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Abstract— Most theoretical tools available for the analysis
of spreading processes over networks assume exponentially
distributed transmission and recovery times. In practice, the
empirical distribution of transmission times for many real
spreading processes, such as the spread of web content through
the Internet, are far from exponential. To bridge this gap be-
tween theory and practice, we propose a methodology to model
and analyze spreading processes with arbitrary transmission
times using phase-type distributions. Phase-type distributions
are a family of distributions that is dense in the set of positive-
valued distributions and can be used to approximate any given
distributions. To illustrate our methodology, we focus on a
popular model of spreading over networks: the susceptible-
infected-susceptible (SIS) networked model. In the standard
version of this model, individuals informed about a piece
of information transmit this piece to its neighbors at an
exponential rate. In this paper, we extend this model to the case
of transmission rates following a phase-type distribution. Using
this extended model, we analyze the dynamics of the spread
based on a vectorial representations of phase-type distributions.
We illustrate our results by analyzing spreading processes over
networks with transmission and recovery rates following a
Weibull distribution.

I. INTRODUCTION

Understanding and controlling spreading processes over
complex networks is an important problem with applica-
tions in many relevant fields, including public health [1],
malware spreading [2], and information propagation over
socio-technical networks [3]. One fundamental result on the
analysis of spreading processes over networks is the close
connection between the spectral radius of the network and
the dynamics of the spread [4]–[7]. Based on this result, the
authors in [8]–[11] proposed an optimization framework to
find the optimal allocation of resources to control epidemic
outbreak in different scenarios.

The vast majority of spreading models over networks
assume exponentially distributed transmission and recovery
rates. In contrast, empirical observations indicate that most
real-world spreading processes do not satisfy this assump-
tion [12]–[14]. For example, the transmission rates of human
immunodeficiency viruses present a distribution far from
exponential [15]. In the context of socio-technical networks,
the inter-arrival time of Twitter messages or the propagation
time of news stories on a social media site can be explained
using lognormal distributions [3], [12], [16], [17].
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There are only a few results available for analyzing
spreading processes over networks with non-exponential
transmission (and/or recovery) rates. The experimental study
in [18] confirmed the drastic effect that non-exponential rates
can have on the speed of spreading. In [19], an analytically
solvable (although rather simplistic) model of spreading
with non-exponential rates was proposed. An approximate
analysis of spreading processes over graphs with general
transmission and recovery times was proposed in [20] using
asymptotic approximations.

In this paper, we propose an alternative approach to
analyze general transmission and recovery rates using
phase-type distributions [21]. In contrast with [20], we pro-
vide an analysis of general infection and recovery times for
phase-type distributions without relying on asymptotic ap-
proximations. The class of phase-type distributions is dense
in the space of positive-valued distributions [22], hence, we
can theoretically analyze arbitrary transmission and recovery
rates. Furthermore, there are efficient algorithms to compute
the parameters of a phase-type distributions to approximate
any given distribution [21]. To validate our approach, we
verify that the approximations in [20] are valid under certain
irreducibility assumptions. The key tool used in our deriva-
tions is a vectorial representations proposed in [23], which
we use to represent phase-type distributions.

The paper is organized as follows. In Section II, we state
the spreading model under consideration. In Section III, we
analyze this model when the recovery times follow a phase-
type distribution, while the transmission times follow an ex-
ponential distribution. Section IV is devoted to the dual case
when the transmission times follow a phase-type distribution,
while the recovery times follow an exponential distribution.
Numerical simulations are presented in Section V.

A. Mathematical Preliminaries

An undirected graph is a pair G = (V ,E), where V =
{1, . . . ,n} is the set of nodes, and E is the set of edges,
consisting of distinct and unordered pairs {i, j} for i, j ∈ V .
We say that i is a neighbor of j (or that i and j are adjacent)
if {i, j} ∈ E . The adjacency matrix A ∈Rn×n of G is defined
as the {0,1}-matrix whose (i, j) entry is one if i and j are
adjacent, 0 otherwise. Finally, the expectation of a random
variable is denoted by E[·].

We let I and O denote the identity and zero matrices with
appropriate dimensions. Let ep

i denote the ith standard unit
vector in Rp and define E p

i j = ep
i (e

p
j )
>. By 1p we denote the

p-vector whose entries are all one. We omit the dimension p
when it is obvious from the context. A real matrix A, or a
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vector as its special case, is said to be nonnegative (positive),
denoted by A ≥ 0 (A > 0, respectively), if A is nonnegative
(positive, respectively) entry-wise. The notations A ≤ 0 and
A < 0 are understood in the obvious manner. We denote the
Kronecker product of matrices A and B by A⊗B. Let A be
a square matrix. The maximum real part of the eigenvalues
of A is denoted by η(A). We say that A is Hurwitz stable if
η(A)< 0. Also, we say that A is Metzler if the off-diagonal
entries of A are all non-negative. Finally, A is said to be
irreducible if no similarity transformation by a permutation
matrix makes A into block upper triangular matrix.

Below we state some basic lemmas about Metzler matri-
ces. The first lemma about the Hurwitz stability of Metzler
matrices is standard and thus its proof is omitted.

Lemma 1.1 ([24]): For a Metzler matrix A, the following
conditions are equivalent.

1) A is Hurwitz stable.
2) There exists a positive vector v such that Av < 0.
3) A is nonsingular and A−1 ≤ 0.
The next lemma characterizes the marginal case when

η(A) = 0.
Lemma 1.2: Let A be an irreducible Metzler matrix. Then

η(A) = 0 if and only if A has a positive null vector.
Proof: In the proof we denote the spectral radius of a

matrix by ρ(·). Notice that, since A is Metzler, there exists
c≥ 0 such that B = A+cI is positive and η(B) = ρ(B). First
assume that η(A) = 0. Then the positive and irreducible ma-
trix B satisfies ρ(B) = c. Therefore, by the Perron-Frobenius
theorem (see, e.g., [25]), there exists a positive vector v such
that Bv= cv, which implies Av= 0. Hence v is a positive null
vector of A. The other direction can be proved in a similar
way and hence it is omitted.

Finally we state the following lemma.
Lemma 1.3: Let A,B ∈Rn×n. If A is irreducible and Met-

zler and also B 6= 0 is non-negative, then η(A)< η(A+B).
Proof: The inequality holds true if A is non-negative

by [25, Theorem 4.6]. If A is not non-negative, we consider
instead A+ cI where c ≥ 0 is a scalar such that A+ cI is
nonnegative and also η(A+ cI) = ρ(A+ cI). The details of
the proof are omitted.

II. SIS MODEL WITH PHASE-TYPE TRANSMISSION
AND RECOVERY TIMES

In this paper, we investigate a popular model of spread-
ing over networks called the susceptible-infected-susceptible
(SIS) model. We provide a definition of this model as a
family of continuous-time stochastic process below:

Definition 2.1: Let G be an undirected graph with n nodes.
We say that a stochastic process {zi(t)}t≥0, (i = 1, . . . ,n) tak-
ing values in the set {susceptible, infected} is a susceptible-
infected-susceptible (SIS) model over G if the process satis-
fies the following conditions:
D1) For all t ≥ 0 and i ∈ {1, . . . ,n}, there exists a ran-

dom number R(i)(t) > 0 such that, once zi becomes
infected at time t, it remains infected during the
time interval [t, t +R(i)(t)] and becomes susceptible at
time t +R(i)(t). We call R(i)(t) a recovery time.

D2) For all t and i, there exists a renewal process
0= T (i)

0 (t)< T (i)
1 (t)< · · · such that, for every neighbor

j of i and k ≥ 1, if T (i)
k (t) < R(i)(t), then z j becomes

infected at time t+T (i)
k (t). We call the numbers T (i)

k (t)
(k ≥ 1) transmission times.

D3) There exists a subset Λ ⊂ {1, . . . ,n} such that zi(0)
is infected if i ∈ Λ and zi(0) is susceptible otherwise.
We regard that these initially infected nodes become
infected at time 0, i.e., a node i ∈ Λ has the recovery
time R(i)(0) and the transmission times T (i)

k (0).
We say that the infection-free equilibrium pi(t) =
Pr(i is infected at time t)≡ 0 of the SIS model is exponen-
tially stable if, as t → ∞, pi(t) (i = 1, . . . ,n) converges to
zero exponentially fast.1

Throughout the paper we assume that all the recovery
times and transmission times are independent to each other
and, moreover, depend neither on t nor i. Therefore, we
hereafter omit t and i and write R(i)(t) and T (i)

k (t) as R and
Tk when no confusion arises.

In [20], the authors present the following two criteria
for the stability of the infection-free equilibrium based on
an asymptotic argument. First they show that, under the
assumption that the inter-renewal times of T follow an
exponential distribution with mean 1/β , if

η(A)< 1/(βE[R]), (1)

then the meta-stable state of the infection probabilities must
be equal to zero. They then show that, under the assumption
that R follows an exponential distribution with mean 1/δ , if

η(A)< (1− f (δ ))/ f (δ ), (2)

where f is the Laplace transform of the probability density
function of the inter-renewal times of T , then the meta-stable
state of the infection probabilities must be equal to zero.
For the precise meaning of the meta-stability, the readers are
referred to [20].

One of the primary purposes of this paper is to give
justifications for the above claims, without asymptotic ap-
proximations, under the assumption that either transmission
or recovery times follow a phase-type distribution [21] intro-
duced below. Consider a time-homogeneous Markov process
in continuous-time with p+ 1 (p ≥ 1) states such that the
states 1, . . . , p are transient and the state p+1 is absorbing.
The infinitesimal generator of the process is then necessarily
of the form [

S v
0 0

]
, v =−S1, (3)

where S ∈ Rp×p is an invertible Metzler matrix with non-
positive row-sums. Let

[
φ

0

]
∈ Rp+1 (φ ∈ Rp) denote the

initial distribution of the Markov process. Then, the time
to absorption into the state p + 1, denoted by (φ ,S), is
called a phase-type distribution. It is known that the set
of phase-type distributions is dense in the set of positive

1For simplicity in our presentation, we often say that i is infected (or
susceptible) at time t when zi(t) = infected (susceptible, respectively).



valued distributions [22]. Moreover, there are efficient fitting
algorithms to approximate a given arbitrary distribution by
a phase-type distribution [21].

In order to analyze the conditions (1) and (2) using
phase-type distributions, we shall state the following two
assumptions:

Assumption 2.2: R follows a phase-type distribution (φ ,S)
and the inter-renewal times of T follow an exponential
distribution with mean 1/β .

Assumption 2.3: The inter-renewal times of T follow a
phase-type distribution (φ ,S) and R follows an exponential
distribution with mean 1/δ .

A. Vector Representations of Phase-type Distributions

Vector representations of phase-type distributions play a
crucial role in our analysis of SIS models. In order to
introduce these representations, we first recall a vector repre-
sentation of time-homogeneous Markov processes introduced
in [23]:

Lemma 2.4 ([23, Section II]): Let Q be the infinitesimal
generator of a time-homogeneous Markov process taking its
values in {1, . . . , p}. For distinct i and j let NQi j denote
the Poisson counter of rate qi j. Consider the stochastic
differential equation

dx =
p

∑
`,m=1

(Em`−E``)xdNq`m

with the initial state x(0) being a standard unit vector
in Rp with probability one. Then x is the time-homogeneous
Markov process with the infinitesimal generator Q and the
state space {e1, . . . ,ep} ⊂ Rp.

Using this lemma, we now provide a vector representation
of phase-type distributions, as follows:

Lemma 2.5: Let (φ ,S) be a phase-type distribution. Let
eφ denote the probability distribution on the standard unit
vectors in Rp given by Pr(eφ = ei) = φi for i = 1, . . . , p.
Consider the stochastic differential equation

dx =
p

∑
`,m=1

(Em`−E``)xdNS`m −
p

∑
`=1

E``xdNv` (4)

with the initial condition that x(0) follows eφ . Then, the
extinction time random variable

R = inf{t > 0 : x(t) = 0}
= inf{t > 0 : ∃`∗, x(t) = e∗` and Nv`∗ jumps at time t}

(5)

follows (φ ,S).
Proof: The second identity in (5) can be checked from

the differential equation (4). Let us show the first identity.
By Lemma 2.4, the stochastic differential equation

dx =
p

∑
`,m=1

(E p+1
m` −E p+1

`` )xdNS`m +
p

∑
`=1

(E p+1
p+1,`−E p+1

`` )xdNv`

represents a time-homogeneous Markov process with state
space {e1, . . . ,ep+1} ⊂ Rp+1 and the infinitesimal generator

in (3). Therefore, identifying ep+1, the absorbing state, with
the zero vector, we can see that the equation

dx =
p

∑
`,m=1

(E p+1
m` −E p+1

`` )xdNS`m +
p

∑
`=1

(−E p+1
`` )xdNv` (6)

represents a time-homogeneous Markov process with state
space {e1, . . . ,ep,0} ⊂ Rp+1 and the infinitesimal generator
in (3). Since in (6) the last element of the variable x plays no
role, the equation (6) is equivalent to the stochastic differ-
ential equation (4) with the state space Rp. Thus, (4) gives
the time-homogeneous Markov process with the infinitesimal
generator (3) and the state space {e1, . . . ,ep,0} ⊂Rp, where
0 ∈ Rp is the absorbing state. Since x(0) follows eφ , by the
definition of phase-type distributions as the exit time, the
random variable R follows (φ ,S).

Based on the above proved lemma, we can further give
a vector representation of renewal processes whose inter-
renewal times have a phase-type distribution.

Lemma 2.6: Let (φ ,S) be a phase-type distribution. Let εφ

be the stochastic process that follows eφ at every time t ≥ 0
independently. Consider the stochastic differential equation

dx =
p

∑
`,m=1

(Em`−E``)xdNS`m +
p

∑
`=1

(εφ e>` −E``)xdNv` (7)

with the initial condition that x(0) follows eφ . Define T0 = 0
and let 0 < T1 < T2 < · · · be the times at which x` = 1
and the counter Nv` jumps for some `. Then, the stochastic
process T = {Tk}∞

k=0 is the renewal process whose inter-
renewal times follow (φ ,S).

Proof: Let us first show T1 follows (φ ,S). By the defi-
nition of T1, on the interval [0,T1), the stochastic differential
equation (7) is equivalent to (4). In this equivalent equation,
the random variables T1 and R are equal by their definitions
and, furthermore, R follows (φ ,S) by Lemma 2.5. Therefore
T1 follows (φ ,S).

At time T1, the differential equation (7) reads dx = εφ −x.
This means that x(T1) follows eφ . Therefore, by using the
memoryless property of Poisson counters, we can show that
T2− T1 follows (φ ,S). In this way, an inductive argument
proves that T is a renewal process with its inter-renewal times
following (φ ,S).

III. EXPONENTIAL TRANSMISSION TIMES

In this section we analyze SIS models under Assump-
tion 2.2 and give sufficient conditions to achieve the expo-
nential stability of the infection-free equilibrium. We notice
that, under this assumption, D2 is equivalent to the following
condition:
D2′) Whenever i and j are adjacent, i is susceptible, and

j is infected, the node i becomes infected with an
instantaneous rate of β .

The next proposition gives a vector representation of the
SIS model under consideration. Throughout the paper, for
each 1≤ i≤ n and a real number λ > 0, we let N(i)

λ
denote the

Poisson counter with rate λ . We assume that all the Poisson
counters are independent of each other.



Proposition 3.1: Let x(i) (i = 1, . . . ,n) be the solutions of
the stochastic differential equation:

dx(i) =
p

∑
`,m=1

(Em`−E``)x(i) dN(i)
S`m

−
p

∑
`=1

E``x(i) dN(i)
v` + εφ (1−1>x(i))

n

∑
j=1

ai j1
>x( j) dN( j)

β

(8)

with initial conditions:{
x(i)(0) follows eφ , i ∈ Λ,

x(i)(0) = 0, otherwise.
(9)

Define the stochastic processes zi (i = 1, . . . ,n) by

zi(t) =

{
infected, 1>x(i)(t) = 1,
susceptible, 1>x(i)(t) = 0.

(10)

Then, the processes zi are a SIS model satisfying Assump-
tion 2.2.

Proof: Let t0 ≥ 0 and i be arbitrary. First assume that
i is susceptible at time t0, i.e., 1>x(i)(t0) = 0. Then, from
equation (8), we see that x(i)(t) = 0 at least until any of the
counters N( j)

β
jumps for some j such that ai j = 1. Until that

time instant, the differential equation (8) reads

dx(i) = εφ

n

∑
j=1

ai j1
>x( j) dN( j)

β
. (11)

To this inequality we multiply 1> from the left and obtain
d(1>x(i)) = ∑

n
j=1 ai j1>x( j) dN( j)

β
because εφ follows eφ and

eφ is one of the standard unit vectors with probability one.
Therefore, if ai j = 1 and 1>x( j) = 1, then the quantity 1>x(i)

becomes one whenever N( j)
β

jumps. In other words, whenever
i is susceptible, j is adjacent to i, and j is infected, the node i
becomes infected with the constant rate of β . Therefore, D2′

is satisfied.
Assume that i becomes infected at time t0. If t0 = 0,

then x(i)(t0) follows eφ by the initial condition (9). On
the other hand, if t0 > 0, then the infection must occur
by the transmission from a neighboring node and, by the
argument in the last paragraph, such a transmission occurs
when one of its neighbors j is infected and N( j)

β
jumps. Since

multiple Poisson counters cannot jump at the same time with
probability one, the equation (11) implies that x(i)(t0) follows
eφ . Therefore, x(i)(t0) follows eφ whatever value t0 takes and
hence we can, without loss of generality, assume that t0 = 0.
Until i becomes susceptible, that is, until x(i) becomes 0, the
stochastic differential equation (8) is indeed equivalent to the
vector representation (4) of the distribution (φ ,S), which has
0 ∈Rp as its exit state. This argument shows that the length
of time until i becomes susceptible follows (φ ,S). Therefore
D1 is also satisfied.

Finally, the initial conditions (9) ensure that D3 is also
satisfied. This completes the proof.

Using the stochastic differential equations (8) we can
derive the following sufficient condition for the exponential
stability of the infection-free equilibrium.

Theorem 3.2: Under Assumption 2.2, if the matrix

Aβ = I⊗S>+βA⊗ (φ1>)

is Hurwitz stable, then the infection-free equilibrium of the
SIS model is exponentially stable.

Proof: Define ξ (i)(t) = E[x(i)(t)]. Since pi(t) =
1>ξ (i)(t), it is sufficient to show that ξ (i)(t) converges to
zero exponentially fast for every i. Taking expectations in the
differential equation (8) (for details, see, e.g., [26]) yields

dξ (i)

dt
=

p

∑
`,m=1

(Em`−E``)S`mξ
(i)−

p

∑
`=1

E``v`ξ (i)

+φ1>
n

∑
j=1

ai jβξ
( j)−φ1>

n

∑
j=1

ai jβE[1>x(i)1>x( j)].

Ignoring the last negative term in this equation, we obtain
the inequality dξ (i)/dt ≤ S>ξ (i)+β (Ai⊗(φ1>))ξ , where the
Rnp-valued function ξ is obtained by stacking ξ (1), . . . ,
ξ (n). Therefore, we see that dξ/dt ≤ Aβ ξ . Hence, if Aβ

is Hurwitz stable, then the comparison principle [27] shows
that ξ (t) converges to zero exponentially fast as t → ∞, as
desired.

Using Theorem 3.2, we can prove the validity of the
condition (1) under irreducibility conditions.

Theorem 3.3: In addition to Assumption 2.2, assume that
the matrices A and S are irreducible and φ is positive. Then,
the condition (1) is sufficient for the exponential stability of
the infection-free equilibrium.

Proof: First, we shall see that η(Aβ ) is strictly in-
creasing with respect to β . In fact, for an arbitrary ε > 0,
we have Aβ+ε = Aβ + εA⊗ (φ1>). In this decomposition,
Aβ is Metzler and irreducible by the assumption. Moreover
εA⊗ (φ1>) is nonzero and nonnegative. Thus, Lemma 1.3
shows η(Aβ )< η(Aβ+ε).

Therefore, to prove the given claim, it is sufficient to
show that η(Aβ0) = 0 where β0 = 1/(E[R]η(A)). This is
equivalent to the existence of a positive null vector for Aβ0
by Lemma 1.2 because A is Metzler and irreducible. In the
rest of the proof, we shall show that z = u⊗ (−(S−1)>φ)
is such a null vector, where u is the eigenvector of A
corresponding to the eigenvalue η(A). Let us first show that
z is positive. The vector u can be taken to be positive by the
Perron-Frobenius theory because A is irreducible (see [25]).
Moreover, since S is Metzler and Hurwitz stable, Lemma 1.1
shows that S−1 does not have a positive entry. Also S−1

clearly does not have a zero row. Therefore, since φ is
positive, the vector −(S−1)>φ is also positive. Hence z is
indeed positive. Now, let us compute the product Aβ0z:

Aβ0z =−u⊗φ − (β0η(A)u)⊗ (φ1>(S−1)>φ)

=−(u⊗φ)(1+β0η(A)1>(S−1)>φ).
(12)

Since the mean of the distribution (φ ,S) equals −φ>S−11
([21]), we have 1>(S−1)>φ = φ>S−11 = −E[R]. Therefore,
by the definition of β0, the equation (12) shows Aβ0z = 0,
as desired. This completes the proof of the theorem.

Remark 3.4: An advantage of Theorem 3.2 over the con-
dition (1) is that the theorem explicitly gives an upper bound



on the speed of convergence to the infection-free state as the
maximum real part of the eigenvalues of Aβ . This would
enable us to, for example, design the optimal strategies
for distributing preventive resources over networks under
constraints on the speed and the total amount of the resources
available, as in [11].

IV. EXPONENTIAL RECOVERY TIMES

As the dual of the previous section, in this section we
analyze SIS models under Assumption 2.3. Under this as-
sumption, D1 is equivalent to the following condition:
D1′) Whenever a node becomes infected, it will recover with

the instantaneous rate of δ .
The next proposition gives a vector representation of the

corresponding SIS model as in Proposition 3.1.
Proposition 4.1: Let x(i) (i = 1, . . . ,n) be the solutions of

the stochastic differential equation

dx(i) =−x(i) dN(i)
δ

+
p

∑
`,m=1

(Em`−E``)x(i) dN(i)
S`m

+

p

∑
`=1

(εφ e>` −E``)x(i) dN(i)
v` + εφ (1−1>x(i))

n

∑
j=1

ai j

p

∑
`=1

x( j)
` dN( j)

v`

(13)
with the initial conditions (9). Then the stochastic processes
z1, . . . , zn defined by (10) are a SIS model satisfying
Assumption 2.3.

Proof: Let t0 ≥ 0 and i be arbitrary. First as-
sume that i is susceptible at time t0. After time t0, and
while i is susceptible, the differential equation (13) reads
dx(i) = εφ ∑

n
j=1 ai j ∑

p
`=1 x( j)

` dN( j)
v` . Multiplying 1> from the

left yields d(1>x(i)) = ∑
n
j=1 ai j ∑

p
`=1 x( j)

` dN( j)
v` . Therefore, if

ai j = 1 and x( j)
` = 1, then, whenever the counter N( j)

v` jumps,
the quantity 1>x(i) becomes one, that is, i becomes infected.

We then consider the case that i becomes infected at
time t0. As in the proof of Theorem 3.2, without loss of
generality we can assume t0 = 0. After time 0, and while i
is infected, the differential equation (13) reads

dx(i) =−x(i) dN(i)
δ

+
p

∑
`,m=1

(Em`−E``)x(i) dN(i)
S`m

+

p

∑
`=1

(εφ e>` −E``)x(i) dN(i)
v` .

By the first term of this equation, we see that x(i) becomes
zero when and only when the counter N(i)

δ
jumps. This im-

plies that i recovers with a rate of δ and hence shows D1′ to
be true. On the other hand, until N(i)

δ
jumps, the variable x(i)

follows the same differential equation as (7). Since x(i)(0)
follows eφ , by Lemma 2.6, the times at which x(i)` = 1 and
N(i)

v` jumps for some ` form the renewal process with its
inter-renewal times following (φ ,S). This observation and
the argument in the first paragraph of this proof prove that
the stochastic processes zi satisfy D2. Also D3 holds true by
the initial conditions (9).

From Proposition 4.1 we obtain the following criterion for
the exponential stability:

Theorem 4.2: Under Assumption 2.3, if

δ > η
(
I⊗S>+(A+ I)⊗ (φv>)

)
, (14)

then the infection-free equilibrium of the SIS model is
exponentially stable.

Proof: As in the proof of Theorem 4.2, it is sufficient
to show that ξ (i)(t) converges to zero exponentially fast as
t→∞ for every i. Taking the expectation in (13), we can see
that

dξ (i)

dt
=−δξ

(i)+
p

∑
`,m=1

(Em`−E``)S`mξ
(i)+

p

∑
`=1

(φe>` −E``)ξ
(i)v`

+φ

n

∑
j=1

ai j

p

∑
`=1

e>` ξ
( j)v`−φ1>

n

∑
j=1

p

∑
`=1

ai jE[x(i)x
( j)
` ]v`

≤ (−δ I +S>+φv>)ξ (i)+(Ai⊗ (φv>))ξ .

Therefore dξ/dt ≤ (I⊗S>+(A+ I)⊗ (φv>)−δ I)ξ . Hence,
for pi(t) to converge to zero exponentially fast, it is sufficient
that the matrix I⊗S>+(A+I)⊗(φv>)−δ I is Hurwitz stable
by the same argument as in the proof of Theorem 3.2. This
proves the sufficiency of the condition (14).

Using Theorem 4.2, we can then validate the effectiveness
of the condition (2) under irreducibility conditions.

Theorem 4.3: Under Assumption 2.3, if A is irreducible
and v is positive, then (2) implies the exponential stability
of the infection-free equilibrium.

Proof: Assume (2). Then we have f (δ )< 1/(1+η(A)).
Since the probability density function of (φ ,S) has the form
φ> exp(St)v (t ≥ 0), we obtain

φ
>(δ I−S)−1v < 1/(1+η(A)). (15)

By Theorem 4.2, it is sufficient to show that the Metzler
matrix B = I⊗S>+(A+ I)⊗ (φv>)−δ I is Hurwitz stable.
Define z = u⊗ ((δ I − S)−1v), where u > 0 is the Perron-
Frobenius eigenvector of A. Since S−δ I is Hurwitz stable,
the inverse (δ I−S)−1 =−(S−δ I)−1 is nonnegative and does
not have a zero row by Lemma 1.1. Therefore the product
(δ I−S)−1v is positive because v is positive. Hence we see
that z is positive. Now, using (15), we can actually show that
Bz < 0. Therefore, by Lemma 1.1, B is Hurwitz stable.

V. NUMERICAL SIMULATIONS

In this section, we illustrate Theorem 4.2 through the
comparison with the condition obtained in [20]. Let R follow
a Weibull distributions with probability density function
(α/b)(t/b)α−1 exp(−(t/b)α), t ≥ 0, where α and b are
positive parameters. In order to normalize the mean of the
distributions to be one, we fix b = Γ(1+α−1) where Γ(·)
denotes the Gamma function. In [20], based on the condition
2, it is concluded that the infimum of the recovery rate δ such
that the SIS model under Assumption 2.3 has the infection-
free steady state equals δ0 =Γ(1+α−1)Γ(α+1)1/α η(A)1/α .

We compare the quantity δ0 with the infimum re-
covery rate δ1 = η(I ⊗ S> + (A + I) ⊗ (φv>)), which
we can obtain from Theorem 4.2. Let G be a real-
ization of the Erdős-Rényi graph with 500 nodes. We
vary the parameter α of the Weibull distribution as
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Fig. 1. Weibull distributions fitted by phase-type distributions for α = 1.5,
2.5, 3.5, and 4.5. Solid: phase-type distributions. Dashed: Weibull distribu-
tions.
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Fig. 2. Minimum recovery rates. Circle: δ1. Square: δ0.

α = 0.5, 1, . . . , 4.5, and 5. The Weibull distributions
are fitted with phase-type distributions using the expecta-
tion-maximization algorithm proposed in [21] (and available
at http://home.math.au.dk/asmus/pspapers.html).
Some of the fitting results are shown in Fig. 1. In Fig. 2,
we compare the two recovery rates δ0 and δ1. The graph
shows the coincidence of the two rates except at α = 0.5.

VI. CONCLUSION

In this paper we have analyzed SIS models of spreading
over networks with phase-type transmission and recovery
times. We have derived sufficient conditions to tame the
spread in terms of the eigenvalues of matrices that depend on
both the graph structure and the parameters of the phase-type
distribution. Our results mathematically justify the conditions
found in [20] without using asymptotic arguments. The
generality of the approach herein introduced is supported by
the fact that the set of phase-type distributions is dense in the
set of all the positive random variables. As a future work, we
will develop control strategies to contain epidemic spreading
with phase-type rates, as well as applications in the context
of distribution of online content in social networks.
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