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Tight Linear Convergence Rate Bounds for
Douglas-Rachford Splitting and ADMM

Pontus Giselssdn

Abstract— Douglas-Rachford splitting and the alternating a series of a small semi-definite programs. Common for all
direction method of multipliers (ADMM) can be used to solve these linear convergence rate bounds are that they are not

convex optimization problems that consist of a sum of tWo yighy for the class of problems under consideration, see [10
functions. Convergence rate estimates for these algorithenhave Section IV.B]

received much attention lately. In particular, linear convergence ; ) )
rates have been shown by several authors under various In [18], linear convergence of ADMM is established
assumptions. One such set of assumptions is strong convexit under more general assumptions than the above. However,

and smoothness of one of the functions in the minimization the assumptions are more difficult to verify for a given

problem. The authors recently provided a linear convergene — .oh1em Tightness is verified for a 2-dimensional example
rate bound for such problems. In this paper, we show that this . h lid i f

rate bound is tight for many algorithm parameter choices. in the Euclidean case. In [8], linear convergence for ADMM

on strongly convex quadratic optimization problem with

. INTRODUCTION inquality constraints is established. This rate improvas o

Douglas-Rachford splitting is an optimization algorithmthe rates presented in [14], [4], [2], [13], [16], [15]. In

that can solve general convex composite optimization proég]’ H_]e au:ll::ors g(latne_ralgze, gglngloa tkclomplelttely :;Ife;ent
lems. The algorithm has its roots in the 1950’s [5], [17]. ipnachinery, the resuits |n[ Jandin [10] the resuts arerer
eneralized. More specifically, [10] generalizes the tsdal

the late 1970's, it was shown [14] how to use the algorith ] in the following three ways; (i) a wider class of problems

to solve montone operator inclusion problems and conv . . .
i o ) .. IS considered, (ii) rates for both Douglas-Rachford dplitt
composite optimization problems. The alternating dimatcti ' . .
P P b g and ADMM are provided, and (iii) the results in [10] hold for

method of multipliers (ADMM) can also solve composite | real Hilbert d to the Euclid
optimization problems. It was first presented in [11], [7].genera real Hirbert spaces as opposed o the Luclidean spac

Soon thereafter, it was shown [6] that ADMM is equivalenfOnly in [8]. For the restricted class (.)f problems cons_ide_red
to Douglas-Rachford splitting applied to the dual problem.In [8], the convergence rate bounds in [10] and [8] coincide.

General sublinear convergence rate estimates for the%eThe contribution of this paper is that we show tightness of

methods have just recently been presented in the Iiter,atuFt?ep(r:gg:;er;gser:r:]z;?tioazl:;:rsatﬁgisg:ge%? r[igijo;tgh;ifr:?nss

12, [3], [1]. Und i tions, also linea? 1€ .
see [12], [3], [1]. Under various assumptions, also linea rameters. This is done by formulating examples, both for

convergence rates can be established. In the paper by Li o . :
and Mercier [14], a linear convergence rate was provide ouglas-Rachford splitting and ADMM' fo_r which the Im_ea_r
onvergence rate bounds are satisfied with equality. Simila

for Douglas-Rachford splitting under (the equivalence of? .
strong convexity and smoothness assumptions. Until rggcen ower convergence rate bounds ha\_/e been presented in [15].
further linear convergence rate results have been scahee. he bounds in this paper cover wider classes of problems
last couple of years, however, several linear convergenggd are less conservative.

rate results for both Douglas-Rachford splitting and ADMM
have been presented. These include [4], [2], in which linear
convergence rates for ADMM are presented under various We denote byR the set of real numberR"™ the set of real
assumptions. In [13], linear convergence rates are estatslumn-vectors of length. FurtherR := R U {cc} denotes
lished for multiple spliting ADMM. In [16], it is shown the extended real line. Throughout this pagérdenotes a
that for a specific class of problems, the Douglas-Rachforgal separable Hilbert space. Its inner product is denoyed b
algorithm can be interpreted as a gradient method of @, -), the induced norm by - ||, and the identity operator
function named the Douglas-Rachford envelope. By showirlgy Id. The indicator function for a set is denoted by .
strong convexity and smoothness properties of the Douglasinally, the class of closed, proper, and convex functions
Rachford envelope under similar assumptions on the undef-: 7 — R is denoted byl'o(H).

lying problem, a linear convergence rate is establisheddas

on gradient algorithm theory. Very recently [15] appeared [1l. PRELIMINARIES

and showed linear convergence of ADMM under smoothness
and strong convexity assumptions using the integral qtiadra
constraints (IQC) framework. The rate is obtained by s@yvin

II. NOTATION

In this section we present, well known concepts, results,
operators, and algorithms that will be extensively usedhe t
paper.
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basis, i.e{¢;,¢;) = 0 if i # j, where each basis vector has Algorithm 1 (Generalized Douglas-Rachford splitting):
unit length, i.e.||¢;|| = 1. The generalized Douglas-Rachford splitting algorithm is
Hereon,¢; will denote elemtens of an orthonormal basis. given by the iteration
Remark 1:The number of elements in the basis (the k1 &
cardinality) K is equal to the dimension of the corresponding Z7 = (1~ a)ld + aRyg Ry (2)
Hilbert space, which might bec. Also, by definition of a wherea € (0,1) andy > 0 are algorithm parameters.
basis, each element € H can be (uniquely) decomposed Remark 2:In the general casey is restricted to the
asz = 31 (z,¢:)¢s, see [20, Proposition 3.3.10]. interval (0,1). Under the assumptions used in this paper,
The reason why we consider separable Hilbert spacesasargera can be used as well, see [10].
the following proposition which can be found, e.g., in [20,
Proposition 3.3.12]. IV. LINEAR CONVERGENCE RATES
Proposition 1: A Hilbert space is separable if and only if In this section, we state the linear convergence rate gesult
it has an orthonormal basis. for Douglas-Rachford and ADMM in [10]. The paper [10]
We will also make extensive use of the following twoconsiders optimization problems of the form
propositions that are proven, e.g., in [20, Propsition13B. L
and [20, Propsition 3.3.14] respectively. minimize - f(z) + g(Az) 3)
Proposition 2 (Parseval's identity)in separable Hilbert where x € H, and f, g, and A satisfy the following
spacesH, the squarred norm of each element # satisfies assumptions:
X Assumption 1:
]2 = Z (z, )2 (i) The function f € I'o(#) is o-strongly convex andb-
P smooth.
Proposition 3 (Riesz-Fischer)in separable Hilbert spaces (ii) The functiong € T'y(K).
H, the sequenced .~ a;¢; converges if and only if (i) A : H — K is a surjective bounded linear operator.
Yiciai < oo. Then Under the additional assumption thdt= Id (which implies
X 9 that L = ), Douglas-Rachford splitting can be applied to
> aio
i=1

_ XK: 9 solve [3). It enjoys a linear convergence rate, as shown in
o — @i [10, Theorem 1]. This result is restated here for converd@enc
Definition 2 (Strong convexity)A function f € T'o(H) is

o-strongly convesf Theorem 1:Suppose that Assumptidd 1 holds and that
A = 1d. Then the generalized Douglas Rachford algo-
f(@) > fly) + (u,z —y) + ||z — y? rithm (Algorithm [d) converges linearly towards a fixed-
point z € fix(R,sR,,) with at least rate|]l — «f +
holds for allz,y € H and allu € 9f(y). omax (28=1 1705 ie.
Definition 3 (SmoothnessA function f € I'o(H) is 5- VALY e )

smooth if it is differentiable and

k
|4+~ 2] < (|1 — a| + amax (1?;} }3;)) 120 — 2]

_ Bl _ o2
flx) < fly) + (V). z—y)+ 5llz—yl 1) for any~ > 0 anda € (0. P

I+vyo 1498
Remark 3:The bound on the rate in Theordrh 1 can be

optimized with respect to the algorithm parameterand-.

The optimal parameters are given by= 1 andy = \/2_0

1+max<

holds for allx,y € H.
Definition 4 (Proximal operators)The proximal opera-
tor of a functionf € I'y(#) is defined as

prox, ¢ (y) = argmin {f(x) + 5z~ ?J||2} : which yields rate bound facte\/\%, see [10, Proposition
Definition 5 (Reflected proximal operatorsfhe 16|]r.‘ the case wherel # 1d, problem [(8) can be solved by
reflected proximal operatoto f € T'o(H) is defined applying Douglas-Rachford splitting on the dual problem:
as minimize  d(u) + ¢* (1) (4)
Ryp = 2prox,; —Id. whereg* € T'y(K), andd € I'y(K) is defined as
d:= f"o(—A").

Definition 6 (Fixed-point):A point y € H is afixed-point

to the (single-valued) operatot : H — 7 if If the dual problem[{}4) satisfies Assumptldn 1 (witinstead

of f andg* instead ofg), Douglas-Rachford splitting can be
applied to solvel{4), and Theorém 1 would guarantee a linear
convergence rate. Singe € I'o(K), we haveg* € T'4(K)

The set of fixed-points tol is denoted byfixA. [19, Theorem 12.2], and we havé in Assumption[IL(iii)

y = Ay.



equal told in (). The remaining assumption needed to applgll = € H. We also have for arbitrary € H that

Theoreni is that € T'y(K) is strongly convex and smooth. X X

Indeed, this is the case as shown in [10, Proposition 18k Thi Ai 2 B 2 B2

result is restated here for convenience of the reader. fla) = Z 2 )" < 2 Z<x’ ¢i)” = 5”33” =
Proposition 4: Suppose that Assumptidd 1 holds. Then =

d e To(K) is W-smooth andZ -strongly convex, where Where the last eq_ua_llity_ follows from Par_seval’s identity.

0 > 0 always exists and satisfigsA*u|| > 0| | for all Therefore, the optimization prpblerh_:](S) with g, and A

ne kK. as in [3), [6), and[{7) respectively is well defined also on
It is well known [6] that Douglas-Rachford splitting ap- infinite dimensional spaces.

plied to the dual probleni{4) is equivalent to ADMM applied Next, we show thalf € I'y(#) satisfies Assumptionl 1(i),

to the primal problem({3). Therefore, the linear convergend-€-, thatf is 5-smooth and-strongly convex.

rate obtained by applying Douglas-Rachford splitting te th Proposition 6: The functionf, as defined ir({5) witt; =

dual problem[() directly translates to a linear convergene for i € Z, and A; = 3 for ¢ € Zg, is o-strongly convex

rate for ADMM. This linear convergence rate bound is state@nd 3-smooth.

in [10, Corollary 2], and restated here for convenience.  Proof. Since# has a orthonormal basis, each elemert #
Proposition 5: Suppose that Assumptidh 1 holds and thamay be decomposed as = Zfil@v(m@_ We leta; =

generalized Douglas-Rachford is applied to solve the dugl ;) andb; = (y, ¢;), to get arbitrary: = Zfil aip; € H
problem (). Then the Douglas-Rachford splitting algatith angy — S5 4,6, € #. Then =

converges linearly towards a fixed-pointe fix(Ryalyg-)

; _ AB—=1 1—7G6\ ;
with at least ratgl — «| + amax (’yﬁJrl’ 1+7&), ie.

i=1

8 B -
Sl - yll* = P > aidi = bidi)?
i=1 i=1

B i

E(ai —b;)? > Z “a; — bi)?
), where i=1 i=1

) i

1 2
; (5% - 50 - (bigi, aidi — bz‘¢z‘>)

5 N k
|24 = 2 < (11— o] + amax (2572, 4222) ) 120 - 2]

I
M=

2

) 1—~& wéfl
1+mdx(1+76 1445

foranyy > 0 anda € (0,

I
ij

~ * |12 N 2
f=141 ands = 2.

Remark 4:The parameters that optimize the convergence !

~.
Il

K
_ _ 1 _ VBo
rate bound arex = 1 andy = 7= = Ty and the = f(a) — f(y) — 3" (hily. 01} (ai — bi)é)
linear convergence rate bound factor K; wherex = 1211( K
A .A* 2[_;
2 = 15512, see [10, Corollary 2]. = (@) = Fy) = O Nily, diddi, Y (@i — bi) i)
i=1

V. TIGHTNESS OF RATE BOUNDS = f(2) - f(y) — (VF(¥),z —y) =

In this section, we will state examples that show tightness ] ] ]
of the linear convergence rate bounds in Theofém 1 anfyhere the second equality follows from Riesz-Fischer, the

Propositior[ 5 for many choices of algorithm parameters. first inequalty holds sincg > A; for all i = 1,..., K, the |
third equality follows by expanding the square and noting
A. Primal Douglas-Rachford splitting that a;b; = (a;¢:,bip;) and b? = (b;¢;, bidi), the fourth

ﬁguality follows by identifying the definition off in (B)
nd usinga; = (z,¢;) andb; = (y, ¢;), the fifth equality
olds since the added cross-terms vanish in the inner ptoduc
expression due to orthogonality of basis vectgrs and

To establish that the convergence rate bound provided
[10, Theorem 1] and restated in Theoréin 1 is tight, w
consider a problem of the forrhl(3) with

K \ ) the final equality holds by identifyinge = Zfil a; i,
fla) =" 3 (6% ()  y =35 bi¢:, and the gradient of in (5):
=1
9(z) =0, (6) V@) =Y Nilw, ¢i)i.
A =1d. @ i

This is the definition of3-smoothness in Definitiop] 3.

Here {¢;}X, is an orthonormal basis foH, K is the i haadl ) X
An equivalent derivation using instead of 3 and a

dimension of the spacH (possibly infinite), and\; is either : ) _

o or 5. We denote the set of indicéswith \; = o by Z,, reversed inequality, shows thgtis alsoo-strongly convex.

and the set of indiceswith \; = 8 by Zg. We require that U

I, # 0, thatZz # 0, and we get thaZ, N Zs = () and To show that the provided example converges exactly with

I, Uz ={1,...,K}. the rate given in Theorem 1, we need expressions for the
First, we show thaf in (B) is defined (finite) for all: € H, proximal operators and reflected proximal operatorg ahd

even if # is infinite dimensional. Obviously'(z) > 0 for ¢ in (8) and [6) respectively.



Proposition 7: The proximal operator of in (@) is Proof. We have

K
px)=(1—-2)/(1+z) < (y-1)1+y) =—6(y)
_ 1 VS
and the reflected proximal operator is < 22y
K 0
Rys(y) = ;321 (Y, 9i)bi- 9) Theorem 2:The generalized Douglas-Rachford splitting
i=1 algorithm (Algorithm[2) when applied to solvE] (3) with

g, and A in (8)-(Z) converges exactly with rate
Proof. We decompose = Zfil a;¢; wherea; = (x, ¢;)
andy = .5 b;¢; whereb; = (y, ;). Then, for general |1 — al + amax (1327 Yf;gl) (10)
~ > 0, the proximal operator of is given by:

in the following cases: (ix = 1 and~ € (0,00), (ii) a €
2

K 1
. _ (0,1] andy € (0, 7], (iii)) « € [1, “—)
prox, ;(y) = arg min {v (Z %<¢i,x>2> + %|x—y|2} Vb emax (13293255 )
2

=1 andy € [, 0), (iv) a € (0, ) and

2 NCER 1—vo 781

S YAi 2 1|5 b 1+max(1+w’1fvﬁ>

=ar min i | + = a; — b:) . _ 1

Samst it ; 22 i:l( F o 7= Ve
X Proof. For algorithm initial condition: = ¢; the Douglas-
1
—arg  min 1 Z (W\ia? + (4 — bi)z) Rachford algorithm evolves according to
JJ:Zf(iai(bi 2 i=1

2 = (1*O‘+0‘1+7A) Pi

where \; is eithero or 5 depending on if € Z, or i € Zg.
This follows immediately from Algorithnil1, the expression
e bid = Z = ( of R, in Proposition¥, and sinc&., = Id. Obviously,
this converges with rate factor

K
:Z rgman{'y)\a + (a; —bi)2}¢7i

Il
'Mx Ik

s
Il
-

The reflected resolvent for generab> 0 is given by: —\
—a+tag RV
R =2 - ,
1Y) p;OXVf (W) =y « Below, we show for each of the four cases that this rate
1 coincides with the ratd (10).
=2 T bt —me
e Case (i):a =1 andy € (0, 00)
= ibig = Z TRy, 1) i 1The rate in this case0 whed = ¢;, i € I, is ?xagtly
i=1 ’ +Ym The rate whene®” = ¢;, i € Zg, is exactly 1+Wﬂ
OO0 A lower bound on the convergence of the algorithm when

The proximal and reflected proximal operatorsgof 0 = 1 is therefore

are trivially given byprox,, = R, = Id. max (‘ 1—yo| [1-98 ) — max (1770 7571)
Next, these results are used to show a lower bound on the .\ 1777 | 7|57 I+yo? 1478
convergence rate of Douglas-Rachford splitting for sdvera = |1 — a| + amax (hzg, 1§7é)
choices of algorithm parametefisand~. First, we state two
help lemmas. where the first equality is due to Lemrhh 1, and the second
Lemma 1:The functiony(z) = %jr_;f is a decreasing holds sincea = 1. This proves the first claim.
function forz > —1. - )
Proof. We have Case (ii): v € (0,1] andy € (0, =]
The rate when using initial conditiof® = ¢;, i € T, is
1-z)/14+2)<Q-y)(1+y) rei=1—a +0<113§ (since(l1 —a) >0 anda% > 0).
& (I-2)1+y) <(1-y)(1+z) For 20 = ¢;, i € T3, andy < 3, we get
& 2y < 2z2.
| 3l <
O _
. =l-a+ta 1+1g
Lemma 2:Forxz > —1, the functiomy(z) = 1+_z satisfies 1 |
o(x) < —o¢(y) if and only if y > 1/2. sl-atay, =7



where the last inequality holds due to Lemimha 1. Fbe= ¢;,  B. Dual Douglas-Rachford splitting (ADMM)

i €Ip, andy € [%, ﬁ], we get This section concerns tightness of the rate bounds when

1o +a1*75| <ot |a1*75| Douglas-Rachford splitting is applied to the dual problem

++8 1++8 (@), or equivalently, when ADMM applied to the primal
=1—a+ aﬁ*é problem [[3). To show tightness in this case, we consider
1_10 the following problem
<l—-a+ a1 = To
yo K
where the last inequality follows from Lemnid 2. Thus, a flz) = 2i(z, ¢;)? (11)
lower bound on the rate fax € (0, 1] and~ € (0, ﬁ] is i=1
( , ) 9(x) = tz—o(x) (12)
T :1—a+ai;w:|1—a|+amax 1270 b1 K
a Yo 1+~y0? 1498
. . A(z) = Z vi{T, ¢i) i (13)
This proves the second claim. i—1

5 1 where\; = candy; = 6 > 01if i € Z, and \; = 8
) andy € [—=,00) I
1+max<}‘”"qﬁ‘1> VoB’ andvy; = ¢ > 0 if i € Iz, whereZ, andZg are the same
. et 1=yB _ as before. Thatd is linear follows trivially. That it is self-
The rate when using’ = ¢;, i € Zs, isr3 := a — 1+  adjoint, bounded, and surjective is shown in the following

Case (iii): a € [1,

QYE;; (since(l1—a) <0 anda}_jr?yg < 0). For 20 = ¢, proposition.
i1 €71y, andy € [ﬁ, %] the rate is Proposition 8: The linear operatord defined in [(IB) is

self-adjoint, i.e.A = A*, and for everyr € H, we have

1 —a+4ai22| < |1 —al +|ai22

e e Ollzll < [l A=) < ¢ll=l- (14)
=a—1+a27
_ . 7511 B Further||A|| = ||A*]| = C.
sa-ltaygg =75 Proof. We start by showing thatl is self-adjoint. We have
where the last inequality follows from Lemna 2. Fdt = K K
¢i, i € I,, andy > 1, we get (A@), ) = (D> vilw, di)di, > (1, ¢i) i
=1 =1
-0+ al22| < |1 - o] + |adz22 K
:a_l_’_a'l}’i*l :Z<Vi<x7¢i>¢i7<ﬂa ¢Z>¢z>
LA i=1
Sa—l—i—o/ﬁ;é =rg

K

where the last inequality is due to Lempda 1. This implies that

~.
—

a lower bound on the rate far € [1, 17270 5T ) K K
) _ 1+max(1+7"’1*75> = <Z<l’7¢i>¢ivzl’i<ﬂv¢i>¢i>
and~ € [ﬁ,oo) is im1 im1

= (2, A(v))

where moving of summations are due to orthogonality of
Next we show the first inequality if_(114):

. vB—1 _ l—yo ~B-—1
rg=a—1+afi—2=|1-qf +0‘maX(1+w’ 1+wﬁ) '

Case (iv):a € (0, 17270 ) andy = ﬁ
1+max<1+vg,m>
This Case follows directly from Cases (ii) and (iii). O JA@) | = (10> (@, ¢i)¢i + ¢ > (x, di) i
The convergence rate for the example givenfbandg in i€t €l
(B and [6) respectively coincides with the upper bound on > K _9
the convergence rate in [10, Theorem 1] (which is restated = Z<$’¢i>¢i = Oll]

i=1

in Theoren(l). The bound in [10, Theorem 1] is therefore i o ]

tight for the class of problems under consideration andHer t SiNc€0 < ¢ < ¢. The second inequality i (14) is proven

combination of algorithm parameters specified in Thedfem Similarly. Finally, we show]|.AJ| = ¢. We have already shown
Remark 5: The upper bound on the rate in [10, Theorentn@t [A(z)[| < (lz[| for all = € #, i.e., that||A[| < ¢. By

1], relies on the triangle inequality betweén— o) (z* — %) definition of the operator norm, we also know thad | >

anda (R, R, 2" — R, R Z). To get equality, we must find [A(@)] for all @ € # with || < 1. Choosingz = ¢

a, v and 2* such that(1 — a)(z* — z) and a( R,y Ry 2" — (which satisfies|z|| = [|¢;|| = 1) for anyj € Z; (i.e. j with

R.,R, ) are parallel. For remaining combinationspnd "5 = ¢) gives

«, these become anti-parallel, and the rate bound is not met

exactly. Note, however, that for optimal choicescofind, [IA] > | A(¢)] =

the bound is tight.

= llwill = ¢

K
> vildy i)
=1




Thus, ||A|| = ¢ and the proof is complete. O we conclude that the rate bound in [10, Corollary 2] for

This result implies that the assumptions in [10, Corollary®PMM on the primal problem, or equivalently for Douglas-
2] (and Propositiori]5) are met by, g, and A in (L), Rachford splitting on the dua_l proplem, is tight for Fhe
(@2), and [(IB) respectively. The bound on the convergenE@SS of proble_ms under c9n5|derat|on for many algorithm
rate from [10, Corollary 2] (and restated in Propositidn 5)0ar_ameter choices. Especially, t.he bounq is tight for the
is therefore valid. To show that this bound is tight for the?’Ptimal paramtersa and v, as in the primal Douglas-
class of problems under consideration, we need the foIIg;wirR"J‘d"comI case.
explicit characterization odl: VI]. CONCLUSION

d(p) == f*(—A*p) = f*(—Ap) Recent results in the literature have shown linear con-

— sup {(— A, z) — f(z)} vergence of Douglas-Rachford splitting and ADMM under
- xp H various assumptions. In this paper, we have shown that the
—inf {f(2) + (Au, z)} Il_near convergence rate bounds presented. in [19] are indeed
v K« tight for the class of problems under consideration.
. i 2
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