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Tight Linear Convergence Rate Bounds for
Douglas-Rachford Splitting and ADMM

Pontus Giselsson⋆

Abstract— Douglas-Rachford splitting and the alternating
direction method of multipliers (ADMM) can be used to solve
convex optimization problems that consist of a sum of two
functions. Convergence rate estimates for these algorithms have
received much attention lately. In particular, linear convergence
rates have been shown by several authors under various
assumptions. One such set of assumptions is strong convexity
and smoothness of one of the functions in the minimization
problem. The authors recently provided a linear convergence
rate bound for such problems. In this paper, we show that this
rate bound is tight for many algorithm parameter choices.

I. I NTRODUCTION

Douglas-Rachford splitting is an optimization algorithm
that can solve general convex composite optimization prob-
lems. The algorithm has its roots in the 1950’s [5], [17]. In
the late 1970’s, it was shown [14] how to use the algorithm
to solve montone operator inclusion problems and convex
composite optimization problems. The alternating direction
method of multipliers (ADMM) can also solve composite
optimization problems. It was first presented in [11], [7].
Soon thereafter, it was shown [6] that ADMM is equivalent
to Douglas-Rachford splitting applied to the dual problem.

General sublinear convergence rate estimates for these
methods have just recently been presented in the literature,
see [12], [3], [1]. Under various assumptions, also linear
convergence rates can be established. In the paper by Lions
and Mercier [14], a linear convergence rate was provided
for Douglas-Rachford splitting under (the equivalence of)
strong convexity and smoothness assumptions. Until recently,
further linear convergence rate results have been scarce. The
last couple of years, however, several linear convergence
rate results for both Douglas-Rachford splitting and ADMM
have been presented. These include [4], [2], in which linear
convergence rates for ADMM are presented under various
assumptions. In [13], linear convergence rates are estab-
lished for multiple splitting ADMM. In [16], it is shown
that for a specific class of problems, the Douglas-Rachford
algorithm can be interpreted as a gradient method of a
function named the Douglas-Rachford envelope. By showing
strong convexity and smoothness properties of the Douglas-
Rachford envelope under similar assumptions on the under-
lying problem, a linear convergence rate is established based
on gradient algorithm theory. Very recently [15] appeared
and showed linear convergence of ADMM under smoothness
and strong convexity assumptions using the integral quadratic
constraints (IQC) framework. The rate is obtained by solving
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a series of a small semi-definite programs. Common for all
these linear convergence rate bounds are that they are not
tight for the class of problems under consideration, see [10,
Section IV.B].

In [18], linear convergence of ADMM is established
under more general assumptions than the above. However,
the assumptions are more difficult to verify for a given
problem. Tightness is verified for a 2-dimensional example
in the Euclidean case. In [8], linear convergence for ADMM
on strongly convex quadratic optimization problem with
inquality constraints is established. This rate improves on
the rates presented in [14], [4], [2], [13], [16], [15]. In
[9], the authors generalize, using a completely different
machinery, the results in [8] and in [10] the results are further
generalized. More specifically, [10] generalizes the results in
[8] in the following three ways; (i) a wider class of problems
is considered, (ii) rates for both Douglas-Rachford splitting
and ADMM are provided, and (iii) the results in [10] hold for
general real Hilbert spaces as opposed to the Euclidean space
only in [8]. For the restricted class of problems considered
in [8], the convergence rate bounds in [10] and [8] coincide.

The contribution of this paper is that we show tightness of
the convergence rate bounds presented in [10] for the class
of problems under consideration and for many algorithm
parameters. This is done by formulating examples, both for
Douglas-Rachford splitting and ADMM, for which the linear
convergence rate bounds are satisfied with equality. Similar
lower convergence rate bounds have been presented in [15].
The bounds in this paper cover wider classes of problems
and are less conservative.

II. N OTATION

We denote byR the set of real numbers,Rn the set of real
column-vectors of lengthn. FurtherR := R∪{∞} denotes
the extended real line. Throughout this paperH denotes a
real separable Hilbert space. Its inner product is denoted by
〈·, ·〉, the induced norm by‖ · ‖, and the identity operator
by Id. The indicator function for a setX is denoted byιX .
Finally, the class of closed, proper, and convex functions
f : H → R is denoted byΓ0(H).

III. PRELIMINARIES

In this section we present, well known concepts, results,
operators, and algorithms that will be extensively used in the
paper.

Definition 1 (Orthonormal basis):An orthonormal basis
{φi}Ki=1 for a (separable) Hilbert spaceH is an orthogonal
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basis, i.e.〈φi, φj〉 = 0 if i 6= j, where each basis vector has
unit length, i.e.‖φi‖ = 1.
Hereon,φi will denote elemtens of an orthonormal basis.

Remark 1:The number of elements in the basis (the
cardinality)K is equal to the dimension of the corresponding
Hilbert space, which might be∞. Also, by definition of a
basis, each elementx ∈ H can be (uniquely) decomposed
asx =

∑K
i=1

〈x, φi〉φi, see [20, Proposition 3.3.10].
The reason why we consider separable Hilbert spaces is

the following proposition which can be found, e.g., in [20,
Proposition 3.3.12].

Proposition 1: A Hilbert space is separable if and only if
it has an orthonormal basis.

We will also make extensive use of the following two
propositions that are proven, e.g., in [20, Propsition 3.3.10]
and [20, Propsition 3.3.14] respectively.

Proposition 2 (Parseval’s identity):In separable Hilbert
spacesH, the squarred norm of each elementx ∈ H satisfies

‖x‖2 =
K
∑

i=1

|〈x, φi〉|2.

Proposition 3 (Riesz-Fischer):In separable Hilbert spaces
H, the sequence

∑∞
i=1

aiφi converges if and only if
∑∞

i=1
a2i <∞. Then

∥

∥

∥

∥

∥

K
∑

i=1

aiφi

∥

∥

∥

∥

∥

2

=
K
∑

i=1

a2i .

Definition 2 (Strong convexity):A function f ∈ Γ0(H) is
σ-strongly convexif

f(x) ≥ f(y) + 〈u, x− y〉+ σ
2
‖x− y‖2

holds for allx, y ∈ H and allu ∈ ∂f(y).
Definition 3 (Smoothness):A function f ∈ Γ0(H) is β-

smooth if it is differentiable and

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ β
2
‖x− y‖2 (1)

holds for allx, y ∈ H.
Definition 4 (Proximal operators):The proximal opera-

tor of a functionf ∈ Γ0(H) is defined as

proxγf(y) := argmin
x

{

f(x) + 1

2γ ‖x− y‖2
}

.

Definition 5 (Reflected proximal operators):The
reflected proximal operatorto f ∈ Γ0(H) is defined
as

Rγf := 2proxγf − Id.

Definition 6 (Fixed-point):A point y ∈ H is afixed-point
to the (single-valued) operatorA : H → H if

y = Ay.

The set of fixed-points toA is denoted byfixA.

Algorithm 1 (Generalized Douglas-Rachford splitting):
The generalized Douglas-Rachford splitting algorithm is
given by the iteration

zk+1 = (1− α)Id + αRγgRγfz
k (2)

whereα ∈ (0, 1) andγ > 0 are algorithm parameters.
Remark 2: In the general case,α is restricted to the

interval (0, 1). Under the assumptions used in this paper,
a largerα can be used as well, see [10].

IV. L INEAR CONVERGENCE RATES

In this section, we state the linear convergence rate results
for Douglas-Rachford and ADMM in [10]. The paper [10]
considers optimization problems of the form

minimize f(x) + g(Ax) (3)

where x ∈ H, and f , g, and A satisfy the following
assumptions:

Assumption 1:

(i) The functionf ∈ Γ0(H) is σ-strongly convex andβ-
smooth.

(ii) The functiong ∈ Γ0(K).
(iii) A : H → K is a surjective bounded linear operator.

Under the additional assumption thatA = Id (which implies
that K = H), Douglas-Rachford splitting can be applied to
solve (3). It enjoys a linear convergence rate, as shown in
[10, Theorem 1]. This result is restated here for convenience.

Theorem 1:Suppose that Assumption 1 holds and that
A = Id. Then the generalized Douglas Rachford algo-
rithm (Algorithm 1) converges linearly towards a fixed-
point z̄ ∈ fix(RγfRγg) with at least rate|1 − α| +
αmax

(

γβ−1

γβ+1
, 1−γσ
1+γσ

)

, i.e.

‖zk+1 − z̄‖ ≤
(

|1− α|+ αmax
(

γβ−1

γβ+1
, 1−γσ
1+γσ

))k

‖z0 − z̄‖

for any γ > 0 andα ∈ (0, 2

1+max

(

1−γσ
1+γσ ,

γβ−1

1+γβ

) ).

Remark 3:The bound on the rate in Theorem 1 can be
optimized with respect to the algorithm parametersα andγ.
The optimal parameters are given byα = 1 and γ = 1√

βσ

which yields rate bound factor
√

β/σ−1√
β/σ+1

, see [10, Proposition

16].
In the case whereA 6= Id, problem (3) can be solved by

applying Douglas-Rachford splitting on the dual problem:

minimize d(µ) + g∗(µ) (4)

whereg∗ ∈ Γ0(K), andd ∈ Γ0(K) is defined as

d := f∗ ◦ (−A∗).

If the dual problem (4) satisfies Assumption 1 (withd instead
of f andg∗ instead ofg), Douglas-Rachford splitting can be
applied to solve (4), and Theorem 1 would guarantee a linear
convergence rate. Sinceg ∈ Γ0(K), we haveg∗ ∈ Γ0(K)
[19, Theorem 12.2], and we haveA in Assumption 1(iii)



equal toId in (4). The remaining assumption needed to apply
Theorem 1 is thatd ∈ Γ0(K) is strongly convex and smooth.
Indeed, this is the case as shown in [10, Proposition 18]. This
result is restated here for convenience of the reader.

Proposition 4: Suppose that Assumption 1 holds. Then
d ∈ Γ0(K) is ‖A∗‖2

σ -smooth andθ
2

β -strongly convex, where
θ > 0 always exists and satisfies‖A∗µ‖ ≥ θ‖µ‖ for all
µ ∈ K.

It is well known [6] that Douglas-Rachford splitting ap-
plied to the dual problem (4) is equivalent to ADMM applied
to the primal problem (3). Therefore, the linear convergence
rate obtained by applying Douglas-Rachford splitting to the
dual problem (4) directly translates to a linear convergence
rate for ADMM. This linear convergence rate bound is stated
in [10, Corollary 2], and restated here for convenience.

Proposition 5: Suppose that Assumption 1 holds and that
generalized Douglas-Rachford is applied to solve the dual
problem (4). Then the Douglas-Rachford splitting algorithm
converges linearly towards a fixed-pointz̄ ∈ fix(RγdRγg∗)

with at least rate|1− α|+ αmax
(

γβ̂−1

γβ̂+1
, 1−γσ̂
1+γσ̂

)

, i.e.

‖zk+1 − z̄‖ ≤
(

|1− α|+ αmax
(

γβ̂−1

γβ̂+1
, 1−γσ̂
1+γσ̂

))k

‖z0 − z̄‖

for any γ > 0 and α ∈ (0, 2

1+max

(

1−γσ̂
1+γσ̂ ,

γβ̂−1

1+γβ̂

) ), where

β̂ = ‖A∗‖2

σ and σ̂ = θ2

β .
Remark 4:The parameters that optimize the convergence

rate bound areα = 1 and γ = 1√
β̂σ̂

=
√
βσ√

‖A∗‖2θ2
and the

linear convergence rate bound factor is
√
κ−1√
κ+1

, whereκ =
β̂
σ̂ = ‖A∗‖2β

θ2σ , see [10, Corollary 2].

V. T IGHTNESS OF RATE BOUNDS

In this section, we will state examples that show tightness
of the linear convergence rate bounds in Theorem 1 and
Proposition 5 for many choices of algorithm parameters.

A. Primal Douglas-Rachford splitting

To establish that the convergence rate bound provided in
[10, Theorem 1] and restated in Theorem 1 is tight, we
consider a problem of the form (3) with

f(x) =

K
∑

i=1

λi

2
〈x, φi〉2, (5)

g(x) = 0, (6)

A = Id. (7)

Here {φi}Ki=1 is an orthonormal basis forH, K is the
dimension of the spaceH (possibly infinite), andλi is either
σ or β. We denote the set of indicesi with λi = σ by Iσ
and the set of indicesi with λi = β by Iβ . We require that
Iσ 6= ∅, that Iβ 6= ∅, and we get thatIσ ∩ Iβ = ∅ and
Iσ ∪ Iβ = {1, . . . ,K}.

First, we show thatf in (5) is defined (finite) for allx ∈ H,
even if H is infinite dimensional. Obviouslyf(x) ≥ 0 for

all x ∈ H. We also have for arbitraryx ∈ H that

f(x) =

K
∑

i=1

λi
2
〈x, φi〉2 ≤ β

2

K
∑

i=1

〈x, φi〉2 =
β

2
‖x‖2 <∞

where the last equality follows from Parseval’s identity.
Therefore, the optimization problem (3) withf , g, andA
as in (5), (6), and (7) respectively is well defined also on
infinite dimensional spaces.

Next, we show thatf ∈ Γ0(H) satisfies Assumption 1(i),
i.e., thatf is β-smooth andσ-strongly convex.

Proposition 6: The functionf , as defined in (5) withλi =
σ for i ∈ Iσ andλi = β for i ∈ Iβ , is σ-strongly convex
andβ-smooth.

Proof. SinceH has a orthonormal basis, each elementx ∈ H
may be decomposed asx =

∑K
i=1

〈x, φi〉φi. We let ai =

〈x, φi〉 andbi = 〈y, φi〉, to get arbitraryx =
∑K

i=1
aiφi ∈ H

andy =
∑K

i=1
biφi ∈ H. Then

β

2
‖x− y‖2 = β

2
‖

K
∑

i=1

aiφi −
K
∑

i=1

biφi‖2

=

K
∑

i=1

β

2
(ai − bi)

2 ≥
K
∑

i=1

λi
2
(ai − bi)

2

=

K
∑

i=1

λi

(

1

2
a2i −

1

2
b2i − 〈biφi, aiφi − biφi〉

)

= f(x)− f(y)−
K
∑

i=1

〈λi〈y, φi〉φi, (ai − bi)φi〉

= f(x)− f(y)− 〈
K
∑

i=1

λi〈y, φi〉φi,
K
∑

i=1

(ai − bi)φi〉

= f(x)− f(y)− 〈∇f(y), x− y〉

where the second equality follows from Riesz-Fischer, the
first inequalty holds sinceβ ≥ λi for all i = 1, . . . ,K, the
third equality follows by expanding the square and noting
that aibi = 〈aiφi, biφi〉 and b2i = 〈biφi, biφi〉, the fourth
equality follows by identifying the definition off in (5)
and usingai = 〈x, φi〉 and bi = 〈y, φi〉, the fifth equality
holds since the added cross-terms vanish in the inner product
expression due to orthogonality of basis vectorsφi, and
the final equality holds by identifyingx =

∑K
i=1

aiφi,
y =

∑K
i=1

biφi, and the gradient off in (5):

∇f(x) =
∑

i

λi〈x, φi〉φi.

This is the definition ofβ-smoothness in Definition 3.
An equivalent derivation usingσ instead of β and a

reversed inequality, shows thatf is alsoσ-strongly convex.
�

To show that the provided example converges exactly with
the rate given in Theorem 1, we need expressions for the
proximal operators and reflected proximal operators off and
g in (5) and (6) respectively.



Proposition 7: The proximal operator off in (5) is

proxγf(y) =

K
∑

i=1

1

1+γλi
〈y, φi〉φi (8)

and the reflected proximal operator is

Rγf (y) =

K
∑

i=1

1−γλi

1+γλ1

〈y, φi〉φi. (9)

Proof. We decomposex =
∑K

i=1
aiφi whereai = 〈x, φi〉

and y =
∑K

i=1
biφi where bi = 〈y, φi〉. Then, for general

γ > 0, the proximal operator off is given by:

proxγf(y) = argmin
x

{

γ

(

K
∑

i=1

λi

2
〈φi, x〉2

)

+ 1

2
‖x− y‖2

}

= arg min
x=
∑

K
i=i

aiφi







(

K
∑

i=1

γλi

2
a2i

)

+
1

2

∥

∥

∥

∥

∥

K
∑

i=1

(ai − bi)φi

∥

∥

∥

∥

∥

2






= arg min
x=
∑

K
i=i

aiφi

{

1

2

K
∑

i=1

(

γλia
2
i + (ai − bi)

2
)

}

=

K
∑

i=1

argmin
ai

1

2

{

γλia
2
i + (ai − bi)

2
}

φi

=

K
∑

i=1

1

1+γλi
biφi =

K
∑

i=1

1

1+γλi
〈y, φi〉φi.

The reflected resolvent for generalγ > 0 is given by:

Rγf(y) = 2proxγf (y)− y

= 2

K
∑

i=1

1

1+γλi
biφi −

K
∑

i=1

biφi

=

K
∑

i=1

1−γλi

1+γλi
biφi =

K
∑

i=1

1−γλi

1+γλi
〈y, φi〉φi.

�

The proximal and reflected proximal operators ofg ≡ 0
are trivially given byproxγg = Rγg = Id.

Next, these results are used to show a lower bound on the
convergence rate of Douglas-Rachford splitting for several
choices of algorithm parametersα andγ. First, we state two
help lemmas.

Lemma 1:The function ψ(x) = 1−x
1+x is a decreasing

function forx > −1.

Proof. We have

(1 − x)/(1 + x) < (1− y)(1 + y)

⇔ (1− x)(1 + y) < (1− y)(1 + x)

⇔ 2y < 2x.

�

Lemma 2:Forx > −1, the functionψ(x) = 1−x
1+x satisfies

φ(x) ≤ −φ(y) if and only if y ≥ 1/x.

Proof. We have

φ(x) = (1− x)/(1 + x) ≤ (y − 1)(1 + y) = −φ(y)
⇔ (1− x)(1 + y) ≤ (y − 1)(1 + x)

⇔ 2 ≤ 2xy.

�

Theorem 2:The generalized Douglas-Rachford splitting
algorithm (Algorithm 1) when applied to solve (3) withf ,
g, andA in (5)-(7) converges exactly with rate

|1− α|+ αmax
(

1−γσ
1+γσ ,

γβ−1

1+γβ

)

(10)

in the following cases: (i)α = 1 andγ ∈ (0,∞), (ii) α ∈
(0, 1] and γ ∈ (0, 1√

σβ
], (iii) α ∈ [1, 2

1+max

(

1−γσ
1+γσ ,

γβ−1

1−γβ

) )

and γ ∈ [ 1√
σβ
,∞), (iv) α ∈ (0, 2

1+max

(

1−γσ
1+γσ ,

γβ−1

1−γβ

) ) and

γ = 1√
βσ

.

Proof. For algorithm initial conditionz0 = φi the Douglas-
Rachford algorithm evolves according to

zk =
(

1− α+ α 1−γλi

1+γλi

)k

φi

whereλi is eitherσ or β depending on ifi ∈ Iσ or i ∈ Iβ .
This follows immediately from Algorithm 1, the expression
of Rγf in Proposition 7, and sinceRγg = Id. Obviously,
this converges with rate factor

∣

∣

∣
1− α+ α 1−γλi

1+γλi

∣

∣

∣
.

Below, we show for each of the four cases that this rate
coincides with the rate (10).

Case (i):α = 1 andγ ∈ (0,∞)

The rate in this case whenz0 = φi, i ∈ Iσ, is exactly
∣

∣

∣

1−γσ
1+γσ

∣

∣

∣
. The rate whenz0 = φi, i ∈ Iβ , is exactly

∣

∣

∣

1−γβ
1+γβ

∣

∣

∣
.

A lower bound on the convergence of the algorithm when
α = 1 is therefore

max
(
∣

∣

∣

1−γσ
1+γσ

∣

∣

∣
,
∣

∣

∣

1−γβ
1+γβ

∣

∣

∣

)

= max
(

1−γσ
1+γσ ,

γβ−1

1+γβ

)

= |1− α|+ αmax
(

1−γσ
1+γσ ,

γβ−1

1+γβ

)

.

where the first equality is due to Lemma 1, and the second
holds sinceα = 1. This proves the first claim.

Case (ii):α ∈ (0, 1] andγ ∈ (0, 1√
σβ

]

The rate when using initial conditionz0 = φi, i ∈ Iσ, is
rσ := 1− α+ α 1−γσ

1+γσ (since(1− α) ≥ 0 andα 1−γσ
1+γσ ≥ 0).

For z0 = φi, i ∈ Iβ , andγ ≤ 1

β , we get

|1− α+ α 1−γβ
1+γβ | ≤ |1− α|+ |α 1−γβ

1+γβ |
= 1− α+ α 1−γβ

1+γβ

≤ 1− α+ α 1−γσ
1+γσ = rσ



where the last inequality holds due to Lemma 1. Forz0 = φi,
i ∈ Iβ , andγ ∈ [ 1β ,

1√
σβ

], we get

|1− α+ α 1−γβ
1+γβ | ≤ |1− α|+ |α 1−γβ

1+γβ |
= 1− α+ αγβ−1

1+γβ

≤ 1− α+ α 1−γσ
1+γσ = rσ

where the last inequality follows from Lemma 2. Thus, a
lower bound on the rate forα ∈ (0, 1] andγ ∈ (0, 1√

σβ
] is

rσ = 1− α+ α 1−γσ
1+γσ = |1− α|+ αmax

(

1−γσ
1+γσ ,

γβ−1

1+γβ

)

.

This proves the second claim.

Case (iii): α ∈ [1, 2

1+max

(

1−γσ
1+γσ ,

γβ−1

1−γβ

) ) andγ ∈ [ 1√
σβ
,∞)

The rate when usingz0 = φi, i ∈ Iβ , is rβ := α − 1 +
αγβ−1

1+γβ (since(1 − α) ≤ 0 andα 1−γβ
1+γβ ≤ 0). For z0 = φi,

i ∈ Iσ, andγ ∈ [ 1√
σβ
, 1

σ ] the rate is

|1− α+ α 1−γσ
1+γσ | ≤ |1− α|+ |α 1−γσ

1+γσ |
= α− 1 + α 1−γσ

1+γσ

≤ α− 1 + αγβ−1

1+γβ = rβ

where the last inequality follows from Lemma 2. Forz0 =
φi, i ∈ Iσ, andγ ≥ 1

σ , we get

|1− α+ α 1−γσ
1+γσ | ≤ |1− α|+ |α 1−γσ

1+γσ |
= α− 1 + αγσ−1

1+γσ

≤ α− 1 + αγβ−1

1+γβ = rβ

where the last inequality is due to Lemma 1. This implies that
a lower bound on the rate forα ∈ [1, 2

1+max

(

1−γσ
1+γσ ,

γβ−1

1−γβ

) )

andγ ∈ [ 1√
σβ
,∞) is

rβ = α− 1 + αγβ−1

1+γβ = |1− α|+ αmax
(

1−γσ
1+γσ ,

γβ−1

1+γβ

)

.

Case (iv):α ∈ (0, 2

1+max

(

1−γσ
1+γσ ,

γβ−1

1−γβ

) ) andγ = 1√
σβ

This Case follows directly from Cases (ii) and (iii). �

The convergence rate for the example given byf andg in
(5) and (6) respectively coincides with the upper bound on
the convergence rate in [10, Theorem 1] (which is restated
in Theorem 1). The bound in [10, Theorem 1] is therefore
tight for the class of problems under consideration and for the
combination of algorithm parameters specified in Theorem 2.

Remark 5:The upper bound on the rate in [10, Theorem
1], relies on the triangle inequality between(1−α)(zk − z̄)
andα(RγgRγfz

k−RγgRγf z̄). To get equality, we must find
α, γ andzk such that(1− α)(zk − z̄) andα(RγgRγfz

k −
RγgRγf z̄) are parallel. For remaining combinations ofγ and
α, these become anti-parallel, and the rate bound is not met
exactly. Note, however, that for optimal choices ofα andγ,
the bound is tight.

B. Dual Douglas-Rachford splitting (ADMM)

This section concerns tightness of the rate bounds when
Douglas-Rachford splitting is applied to the dual problem
(4), or equivalently, when ADMM applied to the primal
problem (3). To show tightness in this case, we consider
the following problem

f(x) =

K
∑

i=1

λi

2
〈x, φi〉2 (11)

g(x) = ιx=0(x) (12)

A(x) =

K
∑

i=1

νi〈x, φi〉φi (13)

where λi = σ and νi = θ > 0 if i ∈ Iσ and λi = β
and νi = ζ > θ if i ∈ Iβ , whereIσ and Iβ are the same
as before. ThatA is linear follows trivially. That it is self-
adjoint, bounded, and surjective is shown in the following
proposition.

Proposition 8: The linear operatorA defined in (13) is
self-adjoint, i.e.A = A∗, and for everyx ∈ H, we have

θ‖x‖ ≤ ‖A(x)‖ ≤ ζ‖x‖. (14)

Further‖A‖ = ‖A∗‖ = ζ.

Proof. We start by showing thatA is self-adjoint. We have

〈A(x), µ〉 =
〈

K
∑

i=1

νi〈x, φi〉φi,
K
∑

i=1

〈µ, φi〉φi
〉

=

K
∑

i=1

〈νi〈x, φi〉φi, 〈µ, φi〉φi〉

=

K
∑

i=1

〈〈x, φi〉φi, νi〈µ, φi〉φi〉

=

〈

K
∑

i=1

〈x, φi〉φi,
K
∑

i=1

νi〈µ, φi〉φi
〉

= 〈x,A(ν)〉
where moving of summations are due to orthogonality ofφi.
Next we show the first inequality in (14):

‖A(x)‖ =

∥

∥

∥

∥

∥

∥

θ
∑

i∈Iσ

〈x, φi〉φi + ζ
∑

i∈Iβ

〈x, φi〉φi

∥

∥

∥

∥

∥

∥

≥ θ

∥

∥

∥

∥

∥

K
∑

i=1

〈x, φi〉φi
∥

∥

∥

∥

∥

= θ‖x‖

since0 < θ ≤ ζ. The second inequality in (14) is proven
similarly. Finally, we show‖A‖ = ζ. We have already shown
that ‖A(x)‖ ≤ ζ‖x‖ for all x ∈ H, i.e., that‖A‖ ≤ ζ. By
definition of the operator norm, we also know that‖A‖ ≥
‖A(x)‖ for all x ∈ H with ‖x‖ ≤ 1. Choosingx = φj
(which satisfies‖x‖ = ‖φj‖ = 1) for anyj ∈ Iβ (i.e. j with
νj = ζ) gives

‖A‖ ≥ ‖A(φj)‖ =

∥

∥

∥

∥

∥

K
∑

i=1

νi〈φj , φi〉
∥

∥

∥

∥

∥

= ‖νj‖ = ζ.



Thus,‖A‖ = ζ and the proof is complete. �

This result implies that the assumptions in [10, Corollary
2] (and Proposition 5) are met byf , g, and A in (11),
(12), and (13) respectively. The bound on the convergence
rate from [10, Corollary 2] (and restated in Proposition 5)
is therefore valid. To show that this bound is tight for the
class of problems under consideration, we need the following
explicit characterization ofd:

d(µ) := f∗(−A∗µ) = f∗(−Aµ)
= sup

x
{〈−Aµ, x〉 − f(x)}

= − inf
x

{f(x) + 〈Aµ, x〉}

= − inf
x

{

K
∑

i=1

λi

2
〈x, φi〉2 + 〈

K
∑

i=1

νi〈µ, φi〉φi, x〉
}

= − inf
ai

{

K
∑

i=1

λi

2
〈

K
∑

i=1

aiφi, φi〉2

+ 〈
K
∑

i=1

νi〈µ, φi〉φi,
K
∑

i=1

aiφi〉
}

= −
K
∑

i=1

inf
ai

{

λi

2
〈aiφi, φi〉2 + 〈νi〈µ, φi〉φi, aiφi〉

}

= −
K
∑

i=1

inf
ai

{

λi

2
a2i + νi〈µ, φi〉ai

}

= −
K
∑

i=1

{

(νi〈µ, φi〉)2
2λi

− (νi〈µ, φi〉)2
λi

}

=

K
∑

i=1

(νi〈µ, φi〉)2
2λi

=

K
∑

i=1

ν2

i

2λi
〈ν, φi〉2

where the decompositionx =
∑K

i=1
aiφi with ai = 〈x, φi〉

is used, and the optimalai = −νi〈µ, φi〉/λi. The functiond
has exactly the same structure as the functionf but with λi
in f in (5) replaced byν2i /λi in d. The functiong∗ is, for
all µ ∈ H, given by

g∗(µ) = sup
x∈H

{〈µ, x〉 − ιx=0(x)} = 〈µ, 0〉 = 0.

This implies that the dual problem (4) withf , g, and A
specified in (11), (12), and (13) has exactly the same structure
as the primal problem (3) withf and g specified in (5)
and (6) respectively and withA = Id . The only things
that differ are the scalars that multiply the quadratic terms
in the functionsf and d respectively. Therefore, we can
immediately state the following corollary to Theorem 2.

Corollary 1: Let f be given by (11),g be given by (12),
and A be given by (13). Then the generalized Douglas-
Rachford algorithm applied to solve the dual problem (4)
(or equivalently ADMM applied to solve (3)) converges as in
Theorem 2 withβ andσ in Theorem 2 replaced bŷβ = ‖A‖2

σ

and σ̂ = θ2

β respectively.
The exact rate provided in Corollary 1, coincides with rate

bound in [10, Corollary 2] and Proposition 5. Therefore,

we conclude that the rate bound in [10, Corollary 2] for
ADMM on the primal problem, or equivalently for Douglas-
Rachford splitting on the dual problem, is tight for the
class of problems under consideration for many algorithm
parameter choices. Especially, the bound is tight for the
optimal paramtersα and γ, as in the primal Douglas-
Rachford case.

VI. CONCLUSION

Recent results in the literature have shown linear con-
vergence of Douglas-Rachford splitting and ADMM under
various assumptions. In this paper, we have shown that the
linear convergence rate bounds presented in [10] are indeed
tight for the class of problems under consideration.
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