅), we (arbitrarily) designate a par-

ticular edge (viij , v
j
ij) ∈ Ec

ij (with viij ∈ [vi], vjij ∈ [vj]) as the
“representing” edge for Eij .

7.e Collecting all inter-equivalence class edges, we denote

E0 := ∪
1≤i 6=j≤K

Eij

Ec
0 := ∪

1≤i 6=j≤K
Ec

ij

Ed
0 := ∪

1≤i 6=j≤K
{(viij , v

j
ij)}

, (26)

where 1 ≤ i 6= j ≤ K is shorthand for {(i, j) | 1 ≤ i, j ≤ K, i 6= j}. It
holds that Ed

0 ⊆ Ec
0 ⊆ E0.

Figure 3 shows an illustration of the equivalence classes defined by re-
lation ∼. Analogous to the condensation of a unweighted graph, we define
the condensation of an edge weighted directed graph as follows:

Definition 8 (Condensation). LetG = (V,E, c(E)) denote an edge weighted
directed graph without negative weight closed walks. Let other involved
symbols be defined in Definitions 5, 6, 7 in the context of G. We define the
condensation of G, denoted G̃ := (Ṽ , Ẽ0, c̃(Ẽ0)) as follows:

• The set of all nodes of G̃ is Ṽ := {v1, v2, . . . , vK}.

• In G̃, there is an edge (vi, vj) ∈ Ẽ0 with i 6= j if and only if in G the
set Eij 6= ∅ (see Definition 7.d for Eij).

• For any (vi, vj) ∈ Ẽ0, the edge weight c̃vivj is defined as

c̃vivj := min
(u,v)∈Eij

dviu + cuv + dvvj , (27)

where dviu and dvvj are defined in Definition 6.

22

!"

#"

$"

%"

&"

!"

#"

$"

!"

!"

'!"

'!"

#"##"#"

$"$"

%"%

&"&

!"

#"

$"

!"

!"!

'!"

'!"

!"!"

(!)"

(#)"

Figure 3: An example precedence graph with five nodes. The number on
each edge denotes the weight of the corresponding edge. Node 1 defines an
equivalence class [1] by itself because it is not on any zero weight closed
walk. {2, 3, 4, 5} is the other equivalence class [2] because of the zero-weight
cycle (i.e., closed walk) (3, 4, 2, 5, 3). In constrast, for the simplification of
unweighted directed graphs, references [1, 2] consider the partitioning of V
into a different type equivalence classes which are the strongly connected
components of the graph. For this example graph, there is only one strongly
connected component which is the set of all nodes. This is different from the
two-part equivalence class partitioning induced by the ∼ relation considered
in this paper. The intra-equivalence class edge sets are E1 = ∅, E2 =
{(2, 5), (3, 2), (3, 4), (4, 2), (5, 3)} and Er

2 = {(3, 2)}. The inter-equivalence
class edge sets are E12 = {(1, 2)} and E21 = {(3, 1)}. The representing edges
for E12 and E21 are, respectively, (v112, v

2
12) = (1, 2) and (v221, v

1
21) = (3, 1).

In this example, E0 = Ec
0 = Ed

0 = {(1, 2), (3, 1)}.

• According to the definition of viij and vjij in Definition 7.d, it holds
that

c̃vivj = dviviij
+ c

viijv
j
ij

+ d
v
j
ijvj

. (28)

• The vector of edge weights is denoted c̃(Ẽ0).

Remark 6. For a graph G, different designations of the representing nodes
in the equivalence classes (e.g., v1, v2, . . . , vK) can result in different conden-
sations G̃. However, certain properties of G̃ vital to the main results in this
paper are independent of the designation. See Remarks 8 and 12 for details.

The condensation of the graph in Figure 3 is illustrated in Figure 4.

23

!"

#"!"

$"
!"

$"

Figure 4: The condensation of the graph in Figure 3. There are two
edges in the condensation: (v1, v2) = (1, 2) and (v2, v1) = (2, 1) (i.e.,
Ẽ0 = {(1, 2), (2, 1)}). Their weights are c̃v1v2 = dv1v112 + cv112v212 + dv212v2 =
0 + 1 + 0 = 1, and c̃v2v1 = dv2v221 + cv221v121 + dv121v1 = −2 + 2 + 0 = 0.

The equivalence relation ∼ (Definition 5), the equivalence classes (Defi-
nition 7) and the condensation (Definition 8) satisfy certain properties that
will be useful in the proof of the main results in this subsection. Lemma 8
and Lemma 9 specify that relation ∼ and the corresponding equivalence
class partitioning are preserved even if a subset of edges is removed from
the graph, as long as the removed edges form a redundant edge set.

Lemma 8. Let G = (V,E, c(E)) denote an edge weighted directed graph
without negative weight closed walks, and let R be any redundant edge set of
G (Definition 3). Denote Gc = (V,E \R, c(E \ R)). Let i ∈ V and j ∈ V .
Then i ∼ j in G if and only if i ∼ j in Gc.

Proof. The proof considers only the case when i 6= j, since the statement
is true by Definition 5 when i = j. If i ∼ j in Gc then i and j are on a
zero-weight closed walk in Gc. The same closed walk is also in G because
(E \ R) ⊆ E. Hence, i ∼ j in G. On the other hand, if i ∼ j in G, then
there exists a zero-weight closed walk w in G traversing i and j. Part of w
can be edges in R. However, for each (u, v) ∈ R such that (u, v) is part of w,
a replacement path puv exists in Gc such that cpuv ≤ cuv. By substituting
edges in R which are part of w with the corresponding replacement paths
in Gc, it is possible to construct another closed walk ŵ (in Gc) traversing i
and j satisfying cŵ ≤ cw = 0. The no-negative-weight-cycle assumption in
the statement excludes the case where cŵ < 0. Hence, ŵ is a zero-weight
closed walk in Gc traversing i and j. In other words, i ∼ j in Gc.

Lemma 9. Let G = (V,E, c(E)) an edge weighted directed graph without
negative weight closed walks. The equivalence class partitioning defined by
relation ∼ is the same for all subgraphs (V,E \ R, c(E \ R)), where R ⊆ E
is any redundant edge set in G.

24

Proof. This is a direct consequence of Lemma 8.

The following preliminary statements are also useful in the proof of the
main results. Lemma 10 establishes some properties regarding the minimum
walk weights (and the corresponding walks) between nodes in an equivalence
class. Lemma 11 specifies that the cycles in the condensation are always
positively weighted, even if the graph from which the condensation is derived
can have zero-weight cycles.

Lemma 10. Let G = (V,E, c(E)) be an edge weighted directed graph without
negative weight closed walks. For i, j ∈ V , let dij be the minimum walk
weight from i to j among all walks in G (i.e., Definition 6). Let V ′ ⊆ V ,
E′ ⊆ E. Let U ⊆ V ′ be an equivalence class in (V ′, E′, c(E′)) defined
by relation ∼. Define EU := {(i, j) ∈ E′ | i ∈ U, j ∈ U}, and GU =
(U,EU , c(EU)). For all i ∈ U , j ∈ U , the following statements hold:

10.a There exists a walk wij in GU (which is a subgraph of G′ which in
turn is a subgraph of G) attaining the minimum weight dij among all
walks in G which goes from i to j. Similiarly, there exists a walk wji

in GU attaining the minimum weight dji among all walks in G which
goes from j to i. In case i = j, dii = 0 is attained by the degenerate
walk containing the single node i.

10.b dij = −dji.

10.c If s ∈ U , then dij = dis + dsj.

Proof. First, 10.a and 10.b are shown together. If i = j, then dij = −dji = 0.
Thus, we only consider the case when i 6= j. By Definition 5, i ∈ U and j ∈ U
means that there exists a zero-weight closed walk wii : i j i in GU .
This closed walk can be decomposed into two walks in GU : wij : i j and
wji : j i (there can be multiple ways to decompose). Let cwii

= 0, cwij
and

cwji
denote the weights of the walks respectively. Then the decomposition

of wii implies that cwij
+ cwji

= cwii
= 0. Hence, cwij

= −cwji
. Next, we

show that indeed cwij
= dij and cwji

= dji. First, note that cwij
≥ dij by

Definition 6. Suppose cwij
> dij , and hence there exists another walk ŵij in

G going from i and j such that cŵij
< cwij

. Then, concatenating ŵij and wji

leads to a closed walk with weight cŵij
+cwji

= cŵij
−cwij

< 0. This violates
the no negative weight closed walk assumption in the statement. Thus,
cwij

= dij . With a symmetric argument, it can be shown that cwji
= dji.

For 10.c, if s = i, s = j or i = j then the equality trivially holds because
dii = djj = 0, and dis = −dsi by 10.b. Thus, we consider only the case where

25

s, i, j are all distinct. Since i, j, s ∈ U , by 10.a there exist walks wis : i s
and wsj : s j with weights dis and dsj , respectively. Thus, concatenating
wis and wsj yields a walk i s j with weight dis+dsj . Consequently, by
Definition 6, dij ≤ dis+dsj . Next, we show that dij < dis+dsj is impossible.
Assume, on the contrary, that

dij < dis + dsj (29)

holds. Let wij be a minimum weight walk in G attaining weight dij by
Definition 6. In addition, since i, j, s ∈ U , by 10.a and 10.b there exist
walks in GU (and hence in G) wjs : j s and wsi : s i with weights
djs = −dsj and dsi = −dis respectively. Consequently, by concatenating
wij , wjs and wsi we obtain a closed walk (in G) i j s i with weight
cwij

+cwjs
+cwsi

= dij−dsj−dis < 0 according to (29). This violates the no
negative weight closed walk assumption in the statement. Therefore, (29)
does not hold, and dij = dis + dsj as desired.

Lemma 11. Let G = (V,E, c(E)) be an edge weighted directed graph without
negative weight closed walks. Let G̃ := (Ṽ , Ẽ0, c̃(Ẽ0)) be the condensation of
G defined in Definition 8. Then, the weights of all cycles in G̃ are positive.

Proof. Let w̃ denote a cycle in G̃ as (vi0 , vi1 , . . . , vim = vi0). By definition of
cycle, m ≥ 2 and at least one viq for q > 0 is different from vi0 . The weight
of the cycle is

c̃w̃ = c̃vi0vi1 + c̃vi1vi2 + . . .+ c̃vim−1
vim

. (30)

By (28), the edge weights are

c̃vikvik+1
= d

vikv
ik
ikik+1

+ c
v
ik
ikik+1

v
ik+1
ikik+1

+ d
v
ik+1
ikik+1

vik+1

, ∀k ∈ {0, . . . ,m− 1}.

(31)
With (31), the expression in (30) can be rewritten as

c̃w̃ = d
vi0v

i0
i0i1

+ c
v
i0
i0i1

v
i1
i0i1

+ d
v
i1
i0i1

vi1
+ d

vi1v
i1
i1i2

+ c
v
i1
i1i2

v
i2
i1i2

+ d
v
i2
i1i2

vi2

+ . . .+ d
vim−1

v
im−1
im−1im

+ c
v
im−1
im−1im

v
im
im−1im

+ d
v
im
im−1im

vim
.

(32)
The right-hand side of (32) is the weight of a closed walk in G of the form

vi0 vi0i0i1 → vi1i0i1 vi1 vi1i1i2 → vi2i1i2 · · · → vi0im−1i0
 vi0 , (33)

where the existence of the intra equivalence class walks and the inter equiva-
lence class edges is guaranteed by Lemma 10.a and Definition 8, respectively.

26

c̃w̃ < 0 is impossible because of the statement assumption. In addition, if
c̃w̃ = 0 then the closed walk (in G) in (33) would have zero weight. Conse-
quently, vi0 , vi1 , . . ., which are the representing nodes of different equivalence
classes, would be all traversed by one zero-weight closed walk. This is a con-
tradiction. Therefore, c̃w̃ > 0 as desired.

Now we begin to analyze and characterize the maximum redundant edge
set problem for an edge weighted directed graph G = (V,E, c(E)). The
main result in this subsection is concerned with a decomposition of the set
of decision variables (i.e., E), induced by the equivalence class partitioning
in Definition 7:

E = E0 ∪ (Er
1 ∪ Er

2 ∪ . . . ∪ Er
K) ∪ (Ec

1 ∪ Ec
2 ∪ . . . ∪ Ec

K). (34)

In the following, Lemma 12 and Lemma 13 are first introduced as compo-
nents of the proof of subsequent lemmas. After that, Lemma 14 states that
(Er

1 ∪E
r
2 ∪ . . .∪E

r
K) should always be included in any maximum redundant

edge set of G. Lemma 15 delivers a similar but less straightforward result.
Apart from other properties to be discussed, Lemma 15 states that at most
one member for each Eij (recall that E0 = ∪

i,j
Eij) can be excluded from any

maximum redundant edge set.

Lemma 12. Let G = (V,E, c(E)) be an edge weighted directed graph without
negative weight closed walks, and let R be a redundant edge set of G. Suppose
A ⊆ E satisfies the property that for each (i, j) ∈ A with edge weight cij , the
following condition holds:

∃ wij : i j in
(

V,E \ (R ∪A), c
(
E \ (R ∪A)

))

such that cwij
≤ cij .

(35)
Then, R ∪A is also a redundant edge set of G.

Proof. If R = ∅ then the statement is true because (35) is a restatement
of Definition 3 for A. Similarly, the statement holds trivially when A = ∅.
Hence, for the rest of the proof we assume R 6= ∅, A 6= ∅. Since R is a
redundant edge set of G, by Definition 3 for each (u, v) ∈ R there exists a
path p̂uv : u v in (V,E \ R, c(E \ R)) satisfying cp̂uv ≤ cuv. The path
p̂uv might include as parts the edges in A. However, we can substitute each
(i, j) ∈ A that is part of p̂uv with the corresponding replacement walk wij in
(35). The outcome is a walk wuv : u v in (V,E \ (R ∪A), c(E \ (R ∪A)))
such that cwuv ≤ cp̂uv ≤ cuv. Furthermore, by applying Lemma 3 with wuv,

27

we establish that for all (u, v) ∈ R,

∃ puv : u v in
(

V,E \ (R ∪A), c
(
E \ (R ∪A)

))

s.t. cpuv ≤ cuv. (36)

Combing (35) (again, with an application of Lemma 3) and (36) yields the
desired statement that R ∪A is a redundant edge set of G.

Lemma 13. Let G = (V,E, c(E)) be an edge weighted directed graph without
negative weight closed walks. For u, v ∈ V , let duv be the minimum walk
weight from u to v defined in Definition 6 for G. Let R be any redundant
edge set of G. If (i, j) ∈ E with edge weight satisfying cij > dij , then
R ∪ {(i, j)} is a redundant edge set of G.

Proof. cij > dij implies that there exists a walk wij : i j in G with
weight cwij

< cij . The walk wij might contain edges in R. However, by
Definition 3 each edge of wij that is in R can be replaced by another path
in (V,E \R, c(E \R) with no greater weight. Hence, there exists a walk ŵij

in (V,E \ R, c(E \ R) such that cŵij
< cij . If (i, j) is part of ŵij , then ŵij

is of the form i i→ j j. The fact that cŵij
< cij implies that at least

one of the closed walks i i and j j must have negative weight. This
contradicts the statement assumption. Hence, (i, j) cannot be part of ŵij .
Therefore, it holds that

∃ ŵij : i j in
(

V,E \ (R ∪ {(i, j)}), c
(
E \ (R ∪ {(i, j)})

))

s.t. cŵij
≤ cij .

(37)
(37) implies that applying Lemma 12 with A = {(i, j)} yields the desired
statement.

Lemma 14. Let G = (V,E, c(E)) be an edge weighted directed graph without
negative weight closed walks. Let (i, j) ∈ Er

k for some k ∈ {1, 2, . . . ,K},
where Er

k is defined in (23) in Definition 7.c, in the context of G. Then for
any redundant edge set (of G) denoted R, the union R ∪ {(i, j)} is also a
redundant edge set of G. Consequently, R ∪ Er

1 ∪ Er
2 ∪ . . . ∪ Er

K is also a
redundant edge set of G.

Proof. This is a direct consequence of Lemma 13 because by (23) in Defini-
tion 7.c cij > dij for (i, j) ∈ Er

k, with dij being the minimum walk weight
from i to j (among all walks in G) defined in Definition 6.

Lemma 15. Let G = (V,E, c(E)) be an edge weighted directed graph without
negative weight closed walks. For any k ∈ {1, 2, . . . ,K}, q ∈ {1, 2, . . . ,K},

28

k 6= q, let Ekq and Ec
kq be defined in Definition 7.d such that Ekq 6= ∅. If R is

a redundant edge set of G, then for any (i, j) ∈ Ec
kq, the set (R∪Ekq)\{(i, j)}

is a redundant edge set of G.

Proof. Since (R∪Ekq)\{(i, j)} = (R \{(i, j)})∪ (Ekq \{(i, j)}) := R′∪E′
kq,

we will show that R′∪E′
kq is a redundant edge set according to Definition 3.

First, it is claimed that for each (u, v) ∈ E′
kq, there exists a replacement

walk wuv : u i→ j v satisfying

wuv in (V, ((Ek ∪Eq) \R
′) ∪ {(i, j)}, c(((Ek ∪ Eq) \R

′) ∪ {(i, j)})), (38a)

the weight of wuv, denoted cwuv , satisfies cwuv ≤ cuv. (38b)

The argument for the existence of wuv and (38a) is as follows: associated
with Ekq let [vk] and [vq] be the equivalence classes in G, as defined in
Definition 7.b. Since R′ ⊆ R and R is a redundant edge set of G, R′ is also
a redundant edge set of G. Hence, [vk] and [vq] remain equivalence classes
in (V,E \ R′, c(E \ R′)). Consequently, Lemma 10.a implies that there is
a walk u i in ([vk], Ek \ R

′, c(Ek \ R
′)). In addition, the weight of the

walk is dui, the minimum walk weight u i in G in Definition 6. Similarly,
Lemma 10.a implies that there is a walk j v in ([vq], Eq \ R

′, c(Eq \R
′))

with walk weight djv. Combining the walks u i, j v and the edge (i, j),
we conclude that wuv exists and (38a) is satisfied. To show (38b), first note
that

cwuv = dui + cij + djv, (39)

where cij is the weight of edge (i, j). By Lemma 10.c, it holds that dui =
duvk + dvki since u, i, vk ∈ [vk]. Similarly, it holds that djv = djvq + dvqv.
Hence, (39) can be rewritten as

cwuv = duvk +

= c̃vkvq ≤ dvku + cuv + dvvq by (25) in Definition 7.d
︷ ︸︸ ︷

dvki + cij + djvq +dvqv

≤ duvk + dvku
︸ ︷︷ ︸

= 0 by Lemma 10.b

+cuv + dvvq + dvqv
︸ ︷︷ ︸

= 0 by Lemma 10.b

= cuv.

Therefore, a replacement walk wuv : u i → j v satisfying (38a) and
(38b) exists. Since it holds that

(i, j) /∈ R′ =⇒ R′ \ (i, j) = R′, and E′
kq ∩ (Ek ∪ Eq ∪ {(i, j)}) = ∅, (40)

29

The set ((Ek ∪ Eq) \R
′) ∪ {(i, j)} can be rewritten as

((Ek ∪ Eq) \R
′) ∪ {(i, j)}

= (Ek ∪ Eq ∪ {(i, j)}) \ (R
′ \ {(i, j)})

(40)
= (Ek ∪ Eq ∪ {(i, j)}) \ (R

′ ∪E′
kq)

⊆ E \ (R′ ∪ E′
kq).

This implies that (38a) can be modified to state that

wuv is in (V,E \ (R′ ∪E′
kq), c(E \ (R

′ ∪ E′
kq))). (41)

Finally, (41) and (38b) imply that (35) in Lemma 12 holds with R = R′ and
A = E′

kq. Hence, Lemma 12 guarantees that R′ ∪ E′
kq is a redundant edge

set of G.

The implication of Lemma 14 and Lemma 15 is as follows: corresponding
to the edge set decomposition in (34), any maximum redundant edge set
must be a member of

R =

{

R0 ∪

(
K
∪

k=1
Er

k ∪Rk

)}

=

{(

∪
1≤i 6=j≤K

Rij

)

∪

(
K
∪

k=1
Er

k ∪Rk

)}

(42)

where
For k ≥ 1, Er

k is defined by (23) in Definition 7.c,

R0 ⊆ E0, R0 = ∪
1≤i 6=j≤K

Rij,

Rij ⊆ Eij , |Eij \Rij| ≤ 1, (Eij \Rij) ⊆ Ec
ij,

Rk ⊆ Ec
k, k ∈ {1, 2, . . . ,K}.

(43)

In (42) the inclusion of Er
k for 1 ≤ k ≤ K is due to Lemma 14. For now,

Rij and Rk are not fully specified, and the partial characterization of Rij in
(43) is due to Lemma 15. Furthermore, Lemma 15 suggests that, instead of
searching over R for a maximum redundant edge set, it is without loss of
generality to search over the following restricted set

Rd :=

{(

∪
1≤i 6=j≤K

(
(Eij \ {(v

i
ij , v

j
ij)}) ∪Rd

ij

))

∪ (
K
∪

k=1
Er

k ∪Rk)

}

=

{
(
(E0 \E

d
0) ∪Rd

0

)
∪ (

K
∪

k=1
Er

k ∪Rk)

}

,

(44)

30

where

Rd
ij ⊆ {(v

i
ij , v

j
ij)}, Rd

0 = ∪
1≤i 6=j≤K

Rd
ij, Rd

0 ⊆ Ed
0 , Rk ⊆ Ec

k,

and we note that Ed
0 (i.e., the collection of all edges (viij , v

j
ij)) is defined in

(26). The restriction from (42) to (44) amounts to the following specializa-
tions

Rij in (42) → (Eij \ {(v
i
ij , v

j
ij)}) ∪Rd

ij in (44),

R0 in (42) → (E0 \ E
d
0) ∪Rd

0 in (44).

The restriction is justified as follows: suppose R⋆ ∈ R in (42),

R⋆ =

{(

∪
1≤i 6=j≤K

R⋆
ij

)

∪

(
K
∪

k=1
Er

k ∪R⋆
k

)}

is a maximum redundant edge set, with appropriate choices (to be discussed
in the sequel) of R⋆

ij and R⋆
k satisfying (43). Define Rd⋆

ij by

Rd⋆
ij :=

{

{(viij , v
j
ij)}, if R⋆

ij = Ec
ij

∅, if R⋆
ij 6= Ec

ij

,

and define Rd⋆ by

Rd⋆ =

{(

∪
1≤i 6=j≤K

(
(Eij \ {(v

i
ij , v

j
ij)}) ∪Rd⋆

ij

))

∪ (
K
∪

k=1
Er

k ∪R⋆
k)

}

.

By construction, Rd⋆ ∈ Rd in (44) and |Rd⋆| = |R⋆|. In addition, since
R⋆ is a maximum redundant edge set, Lemma 15 states that Rd⋆ is also a
redundant edge set (and |Rd⋆| = |R⋆|). Hence, Rd⋆ is a maximum redundant
edge set. Conversely, define the set-valued function F : Rd 7→ 2R,

F (X) =

R ⊆ R

R = (∪
1≤i 6=j≤K

Rij) ∪ (
K
∪

k=1
(Er

k ∪Rk)),

X = (∪
1≤i 6=j≤K

((Eij \ {(v
i
ij , v

j
ij)}) ∪Rd

ij))

∪(
K
∪

k=1
(Er

k ∪Rk)),

Rij :=

{

Eij, if Rd
ij 6= ∅

Eij \ {(g, h)}, (g, h) ∈ Ec
ij , if Rd

ij = ∅

.

(45)

31

Then, if Rd⋆ ∈ Rd in (44) is a maximum redundant edge set, by Lemma 15
the set F (Rd⋆) ⊆ R is the set of all maximum redundant edge sets of the
form in (42) that share the same R⋆

k’s as in Rd⋆.
Next, we focus on the specialized maximum redundant edge sets in Rd

in (44). Let Rd denote any member of Rd. The second expression in (44)
reveals that the components of Rd which are not fully specified are Rd

0 ⊆ Ed
0

and Rk ⊆ Ec
k for k = 1, 2, . . . ,K. First, we examine the conditions on

these components under which Rd is a redundant edge set (of graph G =
(V,E, c(E))) according to Definition 3. Since the fixed components in (44)
(i.e., the edges guaranteed to be included in Rd) can be written as

(
K
∪

k=1
Er

k) ∪ (E0 \E
d
0) = (

K
∪

k=1
(Ek \ E

c
k)) ∪ (E0 \ E

d
0)

= E \ (Ed
0 ∪ (

K
∪

k=1
Ec

k))

:= E \ E ,

(46)

two necessary conditions for Rd to be a redundant edge set are

∀(u, v) ∈ Rd
0, ∃ puv : u v in

(

V, E \
(
Rd

0 ∪ (
K
∪

k=1
Rk)

)
, c
(

E \
(
Rd

0 ∪ (
K
∪

k=1
Rk)

))
)

, with cpuv ≤ cuv,
(47)

and

∀ k ∈ {1, 2, . . . ,K}, ∀(u, v) ∈ Rk, ∃ puv : u v in
(

V, E \
(
Rd

0 ∪ (
K
∪

k=1
Rk)

)
, c
(

E \
(
Rd

0 ∪ (
K
∪

k=1
Rk)

))
)

, with cpuv ≤ cuv.
(48)

Conversely, if (47) and (48) are satisfied then Lemma 12 can be applied to
show that Rd is indeed a redundant edge set of G. Lemma 12 is applied in
the following settings:

R← (
K
∪

k=1
Er

k) ∪ (E0 \ E
d
0) = E \ E , A← Rd

0 ∪ (
K
∪

k=1
Rk), (35)← (47), (48),

and the fact that (∪Kk=1E
r
k) ∪ (E0 \E

d
0) is a redundant edge set of G is due

to Lemma 14 and Lemma 15. Therefore, Rd is a redundant edge set of G
if and only if (47) and (48) are satisfied. The following two statements,
Lemma 16 and Lemma 17, specify that the conditions in (47) and (48)
are in fact equivalent to K + 1 decoupled conditions, one for each set of
Rd

0, R1, R2, . . . , RK . These two statements are first described. Then, their
consequences are discussed.

32

Lemma 16. Let G = (V,E, c(E)) be an edge weighted directed graph without
negative weight closed walks, and let (i, j) ∈ Ec

k for some k ∈ {1, 2, . . . ,K}
(see (24) in Definition 7.c for Ec

k). Let the minimum walk weight dij (of G)
be defined in Definition 6. If wij : i j is a walk in G such that cwij

= dij
(note that cwij

≥ dij must hold), then all nodes traversed by wij are in the
equivalence class [vk] (corresponding to Ec

k).

Proof. By definition (i, j) ∈ Ec
k means that i, j ∈ [vk]. Hence, Lemma 10.a

and 10.b states that there exists a walk wji : j i (in G) such that cwji
=

−dij = −cij (the last equality is due to the fact that (i, j) ∈ Ec
k). Let

wij be the walk described in the statement (with weight cwij
= dij = cij).

If wij traverses a node t /∈ [vk], then by concatenating wij and wji we
obtain a closed walk wtt : i t j i. The weight of wtt is cwtt =
cwij

+ cwji
= cij − cij = 0. Therefore, the assumption that t /∈ [vk] leads to

the contradictory conclusion that t ∼ i and hence t ∈ [vk]. Consequently,
the walk wij cannot traverse any node t /∈ [vk].

Lemma 17. Let G = (V,E, c(E)) be an edge weighted directed graph without
negative weight closed walks. In addition, let the following be assumed in the
context of G:

1. [v1], [v2], . . . , [vK] denote the equivalence classes in V induced by rela-
tion ∼ (see Definition 7.b).

2. Ed
0 , E

c
k for k = 1, 2, . . . ,K are defined in Definition 7.e and 7.c, re-

spectively. Let E := Ed
0 ∪ (∪Kq=1E

c
q).

3. For k ∈ {1, . . . ,K}, let Rk ⊆ Ec
k be given and assume that [v1], . . . , [vK]

remain equivalence classes in (V, E \ (∪Kq=1Rq), c(E \ (∪
K
q=1 Rq))).

4. G̃ = (Ṽ , Ẽ0, c̃(Ẽ0)) is the condensation of G, in accordance with the
designation of representing nodes in [v1], . . . , [vK]. Ẽ0 is the set of all
edges in G̃ (see Definition 8).

5. Let Rd
0 ⊆ Ed

0 be given, and let R̃0 ⊆ Ẽ0 be defined to correspond to Rd
0

in the sense that (vi, vj) ∈ R̃0 if and only if (viij , v
j
ij) ∈ Rd

0.

Then, the following two statements are equivalent:

(a) For each (viij , v
j
ij) ∈ Rd

0, there is a (replacement) walk w
viijv

j
ij

in graph
(
V, E \ (Rd

0 ∪ (∪Kk=1Rk)), c(E \ (R
d
0 ∪ (∪Kk=1Rk)))

)
satisfying c

viijv
j
ij

≥
cw

vi
ij

v
j
ij

.

33

(b) For each (vi, vj) ∈ R̃0, there is a (replacement) walk w̃vivj in graph
(
Ṽ , Ẽ0 \ R̃0, c̃(Ẽ0 \ R̃0)

)
satisfying c̃vivj ≥ c̃w̃vivj

.

Proof. For convenience, we denote

Gc := (V, E \ (Rd
0 ∪ (∪Kk=1Rk)), c(E \ (R

d
0 ∪ (∪Kk=1Rk)))),

G̃c := (Ṽ , Ẽ0 \ Ẽ
0
r , c̃(Ẽ0 \ Ẽ

0
r)).

Because of the definition of Ed
0 , in G

c every walk w
vi
ij
v
j
ij

from viij to vjij is of

the form

viij v
k(1)
k(1)k(2)

︸ ︷︷ ︸

in Gc
k(1)

→ v
k(2)
k(1)k(2) v

k(2)
k(2)k(3)

︸ ︷︷ ︸

in Gc
k(2)

→ · · · → v
k(m)
k(m−1)k(m) vjij
︸ ︷︷ ︸

in Gc
k(m)

, (49)

where k(1) = i, k(m) = j, k(2), . . . , k(m − 1) ∈ {1, 2, . . . ,K} are indices
of the intermediate equivalence classes in the order traversed by w

vi
ij
v
j
ij

. In

addition, Gc
k(q) = ([vk(q)], E

c
k(q) \ Rk(q), c(E

c
k(q) \ Rk(q))) for q = 1, 2, . . . ,m.

Due to statement assumption 3, [vk(q)]’s remain equivalence classes in Gc.
Thus, by Lemma 10.a for any two nodes s and t in [vk(q)] there exists at
least one walk wst from s to t in Gc

k(q). Since Rk ⊆ Ec
k and Ec

k(q) ∩ Ec
k = ∅

as long as k(q) 6= k, it holds that Rk ∩ Ec
k(q) = ∅ as long as k(q) 6= k. In

addition, since Rd
0 ⊆ Ed

0 and Ed
0 ∩ Ec

k = ∅ for k ≥ 1, Rd
0 ∩ Ec

k = ∅ for k ≥ 1.
Therefore, it holds that

(Ec
k(q) \Rk(q))

︸ ︷︷ ︸

edge set of Gc
k(q)

= (Ec
k(q) \ (R

d
0 ∪ (∪Kk=1Rk))) ⊆ (E \ (Rd

0 ∪ (∪Kk=1R
k)))

︸ ︷︷ ︸

edge set of Gc

.

Thus, since wst is in Gc
k(q) it is also in Gc. Therefore, a walk of the form

in (49) exists in Gc if and only if all edges (v
k(q)
k(q)k(q+1), v

k(q+1)
k(q)k(q+1)) exist in

Ed
0 \ R

d
0 for q = 1, 2, . . . ,m − 1, since these edges can only be contained in

Ed
0 or Rd

0. By Definition 8 and statement assumption 5, these edges exist if
and only if the edges (vk(q), vk(q+1)) exist in Ẽ0 \ R̃0 for all q. Further, if a
walk w

viijv
j
ij
of the form (49) exists in Gc then the corresponding walk w̃vivj

in G̃c is of the form

(vi =)vk(1) → vk(2) → . . .→ vk(m)(= vj). (50)

Conversely, if the walk w̃vivj in (50) exists in G̃c, then in Gc at least one
walk w

viijv
j
ij
of the form (49) exists (the possible multiplicity of the walks is

due to the possibilities of multiple walks within Gc
k(q)).

34

Next, we establish the equivalence between the walk weight inequali-
ties (i.e., c

viijv
j
ij
≥ cw

vi
ij

v
j
ij

and c̃vivj ≥ c̃w̃vivj
). We consider only the cases

when w
viijv

j
ij

is restricted to the choices where the walks in Gc
k(q) have min-

imum weights. By Lemma 10.a, these minimum weights are d
viij v

k(1)
k(1)k(2)

,

d
v
k(m)
k(m−1)k(m)

v
j
ij

, and d
v
k(q)
k(q−1)k(q)

v
k(q)
k(q)k(q+1)

for q = 2, 3, . . . ,m − 1 respectively.

Therefore, c
viijv

j
ij
≥ cw

vi
ij

v
j
ij

if and only if

c
viijv

j
ij
≥ d

viij v
k(1)
k(1)k(2)

+ d
v
k(m)
k(m−1)k(m)

v
j
ij

+
m−1∑

q=2
d
v
k(q)
k(q−1)k(q)

v
k(q)
k(q)k(q+1)

+
m−1∑

q=1
c
v
k(q)
k(q)k(q+1)

v
k(q+1)
k(q)k(q+1)

.
(51)

By Lemma 10.b and 10.c, in (51) it holds that

d
viijv

k(1)
k(1)k(2)

= dviijvk(1)
+ d

vk(1)v
k(1)
k(1)k(2)

= −dvk(1)viij
+ d

vk(1)v
k(1)
k(1)k(2)

,

d
v
k(m)
k(m−1)k(m)

v
j
ij

= d
v
k(m)
k(m−1)k(m)

vk(m)
+ d

vk(m)v
j
ij
= d

v
k(m)
k(m−1)k(m)

vk(m)
− dv

v
j
ij

k(m)
,

d
v
k(q)
k(q−1)k(q)

v
k(q)
k(q)k(q+1)

= d
v
k(q)
k(q−1)k(q)

vk(q)
+ d

vk(q)v
k(q)
k(q)k(q+1)

, ∀q = 2, . . . ,m− 1.

(52)
Therefore, with (52) the inequality in (51) can be rearranged into

dvk(1)viij
+ c

viijv
j
ij
+ d

v
j
ijvk(m)

≥
m−1∑

q=1

(

d
vk(q)v

k(q)
k(q)k(q+1)

+

c
v
k(q)
k(q)k(q+1)

v
k(q+1)
k(q)k(q+1)

+ d
v
k(q+1)
k(q)k(q+1)

vk(q+1)

)

.

(53)
Since i = k(1) and j = k(m), by (28) in Definition 8, (53) can be rewritten
as

c̃vivj = dvk(1)viij
+ c

viijv
j
ij
+ d

v
j
ijvk(m)

≥
m−1∑

q=1

c̃vk(q)vk(q+1)
= c̃w̃vivj

, (54)

where the last equality in (54) is due to (50). Therefore,

c
viijv

j
ij
≥ cw

vi
ij

v
j
ij

⇐⇒ c̃vivj ≥ c̃w̃vivj
.

Now we establish the equivalence between (a) and (b) in the statement.
If Rd

0 satisfies (a), then for each (viij , v
j
ij) ∈ Rd

0 there exists a walk w
viijv

j
ij
of

35

the form in (49) satisfying c
viijv

j
ij
≥ cw

vi
ij

v
j
ij

. Additionally, we can assume in

w
viijv

j
ij
all walks in Gc

k(q) for all q have the least possible weights. Therefore,

by the previous parts of the proof, the corresponding edge (vi, vj) and walk
w̃vivj exists in G̃c, and they satisfy the inequality c̃vivj ≥ c̃w̃vivj

. Thus,

R̃0 ⊆ Ẽ0, as defined in the statement, satisfies (b). This shows that (a)
implies (b). The argument for (b) implying (a) can be shown in a similar
fashion.

Now we analyze the consequences of Lemma 16 and Lemma 17. Due
to Lemma 16, in condition (48) E can be replaced with Ec

k. That is, (48)
becomes

∀k ∈ {1, 2, . . . ,K}, ∀(u, v) ∈ Rk, ∃ puv : u v

in ([vk], E
c
k \ (R

d
0 ∪ (

K
∪

k=1
Rk)), c(E

c
k \ (R

d
0 ∪ (

K
∪

k=1
Rk)))), cpuv ≤ cuv.

(55)

In addition, since Ec
k∩Rq = ∅ as long as q 6= k and Ec

k∩R
d
0 = ∅, it holds that

Ec
k \ (R

d
0 ∪ (∪Kk=1Rq)) = Ec

k \ Rk. Therefore, (55) can be further simplified
to establish the following observations:

Rk is part of redundant edge set Rd, for 1 ≤ k ≤ K (56a)

⇐⇒ ∀(u, v) ∈ Rk, ∃ puv in ([vk], E
c
k \Rk, c(E

c
k \Rk)), cpuv ≤ cuv (56b)

⇐⇒ Rk is a redundant edge set in ([vk], E
c
k, c(E

c
k)). (56c)

One of the consequences of (56) is that, for k = 1, 2, . . . ,K, whether or not
Rk is part of a redundant edge set Rd does not depend on the choices of Rq

for q ∈ {1, . . . ,K} \ {k} or the choice of Rd
0. In addition, (56) can be used

to establish a similar independence result for Rd
0. To begin, notice that by

Lemma 14 and Lemma 15, (
K
∪

k=1
Er

k) ∪ (E0 \ E
d
0) is a redundant edge set in

G. In addition, by (46) E := Ed
0 ∪ (

K
∪

k=1
Ec

k) = E \
(
(

K
∪

k=1
Er

k) ∪ (E0 \ E
d
0)
)
.

Hence, Lemma 9 states that

[v1], [v2], . . . , [vK] are equivalence classes in the graph (V, E , c(E)). (57)

Secondly, in order for Rd to be a redundant edge set (in G), (56) must
hold. Then, by (56b), ∪Kk=1Rk is a redundant edge set in (V, E , c(E)). Con-
sequently, when applied to (V, E , c(E)), which is a subgraph of G without
negative weight closed walks, Lemma 9 implies that

[v1], . . . , [vK] are equivalence classes in
(
V, E \ (

K
∪

k=1
Rk), c(E \ (

K
∪

k=1
Rk)))

)
.

(58)

36

(58) implies that statement assumption 3 for Lemma 17 is satisfied with
the E and Rk for k = 1, 2, . . . ,K. Therefore, with R̃0 defined in statement
assumption 5 in Lemma 17, the lemma specifies that

Rd
0 is part of a redundant edge set Rd

⇐⇒ condition (47)

⇐⇒ R̃0 is a redundant edge set in G̃, the condensation of G. (59)

According to Definition 8, G̃ is independent of Rq for q ∈ {1, 2, . . . ,K}.
Hence, (59) establishes the desired property that whether or not Rd

0 is
part of a redundant edge set is independent of the choices of Rk for k ∈

{1, 2, . . . ,K}. In conclusion, for Rd =
(
(E0 \E

d
0)∪R

d
0

)
∪ (

K
∪

k=1
Er

k ∪Rk) (i.e.,

(44)) to be a redundant edge set of G, it is necessary and sufficient for Rd
0

to satisfy (59) and each of Rk (for k = 1, 2, . . . ,K) to satisfy its individual
version of (56).

The decoupling of the redundant edge set membership requirements in
(56) and (59) suggests that the maximum redundant edge set problem can
be decoupled into K + 1 independent maximum redundant edge set sub-
problems on the graphs ([vk], E

c
k, c(E

c
k)) in (56) and on the condensation

G̃ in (59), respectively. The following statement, whose proof has already
been discussed, summarizes the main decomposition results which have been
discussed so far:

Theorem 3. Let G = (V,E, c(E)) be an edge weighted directed graph with-
out negative weight closed walks. Let the following be defined in the context
of G:

• K is the number of equivalence classes induced by relation ∼ in Defi-
nition 7.a.

• For k ∈ {1, 2, . . . ,K}, [vk] denotes the equivalence class defined in
Definition 7.b.

• For k ∈ {1, 2, . . . ,K}, Er
k and Ec

k are defined in Definition 7.c.

• For 1 ≤ i 6= j ≤ K, Eij and Ec
ij are defined in Definition 7.d.

• G̃ is the condensation of G defined in Definition 8.

Then, every maximum redundant edge set of G can be parameterized by

R⋆
0 ∪

(
K
∪

k=1
(Er

k ∪R⋆
k)

)

, (60)

37

where for k ∈ {1, 2, . . . ,K}, R⋆
k is a maximum redundant edge set of the

subgraph ([vk], E
c
k, c(E

c
k)). In addition, R⋆

0 is parameterized by

R⋆
0 = ∪

1≤i 6=j≤K
R⋆

ij , (61)

where

R⋆
ij =

{

Eij , if (vi, vj) ∈ R̃⋆
0

Eij \ {(g, h)} for some (g, h) ∈ Ec
ij , if (vi, vj) /∈ R̃⋆

0

, (62)

and R̃⋆
0 is the maximum redundant edge set of G̃, the condensation of G.

Remark 7. The expression in (62) is jointly due to Lemma 17, (44) and
(45).

Remark 8. While it appears that the statement of Theorem 3 (e.g., Ec
ij) de-

pends on the choices of the representing nodes v1, . . . , vK in the equivalence
classes, Theorem 3 in fact holds irrespective of these choices. In particular,
it can be shown (in Appendix B) that

• The definition of Ec
ij is independent of the choices of v1, . . . , vK .

• With different choices of v1, . . . , vK , it is possible to define different
condensations of G with different representing nodes and different edge
weights c̃. However, for all 1 ≤ i 6= j ≤ K,

∣
∣R̃⋆

0 ∩ ([vi] × [vj])
∣
∣ (which

can only be 0 or 1) is independent of the choices of v1, . . . , vK .

As a result of Theorem 3, the graph in Figure 3 with its maximum
redundant edge set removed is illustrated in Figure 5.

3.3 Computation for maximum redundant edge set

To compute the quantities in the statement of Theorem 3, the first step
is the identification of the equivalence classes [v1], [v2], . . . , [vk] defined by
relation ∼. The following statement is useful in the identification:

Lemma 18. Let G = (V,E, c(E)) be an edge weighted directed graph without
negative weight closed walks. For i, j ∈ V , let dij be the minimum walk
weight defined in Definition 6. Then, i ∼ j if and only if dij + dji = 0.

Proof. If i = j, then by Definition 5 i ∼ j and by Definition 6 dij + dji =
dii + dii = 0. Hence the statement holds trivially when i = j. Next, we
consider the case when i 6= j. If i ∼ j, then Lemma 10.b specifies that

38

!"

#"

$"

%"

&"

!"

#"

$"

!"

!"

'!"

'!"

#"##"#"

$"$"

%"%

&"&

!"

#"

$

!"

!"!

'!"

'!"

!"!"

(!)"

(#)"

$"$"

Figure 5: As a result of Theorem 3, the maximum redundant edge set of the
graph in Figure 3 is R⋆ = {(3, 2)} (in general the maximum redundant edge
set need not be unique). In the parameterization in (60), K = 2, Er

1 = ∅
and E2

r = {(3, 2)}. R⋆
1 = ∅, and by inspection R⋆

2 = ∅ since the subgraph
([2], Ec

2 = {(2, 5), (5, 3), (3, 4), (4, 2)}, c(Ec
2)) is a zero-weight cycle. From

Figure 4, the maximum redundant edge set of the condensation G̃ is R̃⋆
0 = ∅.

Hence, from (62) R⋆
12 = R⋆

21 = ∅ (since, for instance, E12 = Ec
12 = {(1, 2)}).

dij + dji = dij − dij = 0. Conversely, suppose dij + dji = 0. By Definition 6,
associated with dij and dji there exist walks wij : i j and wji : j i
with weights dij and dji respectively. Concatenating wij and wji results in
a zero weight closed walk traversing i and j, and hence i ∼ j.

Based on Lemma 18, we identify the equivalence classes as follows:

Algorithm 2 (Identification of equivalence classes of graphG = (V,E, c(E))
without negative weight closed walks).

1. Solve the all-pair shortest path problem for all source/destination pairs
in G. Let dij denote the shortest path distance from i to j.

2. For each pair of 1 ≤ i 6= j ≤ n, declare i ∼ j if and only if dij+dji = 0.
Build an undirected graph (V,E∼) such that edge {i, j} ∈ E∼ if and
only if i ∼ j and i 6= j.

3. The equivalence classes defined by relation ∼ are the connected com-
ponents of (V,E∼).

The first step of Algorithm 2 can be computed using Floyd-Warshall
algorithm in O(|V |3) time, because G does not have any negative weight

39

closed walks. The second step requires O(|V |2) time. The third step re-
quires O(|V | + |E∼|) = O(|V |2) time (e.g., [20]). Hence, Algorithm 2 re-
quires O(|V |3) time. Once the equivalence classes have been identified, the
computation involved in Definition 7 and Definition 8 requires O(|E|) time
and O(K2) time respectively.

Theorem 3 decomposes the maximum redundant edge set problem into
K + 1 independent subproblems. Because of Lemma 11 and Theorem 1,
solving the maximum redundant edge set subproblem on the condensation
G̃ (for R⋆

0) requires only polynomial-time (i.e., O(K3) withK ≤ |V |). On the
other hand, to solve for R⋆

k for k = 1, 2, . . . ,K in subgraphs ([vk], E
c
k, c(E

c
k))

is NP-hard. The argument is similar to the proof of Theorem 2: the min-
imum equivalent graph problem [1], even for strongly connected graphs,
is NP-hard. Additionally, the maximum redundant edge set problem for
graphs consisting only of one equivalence class generalizes the former prob-
lem. Hence, it is NP-hard to compute R⋆

k. On the other hand, it turns
out that the subproblem for finding a maximum redundant edge set in
([vk], E

c
k, c(E

c
k)) can be solved as the (NP-hard) minimum equivalent graph

problem for undirected graph ([vk], E
c
k) using available (exact or inexact)

algorithms (e.g., [1,22,23]). The following statement provides the rationale:

Lemma 19. Let G = (V,E, c(E)) be an edge weighted directed graph with-
out negative weight closed walks. For k ∈ {1, 2, . . . ,K}, let [vk] be the equiv-
alence class defined by relation ∼ (Definition 7.b), and Ec

k be defined in
Definition 7.c. Let Rk ⊆ Ec

k be given. Then, the following two statements
are equivalent:

19.a Rk is a redundant edge set of ([vk], E
c
k, c(E

c
k)).

19.b ([vk], E
c
k) and ([vk], E

c
k \ Rk) have the same reachability (i.e., there is

a walk i j in ([vk], E
c
k) if and only if there is a walk i j in

([vk], E
c
k \Rk)).

Proof. We consider the case for Rk 6= ∅, since otherwise the statement is
trivial. As argued in the proof of Theorem 2, condition 19.b is equivalent to

∀(i, j) ∈ Rk, there exists a walk from i to j in ([vk], E
c
k \Rk). (63)

Hence, it suffices to argue for the equivalence between 19.a and (63). By
Definition 3, condition 19.a implies (63). Conversely, if (63) holds then for
each (i, j) ∈ Rk there exists a walk wij in ([vk], E

c
k \Rk, c(E

c
k \Rk)). Let the

walk wij be of the form (i = i0, i1, . . . , im = j). By (24) and Lemma 10.c,
the weight of walk wij is cwij

= di0i1 + . . . + dim−1im = di0im = dij . This

40

is the same as the weight of edge (i, j) ∈ Ec
k (again, by (24)). Hence, (63)

implies 19.a, and the desired equivalence is established.

Remark 9. Lemma 19 states that for subgraph ([vk], E
c
k, c(E

c
k)), the maxi-

mum redundant edge set problem can be reduced to the minimum equivalent
graph problem by ignoring the edge weights. However, this reduction is not
guaranteed to be valid in more general cases. See Figure 6 for an example.

!" #"

$"

!"

!" !"

Figure 6: The graph illustrated is not one of ([vk], E
c
k, c(E

c
k)) for any k, since

there is no zero weight cycle. When interpreted as a weighted graph, no edge
is redundant according to Definition 3. However, when the edge weights
are ignored, the minimum equivalent graph contains two edges (1, 3) and
(3, 2). In other words, edge (1, 2) is redundant in unweighted sense but not
redundant in weighted sense.

The decomposition result (mainly Lemma 17) also leads to some guide-
line in obtaining approximate solutions to the maximum redundant edge set
problem. If R̂k for k = 1, 2, . . . ,K are (not necessarily maximum) redundant
edge sets for the subgraphs ([vk], E

c
k, c(E

c
k)), then it can be established that

[v1], . . . , [vK] are equivalence classes in
(
V, E \ (

K
∪

k=1
R̂k), c(E \ (

K
∪

k=1
R̂k)))

)
,

where by (46) E = Ed
0 ∪ (

K
∪

k=1
Ec

k). Hence, Lemma 17 can be applied to

establish that the choices of redundant edge sets in Ed
0 are independent of

R̂k. Consequently, the largest cardinality redundant edge sets, given the
components R̂k ∈ Ec

k for k = 1, 2, . . . ,K, can be parameterized as

R⋆
0 ∪

(
K
∪

k=1
(Er

k ∪ R̂k)

)

,

where R⋆
0 is parameterized in (61).

41

4 Equivalent reduction of precedence relation sys-

tems

This section presents a full parameterization of the set of all equivalent
reductions of any precedence relation system. The parameterization will
indicate that contrary to the problem of finding the maximum redundant
edge set which is NP-hard, every equivalent reduction can be computed in
polynomial-time. In the following, we first present some preparatory results
in Section 4.1. Next, the main result on the parameterization of equiva-
lent reduction is described in Section 4.2. Section 4.3 describes a further
simplification of equivalent reduction, which is connected to the maximum
redundant edge set of the condensation of the original precedence graph.

Because of the correspondence between a precedence relation system and
its precedence graph, in this section we shall extend the notion of equivalent
reduction in Definition 2 to precedence graphs. Given a precedence graph G,
we call another precedence graph G′ equivalent to G, with notation G′ ≡ G,
if the precedence relation systems corresponding to G and G′ are equivalent
(i.e., they have the same solution set). Consequently, an equivalent reduction
of a precedence graph G is a precedence graph G′ ≡ G such that G′ has the
minimum possible number of edges.

4.1 Preparatory results

The following statements will be used in the proof of the main result to es-
tablish some graph-based necessary conditions for the equivalent reductions
of a precedence graph.

Lemma 20. Let G = (V,E, c(E)) and G′ = (V,E′, c′(E′)) be two equivalent
precedence graphs (i.e., G ≡ G′). Then, if (f, g) ∈ E with weight cfg, then
there exists a path p′fg : f g in G′ with weight c′

p′
fg
≤ cfg.

Proof. Corresponding to (f, g) ∈ E is an inequality xf − xg ≤ cfg in G.
Since G′ ≡ G, whenever x ∈ R

n satisfies G′, x also satisfies xf − xg ≤ cfg.
This is condition Lemma 2.a applied to G′. Hence, Lemma 2 implies that
in G′ there exists a path p′fg : f g with weight c′

p′
fg
≤ cfg.

Remark 10. Lemma 20 can in fact be extended (the details omitted) to
show that the equivalent reduction problem has the following graph inter-
pretation: given precedence graph G = (V,E, c(E)), find (possibly another)
precedence graph G′ = (V,E′, c′(E′)) satisfying

42

1. For each (i, j) ∈ E with weight cij there exists a path p′ij : i j in
G′ with weight c′

p′ij
≤ cij . Conversely, for each (u, v) ∈ E′ with weight

c′uv there exists a path puv : u v in G with weight cpuv ≤ c′uv,

2. with respect to the first bullet, E′ has minimum cardinality.

From this graph interpretation it is also possible to see that the equivalent
reduction problem is a generalization of the transitive reduction problem
for unweighted directed graphs in [2]. That is, an instance of transitive
reduction problem is an instance of equivalent reduction problem with edge
weights cij set to zero or a negative constant.

Lemma 21. Let G = (V,E, c(E)) and G′ = (V,E′, c′(E′)) be two equivalent
precedence graphs (i.e., G ≡ G′). Then, for i, j ∈ V , i ∼ j in G if and only
if i ∼ j in G′.

Proof. The statement holds trivially when i = j. Therefore, only the cases
when i 6= j are considered. Suppose i ∼ j in G. Then there exists a
zero-weight closed walk wiji : (i = i0, i1, . . . , ik = j, ik+1, . . . , im = i) in
G. Since Lemma 20 and Lemma 21 have the same statement assumption,
Lemma 20 implies that for each q = 0, 1, . . . ,m − 1 there exists a path
p′iqiq+1

: iq iq+1 in G′ whose path weight is less than or equal to the weight

of the corresponding edge (iq, iq+1) in G. Hence, in G′ there is a closed walk
w′
iji : i j i with weight less than or equal to that of wiji (which is zero).

Since G′ is a precedence graph, Assumption 1.b implies that the weight of
w′
iji cannot be negative. Hence, i ∼ j in G′. The above argument can be

repeated, with appropriate modifications, to show that i ∼ j in G, whenever
i ∼ j in G′. Hence, the desired statement is established.

Remark 11. Lemma 8 is in fact a corollary of Lemma 21.

Lemma 22. Let G = (V,E, c(E)) be a precedence graph. Let G⋆ = (V,E⋆, c(E⋆))
with E⋆ ⊆ E, and G′ = (V,E′, c′(E′)) with E′ ⊆ V × V and c′(E′) ∈ R

|E′|

be given. Assume that

• G ≡ G⋆ ≡ G′.

• Neither G⋆ nor G′ has any redundant edge (cf. Definition 4).

• For k ∈ {1, 2, . . . ,K}, [vk] is the equivalence class induced by re-
lation ∼ in G, G⋆ and G′ (the three precedence graphs having the
same equivalence class partitioning is a consequence of Lemma 21 with
G ≡ G⋆ ≡ G′).

43

• For i, j ∈ V and i 6= j, let E⋆
ij := E⋆ ∩ ([vi] × [vj]), and E′

ij :=
E′ ∩ ([vi]× [vj]). That is, E⋆

ij is the subset of E⋆ whose member edges
go from [vi] to [vj], and E′

ij is defined analogously.

Then,
E⋆

ij = ∅ ⇐⇒ E′
ij = ∅, ∀ 1 ≤ i 6= j ≤ K. (64)

In addition, suppose (f, g) ∈ E⋆
ij with weight cfg and (u, v) ∈ E′

ij with weight
c′uv. Then,

c′uv = duf + cfg + dgv , (65)

with duf and dgv being the minimum walk weights in G defined in Defini-
tion 6.

Proof. To show (64) by contradiction, first assume that E⋆
ij = ∅ but E

′
ij 6= ∅.

Let (u, v) ∈ E′
ij with weight c′uv . Since G⋆ ≡ G′, Lemma 20 guarantees the

existence of a path puv : u v in G⋆ such that cpuv ≤ c′uv. Further, since
E⋆

ij = ∅, puv must traverse a node t /∈ ([vi]∪ [vj]) and hence it is of the form
puv : u t v. Applying Lemma 20 to each edge in puv results in a walk
w′
uv : u t v in G′ such that c′w′

uv
≤ cpuv ≤ c′uv. If (u, v) is not part of

w′
uv, then (u, v) is a redundant edge in G′. This is a contradiction. Thus,

(u, v) is part of w′
uv, implying that w′

uv is either (a) u u→ v t v or
(b) u t u→ v v. In the case of (a), we distinguish two cases:

• the weight of the closed walk v t v is zero (G′ cannot have
negative weight closed walk because of Assumption 1.b). Then, t ∼ v
in G′, and this is a contradiction since t /∈ [vj].

• the weight of the closed walk v t v is positive. Then, c′w′

uv
≤ c′uv

implies that the weight of the closed walk u u is negative. This is
also a contradiction of Assumption 1.b.

A similar argument can show that case (b) also leads to contradictory con-
clusions. Therefore, the original assumption that E⋆

ij = ∅ but E
′
ij 6= ∅ cannot

hold. Further, an analogous argument can show that E′
ij = ∅ but E⋆

ij 6= ∅
cannot hold, and hence (64) is established.

Now we show (65) by contradiction. First, assume that

c′uv > duf + cfg + dgv . (66)

Because E⋆ ⊆ E, G⋆ is a subgraph of G. In addition, since u, f ∈ [vi],
g, v ∈ [vj], [vi] and [vj] are equivalence classes of G⋆ (as argued in the
statement), Lemma 10.a specifies that there are two walks u f and g v

44

in G⋆ with weights duf and dgv respectively. Therefore, the right-hand side
of (66) is the weight of a walk wuv : u f → g v in G⋆. Applying
Lemma 20 to each edge of wuv yields a walk w′

uv : u f g v in G′

such that
c′uv > duf + cfg + dgv ≥ c′w′

uv
. (67)

If (u, v) is not part of w′
uv then (67) implies that (u, v) is a redundant edge

in G′. This contradicts the statement assumption. On the other hand, if
(u, v) is part of w′

uv, then w′
uv is of the form u u → v v. (67) implies

that w′
uv 6= (u, v) and at least one of the closed walks u u and v v

have negative weight. This contradicts Assumption 1.b. In conclusion, (66)
cannot hold. Next, we assume that

c′uv < duf + cfg + dgv . (68)

By Lemma 10.b, duf = −dfu and dgv = −dvg. Hence, (68) is equivalent to

cfg > dfu + c′uv + dvg . (69)

In addition, Lemma 20 applied to (u, v) ∈ E′
ij yields a walk wuv : u v in

G⋆ such that cwuv ≤ c′uv. This, together with (69), implies

cfg > dfu + cwuv + dvg. (70)

By a similar argument as in (66), Lemma 10.a guarantees the existence of
two walks f u and v g in G⋆ with weights dfu and dvg respectively.
Consequently, in G⋆ there exists a walk wfg : f g such that cwfg

< cfg.
If (f, g) is not part of wfg then (70) implies that (f, g) is a redundant edge
in G⋆. This contradicts the statement assumption. On the other hand, if
(f, g) is part of wfg, then wfg is of the form f f → g g. (70) implies
that wfg 6= (f, g) and at least one of the closed walks f f and g g have
negative weight. This again contradicts Assumption 1.b. Hence, (68) does
not hold. Consequently, (65) must hold.

4.2 Parameterization of equivalent reduction

Analogous to the maximum redundant edge set problem, an equivalent re-
duction can be decomposed intoK+1 components. However, all components
of equivalent reduction can be computed in polynomial-time. The follow-
ing statement summarizes the decomposition result related to equivalent
reduction:

45

Theorem 4. Let G = (V,E, c(E)) be a precedence graph. Let the following
be defined in the context of G:

• K is the number of equivalence classes induced by relation ∼ in Defi-
nition 7.a.

• For k ∈ {1, 2, . . . ,K}, [vk] denotes the equivalence class defined in
Definition 7.b, with vk being the representing node of [vk].

• For i, j ∈ V , dij is the minimum walk weight defined in Definition 6.

• For 1 ≤ i 6= j ≤ K, Eij and (viij , v
j
ij) are defined in Definition 7.d.

• G̃ is the condensation of G defined in Definition 8, in accordance with
the designation of representing nodes vk’s.

Then, every equivalent reduction of G (defined in Definition 2) can be pa-
rameterized by

(V,Eer, cer(Eer)). (71)

In (71), the edge set Eer is parameterized by

Eer = Eer
0 ∪ (

K
∪

k=1
Eer

k),

where

for k ∈ {1, . . . ,K}, Eer
k = ∅ if |[vk]| = 1, otherwise Eer

k contains |[vk]|

edges forming a zero weight directed cycle traversing all nodes in [vk].
(72)

In addition, Eer
0 can be decomposed into

Eer
0 = ∪

1≤i 6=j≤K
Eer

ij ,

where

Eer
ij =

{

(u, v) ∈ [vi]× [vj], if Eij 6= ∅ and (vi, vj) /∈ R̃⋆
0

∅, if Eij = ∅ or (vi, vj) ∈ R̃⋆
0

, (73)

and R̃⋆
0 is the maximum redundant edge set of G̃, the condensation of G. In

(71), the edge weights cer(Eer) are defined by

ceruv =

{

duviij
+ c

viijv
j
ij
+ d

v
j
ijv

, if (u, v) ∈ [vi]× [vj], i 6= j,

duv, if (u, v) ∈ [vi]× [vi].
(74)

46

Remark 12. It appears that the statement of Theorem 4 may depend on
some arbitrary choices. For instance, R̃⋆

0 may depend on the choices of repre-
senting nodes v1, v2, . . . , vK for the equivalence classes, and the designation
of (viij , v

j
ij) in (73) is arbitrary (see Definition 7.d). However, it turns out

that Theorem 4 is independent of arbitrary choices. In particular, we can
show (in Appendix C) that

• As in the case of Remark 8, for all 1 ≤ i 6= j ≤ K,
∣
∣R̃⋆

0 ∩ ([vi] × [vj])
∣
∣

(which can only be 0 or 1) is independent of the choices of v1, . . . , vK .

• In (74), ceruv is independent of the designation of (viij , v
j
ij) because

duviij
+ c

viijv
j
ij
+ d

v
j
ijv

= min
(s,t)∈Eij

dus + cst + dtv .

The main difference between the computations in Theorem 3 and Theo-
rem 4 is that in an equivalent reduction, the edges in each equivalence class
with more than one node form a zero-weight cycle. The formation of these
cycles requires only O(|[vk]|) time for each equivalence class [vk]. Hence,
forming all cycles for all equivalent classes requires only O(|V |) time. This
difference is analogous to the distinction between the solutions to minimum
equivalent graph problem in [1] and transitive reduction problem in [2]. Fig-
ure 7 shows two equivalent reductions of the example graph in Figure 3.

Proof of Theorem 4. The proof is divided into three parts. In the first part,
some necessary conditions of equivalent reduction are listed. In the second
part, an alternative characterization of the set of all equivalent reductions
is introduced. Finally, in the third part it is established that the alternative
characterization is in fact the parameterization provided in the statement of
Theorem 4. To begin with the first part, let

G⋆ = (V,E⋆, c(E⋆)) := (V,E \R⋆, c(E \R⋆)), (75)

with R⋆ being a maximum redundant edge set of G parameterized in The-
orem 3, where in (62) the edge (g, h) is chosen to be (viij , v

j
ij) for 1 ≤ i 6=

j ≤ K. Then, because R⋆ is a redundant edge set Definition 3, Lemma 4
and Definition 1 imply that G⋆ ≡ G. In addition, by definition of maximum
redundant edge set G⋆ does not have any redundant edge. Further, by (62)

E⋆ ∩ ([vi]× [vj]) =

{

(viij , v
j
ij), if Eij 6= ∅ and (vi, vj) /∈ R̃⋆

0

∅, if Eij = ∅ or (vi, vj) ∈ R̃⋆
0

, (76)

47

!"

#"

$"

%"

&"

!"

#"
!"

!"

'!"

'!"

(a)

!"

#"

$"

%"

&"

!"

!"

!"

'#"

("$

!"

'#"

("

#"

%"%

!"

!

#

!"

("

(b)

Figure 7: Two equivalent reductions of the graph in Figure 3. Figure 7a is
the graph in Figure 3 without edge (3, 2) since it is not needed to form the
zero-weight cycle traversing nodes 2,3,4,5. It can be verified that Figure 7a
satisfies the parameterization in (71). On the other hand, while Figure 7b
resembles less the graph in Figure 3, it is in fact another equivalent reduction.
The cycle (2, 3, 4, 5, 2) and the corresponding edge weights satisfy (72) and
(74). In addition, by (73) there should be one edge each from [1] to [2] and
from [2] to [1], since E12 6= ∅, E21 6= ∅ and R̃⋆

0 = ∅. The edges (1, 2) and
(2, 1) together with their weights satisfy (73) and (74).

for 1 ≤ i 6= j ≤ K. Now we analyze the properties of equivalent reduction.
Let GER denote the set of all equivalent reductions of G. That is,

GER = argmin
G′=(V,E′,c′(E′))≡G

|E′|. (77)

Let G′ = (V,E′, c′(E′)) ∈ GER. In the following, three properties of E′ will
be discussed regarding

• self-loops and parallel edges,

• edges between two different equivalence classes,

• edges between two different nodes in an equivalence class.

First, we claim that E′ does not contain any self-loops or parallel edges.
That is,

(i, i) /∈ E′, ∀ i ∈ V, and all elements of E′ are distinct. (78)

To see (78), first note that G′ has nonempty solution set because G′ ≡ G
and G has nonempty solution set because of Assumption 1.a. Hence, the
weight c′ii of any self-loop (i, i) must be nonnegative, and the corresponding

48

precedence inequality xi − xi = 0 ≤ c′ij is redundant and should not be

present in G′ ∈ GER. It is also clear that if G′ has the minimum number of
edges as characterized by (77), it is impossible to have more than one edge
connecting two nodes.

Second, for the edges between equivalent classes, note that G′ ∈ GER

implies G′ ≡ G and G′ does not have any redundant edge. Hence, by
applying Lemma 22 with G′ and G⋆, it can be concluded from (64) and (76)
that

E′ ∩ ([vi]× [vj]) =

{

(u, v) ∈ [vi]× [vj], if Eij 6= ∅ and (vi, vj) /∈ R̃⋆
0

∅, if Eij = ∅ or (vi, vj) ∈ R̃⋆
0

, (79)

for 1 ≤ i 6= j ≤ K. In addition, by (65) the edge weight in (79) is

c′uv = duviij
+ c

viijv
j
ij
+ d

v
j
ijv

. (80)

(79) implies that

∣
∣
∣E′ ∩ (∪

1≤i 6=j≤K
[vi]× [vj])

∣
∣
∣ = |Ẽ0| − |R̃

⋆
0|, (81)

where Ẽ0 is the edge set of any condensation of G.
Third, we consider the edges in equivalence class [vk] where |[vk]| ≥ 2.

Since G′ ≡ G, Lemma 21 states that

∀ i, j ∈ V, i ∼ j in G′ ⇐⇒ i ∼ j in G. (82)

Condition (82) implies that for k ∈ {1, 2, . . . ,K},

The graph Hk := ([vk], E
′ ∩ ([vk]× [vk])) is connected, (83a)

|[vk]| ≥ 2 =⇒ every node in Hk is incident to at least two edges, (83b)

|[vk]| ≥ 2 =⇒ Hk cannot be a tree. (83c)

Thus, G′ ∈ GER implies (83), which in turn implies that

|[vk]| ≥ 2 =⇒ |E′ ∩ ([vk]× [vk])| ≥ |[vk]|, (84)

because if a connected graph has more than one node and it is not a tree,
then it has at least as many edges as the number of nodes (e.g., [24]). This
concludes the first part of the proof (of Theorem 4), listing of properties of
G′ ∈ GER.

49

For the rest of the proof, G′ is not assumed to be a member of GER.
We begin the second part of the proof by considering a (to be shown to be)
alternative description of GER. Denote the set

G⋆ :=
{
G′ = (V,E′, c′(E′)) | G′ ≡ G, G′ satisfies (78), (79), (80), (86)

}
,

(85)
where condition (86) is defined as

|[vk]| ≥ 2 =⇒ |E′ ∩ ([vk]× [vk])| = |[vk]|. (86)

In essence, G⋆ in (85) is the (to be shown to be nonempty) subset of the
feasible set in the optimization problem in (77), whose elements attain the
lower bound of the total number of edges of G′ specified by (78), (81) and
(84). In other words, (77), (78), (81) and (84) together imply that

G⋆ 6= ∅ =⇒ G⋆ = GER. (87)

The set G⋆ in (85) can be described in a more convenient form. Its derivation
is based on the establishment of two properties of G⋆ to be shown in (88)
and (90). As (88), it is claimed that if G′ ∈ G⋆ then for all k ∈ {1, 2, . . . ,K},

|[vk]| = 1 =⇒ E′ ∩ ([vk]× [vk]) = ∅,

|[vk]| ≥ 2 =⇒ E′ ∩ ([vk]× [vk]) forms a zero weight directed cycle

with |[vk]| edges traversing all nodes in [vk].
(88)

The first implication in (88) is a specialization of (78). For the second
implication in (88), note that G′ ∈ G⋆ satisfies (86). Hence, restricted to
the graph Hk := ([vk], E

′ ∩ ([vk]× [vk])) the sum of degrees (in-degrees and
out-degrees together) of all nodes is 2×|[vk]| (e.g., [25, Theorem 15.3]). If in
Hk there is a node with degree greater than two, then there exists at least
one other node in Hk with degree less than two. This violates (83b), and
hence conditions (82) and G′ ≡ G are violated as well. Thus, every node in
Hk has degree exactly two. This, together with the no self-loop condition
in (78), implies that

|[vk]| ≥ 2 =⇒ every node in Hk is incident to exactly two edges. (89)

Note that G′ ≡ G since G′ ∈ G⋆. Hence, G′ satisfies (82) and (83a). Then, it
is claimed that (82), (83a) and (89) together imply the second implication in
(88). (82) and (89) imply that for each node in [vk] there is one outgoing edge
and one incoming edge in Hk. This, together with the fact that Hk is a finite

50

graph, suggests that starting from any node i0 ∈ [vk] and following the edges
along their directions it is possible to trace a cycle w = (i0, i1, . . . , im = i0) in
Hk. If there exists im+1 ∈ [vk] that is not part of cycle w, then by following
the outgoing edge of im+1 and subsequent edges along their directions either
one of the following is resulted: (i) another cycle w′ which is disjointed from
w is traced, or (ii) there exists 0 < q ≤ m such that iq is connected to some
v ∈ [vk], v not part of w. Case (i) contradicts (83a). On the other hand, case
(ii) implies that iq is connected to iq−1, i((q+1) mod m) and v. This suggests
that iq has degree three in Hk, and contradicts (89). Thus, both (i) and (ii)
lead to contradictory conclusions, and hence w is a directed cycle traversing
all nodes in [vk]. Finally, the fact that w is a zero weight cycle is due to
(82). Thus, the second implication in (88) is established. Furthermore, as a
consequence of G′ ∈ G⋆ (in particular G′ ≡ G and (88)), it is claimed that

(u, v) ∈ E′ ∩ ([vk]× [vk]) for some k =⇒ c′uv = duv, (90)

where we note that duv is the minimum walk weight from u to v in G
(Definition 6). The proof of (90) is as follows: let (i0, i1, . . . , im = i0) be the
directed cycle in [vk] in (88). Then, (90) holds if it is true that

c′iqiq+1
= diqiq+1 , ∀ q = 0, 1, . . . ,m− 1. (91)

The proof of (91) is as follows: since G′ ≡ G, by Lemma 20 for each q =
0, 1, . . . ,m−1 there exists a walk wiqiq+1 : iq iq+1 in G such that cwiqiq+1

≤

c′iqiq+1
. In addition, since diqiq+1 ≤ cwiqiq+1

by Definition 6, it holds that

∀q = 0, . . . ,m− 1, diqiq+1 ≤ cwiqiq+1
≤ c′iqiq+1

=⇒ c′iqiq+1
− diqiq+1 ≥ 0.

(92)
In addition, by Lemma 10.b and 10.c

di0i1 +di1i2 + . . .+dim−1im = di0im−1 +dim−1im = di0im−1−di0im−1 = 0. (93)

Since (i0, i1, . . . , im = i0) is a zero weight cycle, it holds that

c′i0i1 + c′i1i2 + . . . + c′im−1im
= 0. (94)

Combining (93) and (94), it can be concluded that

(c′i0i1 − di0i1) + (c′i1i2 − di1i2) + . . . + (c′im−1im
− di=m−1im) = 0. (95)

Then, (92) and (95) together lead to (91). In summary,

G′ ∈ G⋆ =⇒ G′ ≡ G, G′ satisfies (78), (79), (80), (88), (90).

51

Since (88) leads to (86), it holds that

G⋆ =
{
G′ | G′ ≡ G, G′ satisfies (78), (79), (80), (88), (90)

}
. (96)

This concludes the second part of the proof (of Theorem 4), defining and
characterizing G⋆ as a possible alternative description of GER, the set of all
equivalent reductions of G.

In the last part of the proof, we establish the connection between G⋆ and
the parameterization in the statement of Theorem 4. Denote Ger as the set
of all precedence graphs satisfying (71) to (74) (i.e., the parameterization in
the statement of Theorem 4). Then, it can be seen that

Ger =
{
G′ | G′ satisfies (78), (79), (80), (88), (90)

}
. (97)

That is, the set Ger in (97) includes G⋆ in (96), since the definition of the
Ger is the same as G⋆ except that the requirement G′ ≡ G is removed. As
a side note, G′ ∈ Ger is the only precedence graph considered in this paper
where Assumption 1.a (i.e., feasibility) cannot be taken for granted because
the condition G′ ≡ G has not been shown. In the remaining part of the
proof we will show that

G′ = (V,E′, c′(E′)) ∈ Ger =⇒ G′ ≡ G⋆ (≡ G), (98)

where G⋆ is defined in the earlier part of the proof in (75). If (98) holds,
then the desired statement in the theorem is shown because

Ger = G⋆ =⇒ G⋆ 6= ∅ (since Ger 6= ∅)
(87)
=⇒ Ger = G⋆ = GER.

Now we start to show (98), and assume that G′ ∈ Ger. We first show one
direction of “≡” in (98) by proving

x ∈ R
n satisfies G⋆ =⇒ xu − xv ≤ c′uv, ∀(u, v) ∈ E′. (99)

There are two cases in (99): (a) u 6= v, u, v ∈ [vk] for some k, or (b) u ∈ [vk]
and v ∈ [vq] with k 6= q. For case (a), (90) requires that the weight of
(u, v) is c′uv = duv. Since G⋆ ≡ G, Lemma 21 implies that G⋆ and G have
the same equivalence class partitioning. Thus, by Lemma 10.a there exists
a walk u v in G⋆ with weight duv, which is the same as the weight of
(u, v) in G′. Then, Lemma 2 (applied to G⋆) establishes (99) in case (a).
For case (b), by (76) and (79) (u, v) ∈ E′ implies that (vkkq, v

q
kq) ∈ E⋆. In

addition, (80) implies that c′uv = duvk
kq

+ cvk
kq

v
q
kq

+ dvq
kq

v. Since u, vkkq ∈ [vk],

v, vqkq ∈ [vq], Lemma 10.a specifies that there exists two walks in G⋆, u vkkq

52

and vqkq v, with weights duvk
kq

and dvq
kq

v respectively. Hence, in G⋆ there

exists a walk u vkkq → vqkq v with weight equal to c′uv. Again, by
Lemma 2 it can be concluded that (99) holds under case (b). In conclusion,
(99) holds. Next, we show the other direction of “≡” in (98) by establishing

x ∈ R
n satisfies G′ =⇒ xi − xj ≤ cij , ∀(i, j) ∈ E⋆. (100)

First, we note that (99) implies that G′ has at least one solution since G⋆

has at least one. Therefore, G′ also satisfies Assumption 1 and Lemma 2 can
be applied to G′. There are two cases in (100): (c) i 6= j, i, j ∈ [vk] for some
k, or (d) i ∈ [vk] and j ∈ [vq] with k 6= q. For case (c), by (88) and (90) there
exists a path (i = i0, i1, . . . , im = j) in G′, as a part of the cycle traversing
nodes in [vk], with weight di0i1 + . . . + dim−1im = dij ≤ cij (the equality is
due to Lemma 10.c and the inequality is due to Definition 6). Thus, by
Lemma 2 (100) holds in case (c). For case (d), (76), (79) and (80) specify
that i = vkkq, j = vqkq and there exists (u, v) ∈ E′ with u ∈ [vk], v ∈ [vq] such
that cij = diu + c′uv + dvj . Since i, u ∈ [vk] and v, j ∈ [vq], (88) and (90)
imply the existence of two paths i u and v j in G′ with weights diu
and dvj respectively. Hence, in G′ there exists a path i u→ v j with
weight diu + c′uv + dvj = cij . Consequently, by Lemma 2 (100) holds in case
(d). Therefore, (100) holds and consequently (98) holds. This concludes the
proof of Theorem 4.

4.3 Variable elimination in equivalent reduction

Let Ger = (V,Eer, cer(Eer)) denote an equivalent reduction of a precedence
graph G. By Theorem 4 (i.e., (72) and (74)) in Ger if i, j ∈ [vk] for some k
then xi − xj = dij for all x ∈ R

n satisfying G. In some applications (e.g.,
optimization), it is beneficial to use these equalities to eliminate all except
one variable in each equivalence class (e.g., keeping only the representing
node vk). The resulted simplified inequality system can be considered as a
“condensation” of Ger constructed as follows:

Algorithm 3 (Condensation of equivalent reduction).

1. Designate representing nodes in the equivalence classes as v1, v2, . . . , vK .

2. Define Ṽ := {v1, v2, . . . , vK}.

3. Define Êer
0 := {(vi, vj) | E

er ∩ ([vi]× [vj]) = Eer
ij 6= ∅, i 6= j}.

53

4. For each (vi, vj) ∈ Êer
0 , define edge weight

ĉervivj := dviu + ceruv + dvvj , (101)

where {(u, v)} = Eer ∩ ([vi]× [vj]).

5. Define the condensation of Ger to be (Ṽ , Êer
0 , ĉer(Êer

0)).

It turns out that the condensation of an equivalent reduction of G can
be interpreted in an alternative way related to the condensation of G:

Lemma 23. Let Ger = (V,Eer, cer(Eer)) be an equivalent reduction of a
precedence graph G. Let Êer

0 and ĉer(Êer
0), defined in Algorithm 3, describe

the condensation of Ger. Let G̃ = (Ṽ , Ẽ0, c̃(Ẽ0)) denote the condensation
of G, with the same designation of v1, v2, . . . , vK as in the choice of Algo-
rithm 3. Let R̃⋆

0 be the maximum redundant edge set of G̃. Then,

(Ṽ , Êer
0 , ĉer(Êer

0)) = (Ṽ , Ẽ0 \ R̃
⋆
0, c̃(Ẽ0 \ R̃

⋆
0)). (102)

That is, the condensation of an equivalent reduction of G is the condensation
of G with its maximum redundant edge set removed.

Proof. To see (102), we compare the following:

• Ṽ is the node set in the left-hand and right-hand sides of (102).

• For the edge sets, by the definition in Algorithm 3 and Theorem 4
(i.e., (73)) it holds that

(vi, vj) ∈ Êer
0 ⇐⇒ Eer

ij 6= ∅ ⇐⇒ (vi, vj) ∈ (Ẽ0 \ R̃
⋆
0).

Hence, the left-hand and right-hand sides of (102) have the same edge
sets (i.e., Êer

0 = Ẽ0 \ R̃
⋆
0).

• For each (vi, vj) ∈ Êer
0 , the edge weight satisfies

ĉervivj
(101)
= dviu + ceruv + dvvj

(74)
= dviu + duviij

+ c
viijv

j
ij
+ d

v
j
ijv

+ dvvj
Lemma 10.c

= dviviij
+ c

viijv
j
ij
+ d

v
j
ijvj

(28)
= c̃vivj

.

54

5 Conclusions

The maximum index set of redundant relations problem (i.e., maximum re-
dundant edge set problem) is a generalization of the minimum equivalent
graph problem. Similarly, the equivalent reduction problem is a generaliza-
tion of the transitive reduction problem. Nevertheless, the generalizations
are shown to possess analogous computation properties of the respective re-
strictions. The maximum redundant edge set problem is NP-hard in general,
and it is solvable in polynomial time if the graph does not have zero-weight
cycles. This is analogous to the statement that the minimum equivalent
graph problem is NP-hard in general, and it is solvable in polynomial time
if the graph is acyclic. In addition, the decomposition of the maximum re-
dundant edge set problem based on the equivalence classes defined by the
“on-a-zero-weight-closed-walk” relation is analogous to the decomposition of
the minimum equivalent graph problem based on strongly connected com-
ponents. Further, in the decomposition, the subproblems dealing with the
edges between equivalence classes are both solvable in polynomial time. The
subproblem within an equivalence class for maximum redundant edge set
problem is in fact equivalent to the (NP-hard) minimum equivalent graph
problem within the corresponding equivalence class, with the implication
that all available exact or inexact algorithms for minimum equivalent graph
problem can be utilized. Finally, analogous results also hold between the
equivalent reduction problem and the transitive reduction problem. The
structure of decompositions of the solutions are analogous, and both prob-
lems can be solved in polynomial-time using similar shortest path calcula-
tions.

A Decomposing a walk into a path and cycles

In a directed graph G = (V,E) without parallel edges, a walk can be repre-
sented by a sequence of node indices w = (i0, i1, . . . , im) where (ik, ik+1) ∈ E
for k = 0, 1, . . . ,m− 1. To decompose a walk w, the following “scan” oper-
ation is necessary:

S = scan(w)

• Initialize S ← ∅ and k ← 0.

• While k < length(w), do

55

1. If there exists r as the smallest index such that r > k and ir = ik,
then update S ← S ∪ {(ik, ik+1, . . . , ir)}. The sequence w is also
updated according to

w←

{

() if k = 0 and r = m

(i0, i1, . . . , ik, ir+1, ir+2, . . . , im) otherwise
.

In updating w, the sub-walk (ir+1, . . . , im) is empty by convention
if r = m.

2. Increase k ← k + 1.

End (of While)

• Update S ← S ∪ {w}.

For any two nodes u and v, applying the scan operation to a walk w =
(u = i0, i1, . . . , im = v) results in S a path from u to v (can be a degenerate
path containing a single node if u = v) and a finite number of closed walks
(if any). The scan operation can be applied to each closed walk and all
closed walks generated subsequently that contain more than one cycle. The
recursive application of the scan operation eventually decomposes all closed
walks into cycles in finite number of steps. To see this, each time when
“children” closed walks are generated by passing a “parent” closed walk
through scan, the number of edges of the children closed walks must be
smaller than that of the parent. The scan operation can be applied to each
children which is not a cycle, which might generate more “grand-children”
closed walks with even fewer edges. However, the recursive application of
scan cannot continue indefinitely since all closed walks with two edges are
cycles.

B Theorem 3 independent of choices of vk’s

For Ec
ij, we claim that Ec

ij is independent of the choices of vk’s. For any
1 ≤ i 6= j ≤ K, (25) specifies that (u, v) ∈ Ec

ij if and only if

dvis + cst + dtvj ≥ dviu + cuv + dvvi , ∀(s, t) ∈ Eij . (103)

However, by lemma 10.b and 10.c, (103) can be rewritten as

cst ≥ dsvi + dviu + cuv + dvvj + dvjt = dsu + cuv + dvt.

This shows that Ec
ij is independent of the choices of vk’s.

56

Next, we establish that the set of R⋆
0 is independent of the choices of

vk’s. Let G̃ be the condensation, where the representing nodes of the equiv-
alence classes are v1, . . . , vK . Now instead, let v̂1, . . . , v̂K , where v̂k can be
different from vk, be the representing nodes. Let Ĝ be the corresponding
condensation. By Definition 8, (vi, vj) is an edge of G̃ if and only if (v̂i, v̂j)
is an edge of Ĝ. In addition, it is claimed that if c̃v̂iv̂j is the edge weight of

(v̂i, v̂j) in Ĝ, then it holds that

c̃v̂iv̂j = dv̂ivi + c̃vivj + dvj v̂j . (104)

First, we claim that

c̃v̂iv̂j ≤ dv̂ivi + c̃vivj + dvj v̂j . (105)

Note that, by (28) and Lemma 10.c, it holds that

dv̂ivi + c̃vivj + dvj v̂j = dv̂ivi + dviviij
+ c

viijv
j
ij
+ d

v
j
ijvj

+ dvj v̂j

= dv̂iviij
+ c

viijv
j
ij
+ d

v
j
ij v̂j

.

Hence, the right-hand side of (105) is in fact the weight of the walk v̂i
viij → vjij v̂j . Consequently, by (27) (applied to Ĝ), (105) holds. Next, to
complete the proof of (104), suppose that

c̃v̂iv̂j = dv̂iv̂iij
+ c

v̂iij v̂
j
ij
+ d

v̂
j
ij v̂j

< dv̂ivi + c̃vivj + dvj v̂j . (106)

Then, with Lemma 10.b and 10.c, (106) implies that

dviv̂iij
+ c

v̂iij v̂
j
ij
+ d

v̂
j
ijvj

< c̃vivj .

This contradicts (27) in Definition 8. Consequently, (104) holds. With (104),
it can be shown that for any sequence v̂k(1), v̂k(2), . . . , v̂k(m), the inequality

c̃v̂k(0)v̂k(m)
≥ c̃v̂k(0)v̂k(1) + c̃v̂k(1)v̂k(2) + . . .+ c̃v̂k(m−1) v̂k(m)

(107)

is equivalent to

dv̂k(0)vk(0) + c̃vk(0)vk(m)
+ dvk(m)v̂k(m)

≥ dv̂k(0)vk(0) + c̃vk(0)vk(1) + dvk(1) v̂k(1) + dv̂k(1)vk(1) + c̃vk(1)vk(2) + dvk(2)v̂k(2)

+ . . .+ dv̂k(m−1)vk(m−1)
+ cvk(m−1)vk(m)

+ dvk(m)v̂k(m)
.

(108)

57

In (108), Lemma 10.b yields dvk(q)v̂k(q) + dv̂k(q)vk(q) = 0 for q = 1, . . . ,m− 1.
Thus, (108) becomes

c̃vk(0)vk(m)
≥ c̃vk(0)vk(1) + c̃vk(1)vk(2) + . . . + c̃vk(m−1)vk(m)

. (109)

That is, inequalities (107) and (109) are equivalent. The equivalence implies
that R̃ is a redundant edge set in G̃ if and only if R̂ := {(v̂i, v̂j) | (vi, vj) ∈
R̃ ⇐⇒ (v̂i, v̂j) ∈ R̂} is a redundant edge set in Ĝ with the same cardinality,
and vice versa. Therefore, for 1 ≤ i 6= j ≤ K, either there is an edge from
[vi] to [vj] in the maximum redundant edge set of all condensations, or
there is no edge from [vi] to [vj] in the maximum redundant edge set of any
condensation. This is the second bullet of Remark 8. Consequently, the
definition of R⋆

ij (and hence R⋆
0) in Theorem 3 is independent of the choices

of vk’s.

C Theorem 4 independent of arbitrary choices

The first bullet has been shown in Appendix B. The second bullet is shown
as follows:

min
(s,t)∈Eij

dus + cst + dtv

Lemma 10.c
= min

(s,t)∈Eij

duvi + dvis + cst + dtvj + dvjv

= duvi +
(

min
(s,t)∈Eij

dvis + cst + dtvj
)
+ dvjv

Definition 7.d
= duvi + dviviij

+ c
viijv

j
ij
+ d

v
j
ijvj

+ dvjv

Lemma 10.c
= duviij

+ c
viijv

j
ij

+ d
v
j
ijv

.

References

[1] D. M. Moyles and G. L. Thompson, “An algorithm for find-
ing a minimum equivalent graph of a digraph,” J. ACM,
vol. 16, no. 3, pp. 455–460, Jul. 1969. [Online]. Available:
http://doi.acm.org/10.1145/321526.321534

[2] A. Aho, M. Garey, and J. Ullman, “The transitive reduction of a di-
rected graph,” SIAM Journal on Computing, vol. 1, no. 2, pp. 131–137,
1972.

58

http://doi.acm.org/10.1145/321526.321534

[3] J. Telgen, “Identifying redundant constraints and implicit equalities in
systems of linear constraints,” Management Science, vol. 29, no. 10, pp.
1209–1222, 1983.

[4] H. J. Greenberg, “Consistency, redundancy, and implied equalities
in linear systems,” Annals of Mathematics and Artificial Intelligence,
vol. 17, no. 1, pp. 37–83, 1996.

[5] L. Finta and Z. Liu, “Single machine scheduling subject to precedence
delays,” Discrete Applied Mathematics, vol. 70, no. 3, pp. 247–266,
1996.

[6] E. Balas, J. K. Lenstra, and A. Vazacopoulos, “The one-machine prob-
lem with delayed precedence constraints and its use in job shop schedul-
ing,” Manage. Sci., vol. 41, no. 1, pp. 94–109, Jan. 1995.

[7] C. Chekuri and R. Motwani, “Precedence constrained scheduling to
minimize sum of weighted completion times on a single machine,” Dis-
crete Applied Mathematics, vol. 98, no. 1–2, pp. 29–38, 1999.

[8] P. Brucker, T. Hilbig, and J. Hurink, “A branch and bound algorithm
for a single-machine scheduling problem with positive and negative
time-lags,” Discrete Applied Mathematics, vol. 94, no. 1-3, pp. 77–99,
1999, proceedings of the Third International Conference on Graphs and
Optimization GO-III.

[9] E. D. Wikum, D. C. Llewellyn, and G. L. Nemhauser, “One-machine
generalized precedence constrained scheduling problems,” Operations
Research Letters, vol. 16, no. 2, pp. 87–99, 1994.

[10] R. Möhring and M. Uetz, “Scheduling scarce resources in chemical en-
gineering,” in Mathematics – Key Technology for the Future. Springer
Berlin Heidelberg, 2003, pp. 637–650.

[11] K. C. Sou, J. Weimer, H. Sandberg, and K.H. Johansson, “Scheduling
smart home appliances using mixed integer linear programming,” in
Decision and Control and European Control Conference (CDC-ECC),
2011 50th IEEE Conference on, dec. 2011, pp. 5144 –5149.

[12] K.C. Sou, M. Kördel, J. Wu, H. Sandberg, and K.H. Johansson, “En-
ergy and co2 efficient scheduling of smart home appliances,” in Euro-
pean Control Conference, 2013.

59

[13] P. Sucha and Z. Hanzalek, “Scheduling of tasks with precedence delays
and relative deadlines framework for time-optimal dynamic reconfig-
uration of fpgas,” in Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, April 2006.

[14] J. M. Pinilla, J.-H. Kao, and F. Prinz, “Compact graph representation
for solid freeform fabrication (sff),” Journal of Manufacturing Systems,
vol. 19, no. 5, pp. 341 – 354, 2001.

[15] K. C. Sou, H. Sandberg, and K. H. Johansson, “Nonserial dynamic pro-
gramming with applications in smart home appliances scheduling – part
II: Nonserial dynamic programming,” in European Control Conference,
2014.

[16] J. Coffman, E.G. and R. Graham, “Optimal scheduling for two-
processor systems,” Acta Informatica, vol. 1, no. 3, pp. 200–213, 1972.

[17] J. Tsitsiklis and D. Bertsimas, Introduction to Linear Optimization.
Athena Scientific, 1997.

[18] A. Schrijver, “A course in combinatorial optimization,” 2010,
http://homepages.cwi.nl/∼lex/.

[19] K. C. Sou, H. Sandberg, and K. H. Johansson, “Nonserial dynamic
programming with applications in smart home appliances scheduling –
part I: Precedence graph simplification,” in European Control Confer-
ence, 2014.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[21] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Free-
man & Co., 1990.

[22] H. T. Hsu, “An algorithm for finding a minimal equivalent graph of a
digraph,” J. ACM, vol. 22, no. 1, pp. 11–16, Jan. 1975.

[23] S. Khuller, B. Raghavachari, and N. Young, “Approximating the mini-
mum equivalent digraph,” SIAM Journal on Computing, vol. 24, no. 4,
pp. 859–872, 1995.

[24] R. Diestel, Graph Theory. Springer, 2012.

60

http://homepages.cwi.nl/~lex/

[25] N. Biggs, Discrete Mathematics, 2nd ed. Oxford University Press,
2002.

61

	1 Introduction
	1.1 Statement of problem
	1.2 Main contributions and previous works
	1.3 Application motivations
	1.4 Organization

	2 Graph interpretation of the main problems
	2.1 Precedence graph description and supplementary results
	2.2 Graph representation of maximum index set of redundant relations problem

	3 Maximum redundant edge set problem
	3.1 Complexity of maximum redundant edge set problem
	3.2 Decomposition of maximum redundant edge set problem
	3.3 Computation for maximum redundant edge set

	4 Equivalent reduction of precedence relation systems
	4.1 Preparatory results
	4.2 Parameterization of equivalent reduction
	4.3 Variable elimination in equivalent reduction

	5 Conclusions
	A Decomposing a walk into a path and cycles
	B Theorem 3 independent of choices of vk's
	C Theorem 4 independent of arbitrary choices

